Skip to main content

General Mechanisms of Plant Defense and Plant Toxins

  • Living reference work entry
  • First Online:
Plant Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Long before the appearance of flowering plants, early plants were infected by pathogenic microorganisms and challenged by herbivorous animals. Consequently, plants and animals evolved defenses and counterdefenses from the very beginning. Therefore, to cope with a huge diversity of unfavorable biotic conditions, plants developed several different defense strategies. In particular, defense strategies against feeding arthropods are highly diverse, including constitutive and inducible, direct and indirect defense mechanism. Among all types of defense, chemical defenses based on the synthesis and accumulation of a consistent number of natural bioactive compounds is a very successful and ubiquitously distributed strategy among the plant kingdom. Many of those compounds are toxic; others act as repellents or are attractive cues for organisms belonging to other trophic levels. Often, toxic compounds have specific targets; other compounds exhibit general toxicity. In such cases plants need to protect themselves. Within the plants’ reservoir of chemical defensive compounds, alkaloids, terpenoids, phenolic compounds, and many polypeptides can be found. Not only herbivorous insects but also mammalian organisms including human beings can be targeted by such plant-derived toxins, which will be demonstrated in selected examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal AA. Current trends in the evolutionary ecology of plant defence. Funct Ecol. 2011;25:420–32.

    Article  Google Scholar 

  • Amorim MHR, da Costa RMG, Lopes C, Bastos M. Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol. 2013;43:559–79.

    Article  CAS  PubMed  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol. 2004;19:535–44.

    Article  PubMed  Google Scholar 

  • Andréasson E, Jørgensen LB. Localization of plant myrosinases and glucosinolates. In: Romeo JT, editor. Integrative phytochemistry: from ethnobotany to molecular ecology. Amsterdam: Elsevier; 2003. p. 79–99.

    Chapter  Google Scholar 

  • Andréasson E, Jørgensen LB, Höglund AS, Rask L, Meijer J. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol. 2001;1278:1750–63.

    Article  CAS  Google Scholar 

  • Barah P, Bones AM. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. J Exp Bot. 2015;66:479–93.

    Article  CAS  PubMed  Google Scholar 

  • Bezemer TM, van Dam NM. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol. 2005;20:617–24.

    Article  PubMed  Google Scholar 

  • Bourras S, Rouxel T, Meyer M. Agrobacterium tumefaciens gene transfer: how a plant pathogen hacks the nuclei of plant and nonplant organisms. Phytopathology. 2015;105:1288–301.

    Article  CAS  PubMed  Google Scholar 

  • Bricchi I, Bertea CM, Occhipinti A, Paponov IA, Maffei ME. Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis. PLoS One. 2012;7, e46673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buskuhl H, de Oliveira FL, Blind LZ, de Freitas RA, Barison A, Campos FR, Corilo YE, Eberlin MN, Caramori GF, Biavatti MW. Sesquiterpene lactones from Vernonia scorpioides and their in vitro cytotoxicity. Phytochemistry. 2010;71:1539–44.

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Neal AL, van Wees SCM, Ton J. Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci. 2013;18:539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cederroth CR, Zimmermann C, Beny J-L, Schaad O, Combepine C, Descombes P, Doerge DR, Pralong FP, Vassalli J-D, Nefa S. Potential detrimental effects of a phytoestrogen-rich diet on male fertility in mice. Mol Cell Endocrinol. 2010;321:52–160.

    Article  CAS  Google Scholar 

  • Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Sesquiterpenoids Lactones: benefits to plants and people. Int J Mol Sci. 2013;14:12780–805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan TYK. Aconite poisoning. Clin Toxicol. 2009;47:279–85.

    Article  CAS  Google Scholar 

  • Chan TYK. Aconitum alkaloid content and the high toxicity of aconite tincture. Forensic Sci Int. 2012;222:1–3.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li S, Shen Q. Folic acid and cell-penetrating peptide conjugated PLGA-PEG bifunctional nanoparticles for vincristine sulfate delivery. Eur J Pharm Sci. 2012;47:430–43.

    Article  CAS  PubMed  Google Scholar 

  • Chi SM, Xie W, Zhang JW, Xu SC. Theoretical insight into the structural mechanism for the binding of vinblastine with tubulin. J Biomol Struct Dyn. 2015;33:2234–54.

    Article  CAS  PubMed  Google Scholar 

  • Chubukov V, Mingardon F, Schackwitz W, Baidoo EEK, Alonso-Gutierrez J, Hu QJ, Lee TS, Keasling JD, Mukhopadhyay A. Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase AhpC. Appl Environ Microbiol. 2015;81:4690–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong Y, Zhu HL, Zhang QC, Li L, Li HY, Wang XY, Guo JG. Steroidal alkaloids from Veratrum maackii REGEL with genotoxicity on brain-cell DNA in mice. Helv Chim Acta. 2015;98:539–45.

    Article  CAS  Google Scholar 

  • Crous PW, Hawksworth DL, Wingfield MJ. Identifying and naming plant-pathogenic fungi: past, present, and future. In: Van Alfen NK, editor. Annual review of phytopathology, vol. 53. Palo Alto: Annual Reviews; 2015. p. 247–67.

    Google Scholar 

  • Cui H, Xiang T, Zhou J-M. Plant immunity: a lesson from pathogenic bacterial effector proteins. Cell Microbiol. 2009;11:1453–61.

    Article  CAS  PubMed  Google Scholar 

  • Cushnie TPT, Cushnie B, Lamb AJ. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents. 2014;44:377–86.

    Article  CAS  PubMed  Google Scholar 

  • Dang LY, Van Damme EJM. Toxic proteins in plants. Phytochemistry. 2015;117:51–64.

    Article  CAS  PubMed  Google Scholar 

  • de Lira CS, Pontual EV, de Albuquerque LP, Paiva LM, Paiva PMG, de Oliveira JV, Napoleao TH, Navarro D. Evaluation of the toxicity of essential oil from Alpinia purpurata inflorescences to Sitophilus zeamais (maize weevil). Crop Prot. 2015;71:95–100.

    Article  CAS  Google Scholar 

  • Dinan L. Phytoecdysteroids: biological aspects. Phytochemistry. 2001;57:325–39.

    Article  CAS  PubMed  Google Scholar 

  • Duke SO, Canel C, Rimando AM, Tellez MR, Duke MV, Paul RN. Current and potential exploitation of plant glandular trichome productivity. In: Hallahan DL, Gray JC, editors. Advances in botanical research incorporating advances in plant pathology, vol. 31. New York: Academic; 2000. p. 121–51.

    Google Scholar 

  • Efferth T. Antiplasmodial and antitumor activity of arternisinin – from bench to bedside. Planta Med. 2007;73:299–309.

    Article  CAS  PubMed  Google Scholar 

  • Efferth T, Kaina B. Toxicity of the antimalarial artemisinin and its dervatives. Crit Rev Toxicol. 2010;40:405–21.

    Article  CAS  PubMed  Google Scholar 

  • Fang NB, Casida JE. Anticancer action of cube insecticide: correlation for rotenoid constituents between inhibition of NADH: ubiquinone oxidoreductase and induced ornithine decarboxylase activities. Proc Natl Acad Sci U S A. 1998;95:3380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatima U, Senthil-Kumar M. Plant and pathogen nutrient acquisition strategies. Front Plant Sci. 2015;6:12.

    Article  Google Scholar 

  • Froberg B, Ibrahim D, Furbee RB. Plant poisoning. Emerg Med Clin North Am. 2007;25:375–433.

    Article  PubMed  Google Scholar 

  • Galati G, O’Brien PJ. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med. 2004;37:287–303.

    Article  CAS  PubMed  Google Scholar 

  • Gatehouse JA. Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 2002;156:145–69.

    Article  CAS  Google Scholar 

  • Gladieux P, Feurtey A, Hood ME, Snirc A, Clavel J, Dutech C, Roy M, Giraud T. The population biology of fungal invasions. Mol Ecol. 2015;24:1969–86.

    Article  CAS  PubMed  Google Scholar 

  • Green BT, Lee ST, Panter KE, Brown DR. Piperidine alkaloids: human and food animal teratogens. Food Chem Toxicol. 2012;50:2049–55.

    Article  CAS  PubMed  Google Scholar 

  • Handley R, Ekbom B, Agren J. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol Entomol. 2005;30:284–92.

    Article  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM. Plant structural traits and their role in antiherbivore defense. Perspec Plant Ecol Evol Syst. 2007;8:157–78.

    Article  Google Scholar 

  • Harborne DJ. Emergency treatment of adder bites – case-reports and literature-review. Arch Emerg Med. 1993;10:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil M, Greiner S, Meimberg H, Kruger R, Noyer JL, Heubl G, Linsenmair KE, Boland W. Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature. 2004;430:205–8.

    Article  CAS  PubMed  Google Scholar 

  • Heil M, McKey D. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst. 2003;34:425–53.

    Article  Google Scholar 

  • Heil M, Silva Bueno JC. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci U S A. 2007;104:5467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helfer S. Rust fungi and global change. New Phytol. 2014;201:770–80.

    Article  CAS  PubMed  Google Scholar 

  • Henry E, Yadeta KA, Coaker G. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity. New Phytol. 2013;199:908–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilker M, Meiners T. Early herbivore alert: insect eggs induce plant defense. J Chem Ecol. 2006;32:1379–97.

    Article  CAS  PubMed  Google Scholar 

  • Horbach R, Navarro-Quesada AR, Knogge W, Deising HB. When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol. 2011;168:51–62.

    Article  CAS  PubMed  Google Scholar 

  • Jalilzadeh-Amin G, Maham M. The application of 1,8-cineole, a terpenoid oxide present in medicinal plants, inhibits castor oil-induced diarrhea in rats. Pharm Biol. 2015;53:594–9.

    Article  CAS  PubMed  Google Scholar 

  • Jeon JH, Park JH, Chung N, Lee HS. Active Monoterpene Ketones Isolated from Rosmarinus officinalis with fumigant and contact action against Tyrophagus putrescentiae (Schrank). J Food Prot. 2014;77:1355–60.

    Article  CAS  PubMed  Google Scholar 

  • Kang C, Han JH, Oh J, Kulkarni R, Zhou W, Ferreira D, Jang TS, Myung CS, Na M. Steroidal alkaloids from Veratrum nigrum enhance glucose uptake in skeletal muscle cells. J Nat Prod. 2015;78:803–10.

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature. Science. 2001;291:2141–4.

    Article  CAS  PubMed  Google Scholar 

  • Khojasteh SC, Oishi S, Nelson SD. Metabolism and toxicity of Menthofuran in rat liver slices and in rats. Chem Res Toxicol. 2010;23:1824–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klauser E, Gulden M, Maser E, Seibert S, Seibert H. Additivity, antagonism, and synergy in arsenic trioxide-induced growth inhibition of C6 glioma cells: effects of genistein, quercetin and buthionine-sulfoximine. Food Chem Toxicol. 2014;67:212–21.

    Article  CAS  PubMed  Google Scholar 

  • Krenzelok EP. Aspects of Datura poisoning and treatment. Clin Toxicol. 2010;48:104–10.

    Article  CAS  Google Scholar 

  • Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R. Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol. 2000;1248:599–608.

    Article  Google Scholar 

  • Kost C, Heil M. The defensive role of volatile emission and extrafloral nectar secretion for lima bean in nature. J Chem Ecol. 2008;34:2–13.

    Article  CAS  PubMed Central  Google Scholar 

  • Lee JY. Plasmodesmata: a signaling hub at the cellular boundary. Curr Opin Plant Biol. 2015;27:133–40.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang YL, Fu MM, Yao Q, Zhuo HQ, Lu QY, Niu XQ, Zhang P, Pe YH, Zhang KJ. Parthenolide induces apoptosis and lytic cytotoxicity in Epstein-Barr virus-positive Burkitt lymphoma. Mol Med Rep. 2012;6:477–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maejima K, Oshima K, Namba S. Exploring the phytoplasmas, plant pathogenic bacteria. J Gen Plant Pathol. 2014;80:210–21.

    Article  CAS  Google Scholar 

  • Maffei ME. Molecole Bioattive delle PIante. Rome: Gruppo Editoriale l’Espresso; 2015.

    Google Scholar 

  • Maffei ME, Gertsch J, Appendino G. Plant volatiles: production, function and pharmacology. Nat Prod Rep. 2011;28:1359–80.

    Article  CAS  PubMed  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W. Before gene expression: early events in plant-herbivore interactions. Trends Plant Sci. 2007;12:310–6.

    Article  CAS  PubMed  Google Scholar 

  • Maggiolini M, Recchia AG, Bonofiglio D, Catalano S, Vivacqua A, Carpino A, Rago V, Rossi R, Ando S. The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor alpha in human breast cancer cells. J Mol Endocrinol. 2005;35:269–81.

    Article  CAS  PubMed  Google Scholar 

  • Mayer VE, Frederickson ME, McKey D, Blatrix R. Current issues in the evolutionary ecology of ant–plant symbioses. New Phytol. 2014;202:749–64.

    Article  PubMed  Google Scholar 

  • Miller JM, Conn EE. Metabolism of hydrogen cyanide by higher plants. Plant Physiol. 1980;5:1199–202.

    Article  Google Scholar 

  • Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 2012;63:431–50.

    Article  PubMed  CAS  Google Scholar 

  • Mithöfer A, Boland W, Maffei ME. Chemical ecology of plant-insect interactions. In: Parker J, editor. Plant disease resistance. Chichester: Wiley-Blackwell; 2009. p. 261–91.

    Google Scholar 

  • Morin D, Barthelemy S, Zini R, Labidalle S, Tillement JP. Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett. 2001;495:131–6.

    Article  CAS  PubMed  Google Scholar 

  • Morin S, Ghanim M, Zeidan M, Czosnek H, Verbeek M, van den Heuvel J. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology. 1999;256:75–84.

    Article  CAS  PubMed  Google Scholar 

  • Navajas M, de Moraes GJ, Auger P, Migeon A. Review of the invasion of Tetranychus evansi: biology, colonization pathways, potential expansion and prospects for biological control. Exp Appl Acarol. 2013;59:43–65.

    Article  PubMed  Google Scholar 

  • Nyirimigabo E, Xu YY, Li YB, Wang YM, Agyemang K, Zhang YJ. A review on phytochemistry, pharmacology and toxicology studies of Aconitum. J Pharm Pharmacol. 2015;67:1–19.

    Article  CAS  PubMed  Google Scholar 

  • Occhipinti A. Plant coevolution: evidences and new challenges. J Plant Interact. 2013;8:188–96.

    Article  Google Scholar 

  • Occhipinti A, Maffei ME. Chlorophyll and its degradation products in the two-spotted spider mite, Tetranychus urticae (Koch): observations using epifluorescence and confocal laser scanning microscopy. Exp Appl Acarol. 2013;61:213–9.

    Article  CAS  PubMed  Google Scholar 

  • Pasteels JM. Chemical defence, offence and alliance in ants-aphids-ladybirds relationships. Popul Ecol. 2007;49:5–14.

    Article  Google Scholar 

  • Peixoto MG, Bacci L, Blank AF, Araujo APA, Alves PB, Silva JHS, Santos AA, Oliveira AP, da Costa AS, Arrigoni-Blank MD. Toxicity and repellency of essential oils of Lippia alba chemotypes and their major monoterpenes against stored grain insects. Ind Crop Prod. 2015;71:31–6.

    Article  CAS  Google Scholar 

  • Pennec JP, Aubin M. Effects of aconitine and veratrine on the isolated perfused heart of the common eel (Anguilla anguilla L.). Comp Biochem Physiol C Comp Pharmacol Toxicol. 1984;77:367–9.

    Article  CAS  Google Scholar 

  • Philippe G, Angenot L, Tits M, Frederich M. About the toxicity of some Strychnos species and their alkaloids. Toxicon. 2004;44:405–16.

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Lewinsohn E. Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol. 2011;62:549–66.

    Article  CAS  PubMed  Google Scholar 

  • Pimkaew P, Suksen K, Somkid K, Chokchaisiri R, Jariyawat S, Chuncharunee A, Suksamrarn A, Piyachaturawat P. Zederone, a sesquiterpene from Curcuma elata Roxb, is hepatotoxic in mice. Int J Toxicol. 2013;32:454–62.

    Article  CAS  PubMed  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature. 2005;434:732–7.

    Article  CAS  PubMed  Google Scholar 

  • Rasul A, Khan M, Yu B, Ali M, Bo YJ, Yang H, Ma TH. Isoalantolactone, a sesquiterpene lactone, induces apoptosis in SGC-7901 cells via mitochondrial and phosphatidylinositol 3-kinase/Akt signaling pathways. Arch Pharm Res. 2013;36:1262–9.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds T. Hemlock alkaloids from Socrates to poison aloes. Phytochemistry. 2005;66:1399–406.

    Article  CAS  PubMed  Google Scholar 

  • Roossinck MJ. Plants, viruses and the environment: ecology and mutualism. Virology. 2015;479:271–7.

    Article  PubMed  CAS  Google Scholar 

  • Sattelle DB. Acetylcholine receptors of insects. Adv Insect Physiol. 1980;15:215–315.

    Article  CAS  Google Scholar 

  • Scapinello J, Oliveira JV, Ribeiros ML, Tomazelli O, Chiaradia LA, Dal MJ. Effects of supercritical CO2 extracts of Melia azedarach L. on the control of fall armyworm (Spodoptera frugiperda). J Supercrit Fluids. 2014;93:20–6.

    Article  CAS  Google Scholar 

  • Schep LJ, Schmierer DM, Fountain JS. Veratrum poisoning. Toxicol Rev. 2006;25:73–8.

    Article  CAS  PubMed  Google Scholar 

  • Shafikova TN, Omelichkina YV. Molecular-genetic aspects of plant immunity to phytopathogenic bacteria and fungi. Russ J Plant Physiol. 2015;62:571–85.

    Article  CAS  Google Scholar 

  • Shinya T, Nakagawa T, Kaku H, Shibuya N. Chitin-mediated plant-fungal interactions: catching, hiding and handshaking. Curr Opin Plant Biol. 2015;26:64–71.

    Article  CAS  PubMed  Google Scholar 

  • Shroff R, Vergara F, Muck A, Svatoš A, Gershenzon J. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc Natl Acad Sci U S A. 2008;1058:6196–201.

    Article  CAS  Google Scholar 

  • Shu YZ. Recent natural products based drug development: a pharmaceutical industry perspective. J Nat Prod. 1998;61:1053–71.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui BS, Khatoon N, Begum S, Farooq AD, Qamar K, Bhatti HA, Ali SK. Flavonoid and cardenolide glycosides and a pentacyclic triterpene from the leaves of Nerium oleander and evaluation of cytotoxicity. Phytochemistry. 2012;77:238–44.

    Article  CAS  PubMed  Google Scholar 

  • Snoeren TAL, De Jong PW, Dicke M. Ecogenomic approach to the role of herbivore-induced plant volatiles in community ecology. J Ecol. 2007;95:17–26.

    Article  CAS  Google Scholar 

  • Soler R, Erb M, Kaplan I. Long distance root-shoot signalling in plant-insect community interactions. Trends Plant Sci. 2013;18:149–56.

    Article  CAS  PubMed  Google Scholar 

  • Takabayashi J and Dicke M. Plant-carnivore mutualism through herbivore induced carnivore attractants. Trends Plant Sci. 1996;1:109–113.

    Article  Google Scholar 

  • Thomassen D, Slattery JT, Nelson SD. Contribution of menthofuran to the hepatotoxicity of pulegone – assessment based on matched area under the curve and on matched time course. J Pharm Exp Ther. 1988;244:825–9.

    CAS  Google Scholar 

  • Tomatsu M, Ohnishi-Kameyama M, Shibamoto N. Aralin, a new cytotoxic protein from Aralia elata, inducing apoptosis in human cancer cells. Cancer Lett. 2003;199:19–25.

    Article  CAS  PubMed  Google Scholar 

  • Trda L, Boutrot F, Claverie J, Brule D, Dorey S, Poinssot B. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci. 2015;6:11.

    Article  Google Scholar 

  • Ueda S, Nakamura H, Masutani H, Sasada T, Takabayashi A, Yamaoka Y, Yodoi J. Baicalin induces apoptosis via mitochondrial pathway as prooxidant. Mol Immunol. 2002;38:781–91.

    Article  CAS  PubMed  Google Scholar 

  • Visser BJ, Wieten RW, Kroon D, Nagel IM, Belard S, van Vugt M, Grobusch MP. Efficacy and safety of artemisinin combination therapy (ACT) for non-falciparum malaria: a systematic review. Malar J. 2014;13:463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vetter J. Plant cyanogenic glycosides. Toxicon. 2000;38:11–36.

    Article  CAS  PubMed  Google Scholar 

  • Vetter J. Poison hemlock (Conium maculatum L.). Food Chem Toxicol. 2004;42:1373–82.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Aarts JMM, de Haan LHJ, Argyriou D, Peijnenburg AACM, Rietjens IMCM, Bovee TFH. Towards an integrated in vitro strategy for estrogenicity testing. J Appl Toxicol. 2014;34:1031–40.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li W, Liu Y. Hypotensive effect and toxicology of total alkaloids and veratramine from roots and rhizomes of Veratrum nigrum L. in spontaneously hypertensive rats. Pharmazie. 2008;63:606–10.

    CAS  PubMed  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 2012;7:1306–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitfield AE, Falk BW, Rotenberg D. Insect vector-mediated transmission of plant viruses. Virology. 2015;479:278–89.

    Article  PubMed  CAS  Google Scholar 

  • Wirthmueller L, Maqbool A, Banfield MJ. On the front line: structural insights into plant-pathogen interactions. Nat Rev Microbiol. 2013;11:761–76.

    Article  CAS  PubMed  Google Scholar 

  • Xie YJ, Wang K, Huang QY, Lei CL. Evaluation toxicity of monoterpenes to subterranean termite, Reticulitermes chinensis Snyder. Ind Crop Prod. 2014;53:163–6.

    Article  CAS  Google Scholar 

  • Yang LQ, Stöckigt J. Trends for diverse production strategies of plant medicinal alkaloids. Nat Prod Rep. 2010;27:1469–79.

    Article  CAS  PubMed  Google Scholar 

  • Yip W-K, Yang S. Cyanide metabolism in relation to ethylene production in plant tissues. Plant Physiol. 1988;88:473–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen AV, Jørgensen B, Naumann CM, Møller BL. Cyanogenic glucosides and plant–insect interactions. Phytochemistry. 2004;65:293–306.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Peng Y, Li LZ, Zhao L, Hu Y, Hu C, Song SJ. Studies on cytotoxic triterpene saponins from the leaves of Aralia elata. Food Chem. 2013;138:208–13.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Zhang W, Stanley BA, Assmann SM. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell. 2008;20:3210–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu F, Poelman EH, Dicke M. Insect herbivore-associated organisms affect plant responses to herbivory. New Phytol. 2014;204:315–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Mithöfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Mithöfer, A., Maffei, M.E. (2016). General Mechanisms of Plant Defense and Plant Toxins. In: Gopalakrishnakone, P., Carlini, C., Ligabue-Braun, R. (eds) Plant Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6728-7_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6728-7_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6728-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics