Abstract
Obesity is considered a major public health problem worldwide. Metabolic syndrome is a cluster of signs that increases the risk of developing cardiovascular disease and type 2 diabetes mellitus (T2DM). The main characteristics of metabolic syndrome are central obesity, dyslipidemia, hypertension, hyperinsulinemia, and insulin resistance. It is clear that the progression of metabolic syndrome to T2DM depends on the environment and the genetic traits of individuals.
Pancreatic beta cells are fundamental for nutrient homeostasis. They are the unique cells in the organisms that produce and secrete insulin. The actions of insulin are anabolic, stimulating glucose entry to adipose tissue and skeletal muscle, and promoting nutrient storage.
However, insulin receptors are present in every mammalian cell, and not all the physiological effects of this hormone are completely understood. Nutrients, other hormones, and neurotransmitters regulate insulin secretion, and the main ones will be discussed in this chapter. We will summarize how metabolic changes modify beta-cell physiology and the actions of insulin in metabolic syndrome, eventually leading to the development of T2DM.
Keywords
- Beta-cell exhaustion
- Insulin resistance
- Obesity
- Ion channels
- Cytokines
- Beta-cell dysfunction
- Insulin hypersecretion
- Hyperinsulinemia
This is a preview of subscription content, access via your institution.




Abbreviations
- ACh:
-
Acetylcholine
- acyl-CoA:
-
Acyl coenzyme A
- ADP:
-
Adenosine diphosphate
- AMPK:
-
5′ adenosine monophosphate-activated protein kinase
- AR:
-
Adrenoreceptor
- ATP:
-
Adenosine triphosphate
- BDNF:
-
Brain-derived neurotrophic factor
- BMI:
-
Body mass index
- cAMP:
-
Cyclic adenosine monophosphate
- CAP:
-
Cbl-associated protein
- Cbl:
-
Casitas B-lineage lymphoma proto-oncogene
- Cytokine R:
-
R Cytokine receptor
- DAG:
-
Diacylglycerol
- DPP-4:
-
Enzyme dipeptidylpeptidase-4
- ER:
-
Endoplasmic reticulum
- ERK:
-
Extracellular signal-regulated kinase
- GK:
-
Glucokinase
- GLP-1:
-
Glucagon-like peptide-1
- GLUT2:
-
Glucose transporters type 2
- GSIS:
-
Glucose-stimulated insulin secretion
- IGF1R:
-
Insulin-like growth factor 1 receptor
- IKK:
-
Kinase of IKB (inhibitor of KB)
- IL-6:
-
Interleukin-6
- IR:
-
Insulin receptor
- IRS:
-
Insulin receptor substrate
- JAKs:
-
Kinases of the Janus family
- JNK:
-
c-Jun N-terminal kinase
- KATP:
-
ATP-sensitive potassium channel
- MAPK:
-
Mitogen-activated protein kinase
- MODY:
-
Maturity onset diabetes of the young
- MS:
-
Metabolic syndrome
- mTOR:
-
Mammalian target of rapamycin
- NEFAs:
-
Nonesterified fatty acids
- NGF:
-
Nerve growth factor
- PDK:
-
Phosphoinositide-dependent kinase
- PHHI:
-
Persistent hypoglycemic hyperinsulinemia of the infancy
- PI3K:
-
Phosphoinositol-3 kinase
- PKA:
-
Protein kinase A
- PKB/Akt:
-
Protein kinase B
- PKC:
-
Protein kinase C
- PPAR gamma:
-
Peroxisome-proliferation-activated receptor gamma
- PTPs:
-
Protein tyrosine phosphatases
- Ras:
-
Rat sarcoma protein family
- RBP4:
-
Retinol binding protein-4
- ROS:
-
Reactive oxygen species
- SNARE:
-
Soluble NSF attachment protein receptor
- SOCS:
-
Suppressor of cytokine signaling
- SREBP:
-
Sterol regulatory element-binding protein
- T2DM:
-
Type 2 diabetes mellitus
- TLR4:
-
Toll-like receptor 4
- TNFa:
-
Tumor necrosis factor alpha
- TNFR:
-
Tumor necrosis factor receptor
- TrkA:
-
Tyrosine kinase receptor A
- TRP:
-
Transient receptor channels
- WAT:
-
White adipose tissue
References
Abedini A, Schmidt AM (2013) Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett 587(8):1119–1127
Ahren B (2009) Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov 8(5):369–385
Ahren B (2012) Islet nerves in focus – defining their neurobiological and clinical role. Diabetologia 55(12):3152–3154
Ahren B, Lundquist I (1981) Effects of selective and non-selective beta-adrenergic agents on insulin secretion in vivo. Eur J Pharmacol 71(1):93–104
Alberti KG, Eckel RH et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645
Aloe L (2011) Rita Levi-Montalcini and the discovery of NGF, the first nerve cell growth factor. Arch Ital Biol 149(2):175–181
Asante-Appiah E, Kennedy BP (2003) Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am J Physiol Endocrinol Metab 284(4):E663–E670
Bagger JI, Knop FK et al (2011) Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes Obes Metab 13(11):965–971
Bays H, Mandarino L et al (2004) Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89(2):463–478
Braun M, Ramracheya R et al (2010) Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic beta-cells. Diabetes 59(7):1694–1701
Braun M, Wendt A et al (2004) Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic beta-cells. J Gen Physiol 123(3):191–204
Byrne CD (2012) Dorothy Hodgkin Lecture 2012: non-alcoholic fatty liver disease, insulin resistance and ectopic fat: a new problem in diabetes management. Diabet Med 29(9):1098–1107
Cabrera O, Berman DM et al (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103(7):2334–2339
Cabrera-Vasquez S, Navarro-Tableros V et al (2009) Remodelling sympathetic innervation in rat pancreatic islets ontogeny. BMC Dev Biol 9:34
Cai K, Qi D et al (2011) TNF-alpha acutely upregulates amylin expression in murine pancreatic beta cells. Diabetologia 54(3):617–626
Chakraborty S, Mukherjee B et al (2013) Pinpointing proline substitution to be responsible for the loss of amyloidogenesis in IAPP. Chem Biol Drug Des 82(4):446–452
Chaldakov G (2011) The metabotrophic NGF and BDNF: an emerging concept. Arch Ital Biol 149(2):257–263
Chaldakov GN, Fiore M et al (2010) Neuroadipology: a novel component of neuroendocrinology. Cell Biol Int 34(10):1051–1053
Chaldakov GN, Tonchev AB et al (2009) NGF and BDNF: from nerves to adipose tissue, from neurokines to metabokines. Riv Psichiatr 44(2):79–87
Charlton B, Bacelj A et al (1989) Cyclophosphamide-induced diabetes in NOD/WEHI mice. Evidence for suppression in spontaneous autoimmune diabetes mellitus. Diabetes 38(4):441–447
Cheng Z, Tseng Y et al (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab 21(10):589–598
Covey SD, Wideman RD et al (2006) The pancreatic beta cell is a key site for mediating the effects of leptin on glucose homeostasis. Cell Metab 4(4):291–302
DeFronzo RA, Okerson T et al (2008) Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr Med Res Opin 24(10):2943–2952
Denroche HC, Huynh FK et al (2012) The role of leptin in glucose homeostasis. Journal of Diabetes Investigation 3(2):115–129
Diaz-Garcia CM (2013) The TRPA1 channel and oral hypoglycemic agents: Is there complicity in beta-cell exhaustion? Channels (Austin) 7(6):420–422
Dong H, Kumar M et al (2006) Gamma-aminobutyric acid up- and downregulates insulin secretion from beta cells in concert with changes in glucose concentration. Diabetologia 49(4):697–705
Drews G, Krippeit-Drews P et al (2010) Electrophysiology of islet cells. Adv Exp Med Biol 654:115–163
Evans JL, Maddux BA et al (2005) The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal 7(7–8):1040–1052
Expert Panel on Detection, E., and Treatment of High Blood Cholesterol in Adults (2002) Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106(25):3143–3421
Fadini GP, de Kreutzenberg SV et al (2011) The metabolic syndrome influences the response to incretin-based therapies. Acta Diabetol 48(3):219–225
Faradji V, Sotelo J (1990) Low serum levels of nerve growth factor in diabetic neuropathy. Acta Neurol Scand 81(5):402–406
Gautam D, Han SJ et al (2006) A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 3(6):449–461
Gebre-Medhin S, Olofsson C et al (2000) Islet amyloid polypeptide in the islets of Langerhans: friend or foe? Diabetologia 43(6):687–695
Gezginci-Oktayoglu S, Bolkent S (2009) Exendin-4 exerts its effects through the NGF/p75NTR system in diabetic mouse pancreas. Biochem Cell Biol 87(4):641–651
Gezginci-Oktayoglu S, Karatug A et al (2012) The relation among NGF, EGF and insulin is important for triggering pancreatic beta cell apoptosis. Diabetes Metab Res Rev 28(8):654–662
Graciano MF, Valle MM et al (2011) Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets. Islets 3(5):213–223
Gromada J, Franklin I et al (2007) Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 28(1):84–116
Harwood HJ Jr (2012) The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 63(1):57–75
Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49(11):1751–1760
Henquin JC (2011) The dual control of insulin secretion by glucose involves triggering and amplifying pathways in beta-cells. Diabetes Res Clin Pract 93(Suppl 1):S27–S31
Henquin JC, Meissner HP (1984) Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic B-cells. Experientia 40(10):1043–1052
Hiriart M, Aguilar-Bryan L (2008) Channel regulation of glucose sensing in the pancreatic beta-cell. Am J Physiol Endocrinol Metab 295(6):E1298–E1306
Hiriart M, Vidaltamayo R et al (2001) Nerve and fibroblast growth factors as modulators of pancreatic beta cell plasticity and insulin secretion. Isr Med Assoc J 3(2):114–116
Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–807
Hotamisligil GS, Arner P et al (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95(5):2409–2415
Howard JK, Flier JS (2006) Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab 17(9):365–371
Hristova M, Aloe L (2006) Metabolic syndrome – neurotrophic hypothesis. Med Hypotheses 66(3):545–549
Hunt KJ, Resendez RG et al (2004) National Cholesterol Education Program versus World Health Organization metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio Heart Study. Circulation 110(10):1251–1257
Huypens PR, Huang M et al (2012) Overcoming the spatial barriers of the stimulus secretion cascade in pancreatic beta-cells. Islets 4(1):1–9
Imai Y, Dobrian AD et al (2013) Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab 24(7):351–360
Jensen MV, Joseph JW et al (2008) Metabolic cycling in control of glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 295(6):E1287–E1297
Jewell JL, Oh E et al (2010) Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. Am J Physiol Regul Integr Comp Physiol 298(3):R517–R531
Jezek P, Dlaskova A et al (2012) Redox homeostasis in pancreatic beta cells. Oxid Med Cell Longev 2012:932838
Kim SJ, Nian C et al (2012) GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS One 7(7):e40156
Koh DS, Cho JH et al (2012) Paracrine interactions within islets of Langerhans. J Mol Neurosci 48(2):429–440
Krabbe KS, Nielsen AR et al (2007) Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50(2):431–438
Kristiansen OP, Mandrup-Poulsen T (2005) Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 54(Suppl 2):S114–S124
Larqué C, Velasco M et al (2011) Early endocrine and molecular changes in metabolic syndrome models. IUBMB Life 63(10):831–839
Larrieta ME, Vital P et al (2006) Nerve growth factor increases in pancreatic beta cells after streptozotocin-induced damage in rats. Exp Biol Med (Maywood) 231(4):396–402
Leavens KF, Birnbaum MJ (2011) Insulin signaling to hepatic lipid metabolism in health and disease. Crit Rev Biochem Mol Biol 46(3):200–215
Lee YH, Magkos F et al (2011) Effects of leptin and adiponectin on pancreatic beta-cell function. Metabolism 60(12):1664–1672
Leibiger IB, Leibiger B et al (2008) Insulin signaling in the pancreatic beta-cell. Annu Rev Nutr 28:233–251
Li C, Matschinsky FM et al (2012) Amino acid-stimulated insulin secretion: the role of the glutamine-glutamate-alpha-ketoglutarate axis. Monogenic hyperinsulinemic hypoglycemia disorders. S. C. A. and D. L. D. D., Philadelphia, p 21
Lorenzo A, Razzaboni B et al (1994) Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368(6473):756–760
MacDonald PE, Wheeler MB (2003) Voltage-dependent K(+) channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia 46(8):1046–1062
Maffei M, Halaas J et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1(11):1155–1161
Matthews DR, Cull CA et al (1998) UKPDS 26: sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet Med 15(4):297–303
Mlinar B, Marc J et al (2007) Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta 375(1–2):20–35
Navarro-Tableros V, Fiordelisio T et al (2007) Nerve growth factor promotes development of glucose-induced insulin secretion in rat neonate pancreatic beta cells by modulating calcium channels. Channels (Austin) 1(6):408–416
Newsholme P, Bender K et al (2007) Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans 35(Pt 5):1180–1186
Nishizawa M, Nakabayashi H et al (2013) Intraportal GLP-1 stimulates insulin secretion predominantly through the hepatoportal-pancreatic vagal reflex pathways. Am J Physiol Endocrinol Metab 305(3):E376–E387
Nolan CJ, Leahy JL et al (2006) Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling. Diabetologia 49(9):2120–2130
Nolan CJ, Prentki M (2008) The islet beta-cell: fuel responsive and vulnerable. Trends Endocrinol Metab 19(8):285–291
Nyman LR, Wells KS et al (2008) Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J Clin Invest 118(11):3790–3797
Ohara-Imaizumi M, Fujiwara T et al (2007) Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 177(4):695–705
Osundiji MA, Evans ML (2013) Brain control of insulin and glucagon secretion. Endocrinol Metab Clin North Am 42(1):1–14
Phillips LK, Prins JB (2011) Update on incretin hormones. Ann N Y Acad Sci 1243:E55–E74
Pillay K, Govender P (2013) Amylin uncovered: a review on the polypeptide responsible for type II diabetes. Biomed Res Int 2013:826706
Polak M, Scharfmann R et al (1993) Nerve growth factor induces neuron-like differentiation of an insulin-secreting pancreatic beta cell line. Proc Natl Acad Sci U S A 90(12):5781–5785
Prentki M, Matschinsky FM (1987) Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev 67(4):1185–248
Prentki M, Matschinsky FM et al (2013) Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18(2):162–85
Rask-Madsen C, Kahn CR (2012) Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol 32(9):2052–2059
Reetz A, Solimena M et al (1991) GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J 10(5):1275–1284
Rhodes CJ, White MF et al (2013) Direct autocrine action of insulin on beta-cells: does it make physiological sense? Diabetes 62(7):2157–2163
Rodriguez-Diaz R, Caicedo A (2013) Novel approaches to studying the role of innervation in the biology of pancreatic islets. Endocrinol Metab Clin North Am 42(1):39–56
Rodriguez-Diaz R, Dando R et al (2011) Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med 17(7):888–8892
Romanatto T, Roman EA et al (2009) Deletion of tumor necrosis factor-alpha receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis. J Biol Chem 284(52):36213–36222
Rorsman P, Renstrom E (2003) Insulin granule dynamics in pancreatic beta cells. Diabetologia 46(8):1029–1045
Rosas-Vargas H, Martinez-Ezquerro JD et al (2011) Brain-derived neurotrophic factor, food intake regulation, and obesity. Arch Med Res 42(6):482–494
Rosenbaum T, Castanares DT et al (2002) Nerve growth factor increases L-type calcium current in pancreatic beta cells in culture. J Membr Biol 186(3):177–184
Rosenbaum T, Sanchez-Soto MC et al (2001) Nerve growth factor increases insulin secretion and barium current in pancreatic beta-cells. Diabetes 50(8):1755–1762
Rosenbaum T, Vidaltamayo R et al (1998) Pancreatic beta cells synthesize and secrete nerve growth factor. Proc Natl Acad Sci U S A 95(13):7784–7788
Rosengren AH, Jokubka R et al (2010) Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes. Science 327(5962):217–220
Ruiz de Azua I, Gautam D et al (2012) Critical metabolic roles of beta-cell M3 muscarinic acetylcholine receptors. Life Sci 91(21–22):986–991
Ruohonen ST, Ruohonen S et al (2012) Involvement of alpha2-adrenoceptor subtypes A and C in glucose homeostasis and adrenaline-induced hyperglycaemia. Neuroendocrinology 96(1):51–59
Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806
Sawada F, Inoguchi T et al (2008) Differential effect of sulfonylureas on production of reactive oxygen species and apoptosis in cultured pancreatic beta-cell line, MIN6. Metabolism 57(8):1038–1045
Smismans A, Schuit F et al (1997) Nutrient regulation of gamma-aminobutyric acid release from islet beta cells. Diabetologia 40(12):1411–1415
Somesh BP, Verma MK et al (2013) Chronic glucolipotoxic conditions in pancreatic islets impair insulin secretion due to dysregulated calcium dynamics, glucose responsiveness and mitochondrial activity. BMC Cell Biol 14:31
Sornelli F, Fiore M et al (2009) Adipose tissue-derived nerve growth factor and brain-derived neurotrophic factor: results from experimental stress and diabetes. Gen Physiol Biophys 28 Spec No:179–183
Stein DT, Stevenson BE et al (1997) The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest 100(2):398–403
Straub SG, Shanmugam G et al (2004) Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets. Diabetes 53(12):3179–3183
Straub SG, Sharp GW (2012) Evolving insights regarding mechanisms for the inhibition of insulin release by norepinephrine and heterotrimeric G proteins. Am J Physiol Cell Physiol 302(12):C1687–C1698
Sumara G, Formentini I et al (2009) Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. Cell 136(2):235–248
Taborsky GJ Jr, Ahren B et al (2002) Autonomic mechanism and defects in the glucagon response to insulin-induced hypoglycaemia. Diabetes Nutr Metab 15(5):318–322, discussion 322–323
Taniguchi CM, Emanuelli B et al (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7(2):85–96
Togashi K, Hara Y et al (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25(9):1804–1815
Tomas E, Wood JA et al (2011) Glucagon-like peptide-1(9–36)amide metabolite inhibits weight gain and attenuates diabetes and hepatic steatosis in diet-induced obese mice. Diabetes Obes Metab 13(1):26–33
Tuduri E, Bruin JE et al (2013) Impaired Ca(2+) Signaling in beta-Cells Lacking Leptin Receptors by Cre-loxP Recombination. PLoS One 8(8):e71075
Ullrich S, Wollheim CB (1985) Expression of both alpha 1- and alpha 2-adrenoceptors in an insulin-secreting cell line. Parallel studies of cytosolic free Ca2+ and insulin release. Mol Pharmacol 28(2):100–106
Velasco M, Larque C et al (2012) Metabolic syndrome induces changes in KATP-channels and calcium currents in pancreatic beta-cells. Islets 4(4):302–311
Vidaltamayo R, Sanchez-Soto MC et al (2002) Nerve growth factor increases sodium channel expression in pancreatic beta cells: implications for insulin secretion. FASEB J 16(8):891–892
Vollenweider P (2003) Insulin resistant states and insulin signaling. Clin Chem Lab Med 41(9):1107–1119
Wang Q, Jin T (2009) The role of insulin signaling in the development of beta-cell dysfunction and diabetes. Islets 1(2):95–101
Westermark P, Andersson A et al (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91(3):795–826
White MF (2003) Insulin signaling in health and disease. Science 302(5651):1710–1711
Xu XJ, Gauthier MS et al (2012) Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue. J Lipid Res 53(4):792–801
Yamanaka M, Itakura Y et al (2006) Protective effect of brain-derived neurotrophic factor on pancreatic islets in obese diabetic mice. Metabolism 55(10):1286–1292
Yi P, Park JS et al (2013) Betatrophin: a hormone that controls pancreatic beta cell proliferation. Cell 153(4):747–758
Youos JG (2011) The role of alpha-, delta- and F cells in insulin secretion and action. Diabetes Res Clin Pract 93(Suppl 1):S25–S26
Zhang T, Li C (2013) Mechanisms of amino acid-stimulated insulin secretion in congenital hyperinsulinism. Acta Biochim Biophys Sin (Shanghai) 45(1):36–43
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media Dordrecht
About this entry
Cite this entry
Hiriart, M. et al. (2014). Pancreatic Beta Cells in Metabolic Syndrome. In: Islam, M. (eds) Islets of Langerhans, 2. ed.. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6884-0_27-2
Download citation
DOI: https://doi.org/10.1007/978-94-007-6884-0_27-2
Received:
Accepted:
Published:
Publisher Name: Springer, Dordrecht
Online ISBN: 978-94-007-6884-0
eBook Packages: Springer Reference Biomedicine & Life SciencesReference Module Biomedical and Life Sciences