Advertisement

Mutation, Duplication, and More in the Evolution of Venomous Animals and Their Toxins

  • Anita Malhotra
Living reference work entry
Part of the Toxinology book series (TOXI)

Abstract

Toxins represent one of the fastest evolving types of protein to be found in animal systems, sharing many of their features with other protein families that respond to extrinsic factors, such as those involved in immunity, and detecting and responding to the environment in which they live. However, studies on toxin genes have been lagging behind those on other gene families as until very recently, no fully sequenced genomes from venomous animals have been available. In this chapter, the molecular forces acting on toxin gene sequences are compared to those acting on other non-toxin genes, addressing in particular several features that have been stressed in the toxinological literature, i.e., their hypervariability, accelerated evolution, and apparent focal mutagenesis centering on the active site of the toxins. The accepted paradigm that the birth-and-death model underlies toxin multigene family evolution is challenged by studies that show both concerted evolution and birth-and-death can give rise to similar patterns following gene duplication and that both models may operate simultaneously. Much of the dynamics of gene duplication and the fate of duplicated genes seem to depend on the genomic and biological context in which they occur. Therefore, there is no reason to expect toxin-encoding genes from diverse animal groups to show common mechanisms of evolution.

Keywords

Gene Conversion Snake Venom Toxin Gene Concerted Evolution Venom Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arenas M. Advances in computer simulation of genome evolution: Toward more realistic evolutionary genomics analysis by Approximate Bayesian Computation. J Mol Evol. 2015;80(3–4):189–92.CrossRefPubMedGoogle Scholar
  2. Arguello JR, Connallon T. Gene duplication and ectopic gene conversion in Drosophila. Genes. 2011;2(1):131–51.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Balakirev ES, Ayala FJ. Pseudogenes: are they “junk” or functional DNA? Ann Rev Genet. 2003;37:123–51.CrossRefPubMedGoogle Scholar
  4. Bazykin GA, Kondrashov AS. Major role of positive selection in the evolution of conservative segments of Drosophila proteins. Proc R Soc B. 2012;279(1742):3409–17.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bergelson J, Kreitman M, Stahl EA, Tian DC. Evolutionary dynamics of plant R-genes. Science 2001;292:2281–2285.Google Scholar
  6. Bergthorsson U, Andersson DI, Roth JR. Ohno's dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci U S A. 2007;104(43):17004–9.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bernatchez L, Landry C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol. 2003;16:363–77.CrossRefPubMedGoogle Scholar
  8. Binford GJ, Bodner MR, Cordes MHJ, Baldwin KL, Rynerson MR, Burns SN, Zobel-Thropp PA. Molecular evolution, functional variation, and proposed nomenclature of the gene family that includes sphingomyelinase D in sicariid spider venoms. Mol Biol Evol. 2009;26(3):547–66.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Bowmaker JK, Hunt DM. Evolution of vertebrate visual pigments. Curr Biol. 2006;16(13):R484–9.CrossRefPubMedGoogle Scholar
  10. Brookfield JFY. Evolution: What determines the rate of sequence evolution? Curr Biol. 2000;10(11):R410–1.CrossRefPubMedGoogle Scholar
  11. Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28(4):219–29.CrossRefPubMedGoogle Scholar
  12. Casewell NR, Wagstaff SC, Wüster W, et al. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc Natl Acad Sci U S A. 2014;111(25):9205–10.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Chain FJJ, Feulner PGD, Panchal M, Eizaguirre C, Samonte IE, Kalbe M, et al. Extensive copy-number variation of young genes across stickleback populations. PLoS Genet. 2014;10(12), e1004830.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Chang D, Duda Jr TF. Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. Mol Biol Evol. 2012;29(8):2019.CrossRefPubMedGoogle Scholar
  15. Conticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M. Mechanisms for evolving hypervariability: the case of conopeptides. Mol Biol Evol. 2001;18:120–31.CrossRefPubMedGoogle Scholar
  16. Creer S, Malhotra A, Thorpe RS, Stöcklin R, Favreau P, Chou WH. Genetic and ecological correlates of intraspecific variation in pitviper venom composition detected using matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and isoelectric focusing. J Mol Evol. 2003;56(3):317–29.CrossRefPubMedGoogle Scholar
  17. Das S, Nikolaidis N, Goto H, et al. Comparative genomics and evolution of the alpha-defensin multigene family in primates. Mol Biol Evol. 2010;27(10):2333–43.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, Chacón D, Sasa M, Angulo Y, Gutiérrez JM, Calvete JJ. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics. 2013;10:14:234. doi: 10.1186/1471-2164-14-234.Google Scholar
  19. Duda Jr TF, Remigio EA. Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails. Mol Ecol. 2008;17:3018–32.CrossRefPubMedGoogle Scholar
  20. Dutertre S, Biass D, Stocklin R, Favreau P. Dramatic intraspecimen variations within the injected venom of Conus consors: an unsuspected contribution to venom diversity. Toxicon. 2010;55(8):1453–62.CrossRefPubMedGoogle Scholar
  21. Dutertre S, Jin A-H, Vetter I, Hamilton B, Sunagar K, Lavergne V, Dutertre V, Fry BG, Antunes A, Venter DJ, Alewood PF, Lewis RL. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun. 2014;5:3521.PubMedCentralPubMedGoogle Scholar
  22. Eirín-López JM, Rebordinos L, Rooney AP, Rozas J. The birth-and-death evolution of multigene families revisited. Genome Dyn. 2012;7:170–96.CrossRefPubMedGoogle Scholar
  23. Endo T, Ikeo K, Gojobori T. Large-scale search for genes on which positive selection may operate. Mol Biol Evol. 1996;13(5):685–90.CrossRefPubMedGoogle Scholar
  24. Goldstein RA, Pollock DD. Observations of amino acid gain and loss during protein evolution are explained by statistical bias. Mol Biol Evol. 2006;23(7):1444–9.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Hahn MW, Demuth JP, Han SG. Accelerated rate of gene gain and loss in primates. Genetics. 2007;177:1941–9.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW. Adaptive evolution of young gene duplicates in mammals. Genome Res. 2009;19:859–67.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Hirsh AE, Fraser HB. Protein dispensability and rate of evolution. Nature. 2001;411:1046–9.CrossRefPubMedGoogle Scholar
  28. Ikeda N, Chijiwa T, Matsubara K, Oda-Ueda N, Hattori S, Matsuda Y, Ohno M. Unique structural characteristics and evolution of a cluster of venom phospholipase A2 isozyme genes of Protobothrops flavoviridis snake. Gene. 2010;461:15-25. doi: 10.1016/j.gene.2010.04.001.Google Scholar
  29. Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet. 2010;11(2):97–108.PubMedGoogle Scholar
  30. Iskow RC, Gokcumen O, Abyzov A, Malukiewicz J, Zhu Q, Sukumar AT, Pai AA, Mills RE, Habegger L, Cusanovich DA, Rubel MA, Perry GH, Gerstein M, Stone AC, Gilad Y, Lee C. Regulatory element copy number differences shape primate expression profiles. Proc Natl Acad Sci U S A. 2012;109(31):12656–61.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV. Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genom Hum Genet. 2010;11:239–64.CrossRefGoogle Scholar
  32. Jiang Y, Li Y, Lee W, Xu X, Zhang Y, Zhao R, Zhang Y, Wang W. Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes. BMC Genomics. 2011; I 3:12:1. doi: 10.1186/1471-2164-12-1.Google Scholar
  33. Katju V, Bergthorsson U. Copy-number changes in evolution: rates, fitness effects and adaptive significance. Front Genet. 2013;4:273.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Kini RM, Chan YM. Accelerated evolution and molecular surface of venom phospholipase A2 enzymes. J Mol Evol. 1999;48:125–32.CrossRefPubMedGoogle Scholar
  35. Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc R Soc B. 2012;279(1749):5048–57.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Kosakovsky Pond SL, Frost SDW, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21(5):676–9.CrossRefGoogle Scholar
  37. Kozminsky-Atias A, Zilberberg N. Molding the business end of neurotoxins by diversifying evolution. FASEB J. 2012;26:576–86.CrossRefPubMedGoogle Scholar
  38. Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature. 2005;437:94–100.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Llewelyn J, Webb JK, Shine R. Flexible defense: context-dependent antipredator responses of two species of Australian elapid snakes. Herpetologica. 2010;66(1):1–11.CrossRefGoogle Scholar
  40. Malhotra A, Creer S, Harris JB, Stöcklin R, Favreau P, Thorpe RS. Predicting function from sequence in a large multifunctional toxin family. Toxicon. 2013;72:113–25.CrossRefPubMedGoogle Scholar
  41. Malhotra A, Creer S, Harris JB, Thorpe RS. The importance of being genomic: non-coding and coding sequences suggest different models of toxin multi-gene family evolution. Toxicon. 2015.Google Scholar
  42. Margres MJ, McGivern JJ, Seavy M, Wray KP, Facente J, Rokyta DR. Contrasting modes and tempos of venom expression evolution in two snake species. Genetics. 2015;199:165–76.CrossRefPubMedGoogle Scholar
  43. Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta. 2000;1477:146–56.CrossRefPubMedGoogle Scholar
  44. McAllister BF, McVean GAT. Neutral evolution of the sex-determining gene transformer in Drosophila. Genetics. 2000;154:1711–20.PubMedCentralPubMedGoogle Scholar
  45. McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991;351:652–4.CrossRefPubMedGoogle Scholar
  46. Mendivil Ramos O, Ferrier DEK. Mechanisms of gene duplication and translocation and progress towards understanding their relative contributions to animal genome evolution. Int J Evol Biol. [Internet]. 2012 Aug 7 [cited 27 May 2015]; 7:846421. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22919542, doi:10.1155/2012/846421
  47. Messer PW, Petrov DA. Frequent adaptation and the McDonald–Kreitman test. Proc Natl Acad Sci U S A. 2013;110(21):8615–20.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Murrell B, Weaver S, Smith MD, Wertheim O, Murrell S, Aylward A, Eren K, Pollner T, Martin DP, Smith DM, Scheffler K, Kosakovsky Pond SL. Gene-wide identification of episodic selection. Mol Biol Evol. 2015;32:1365–71.CrossRefPubMedGoogle Scholar
  49. Niimura Y. Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genomics. 2012;13(2):103–14.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Nozawa M, Nei M. Evolutionary dynamics of olfactory receptor genes in Drosophila species. Proc Natl Acad Sci U S A. 2007;104(17):7122–7.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Ogawa T, Nakashima K, Nobuhisa I, Deshimaru M, Shimohigashi Y, Fukumaki Y, Sakaki Y, Hattori S, Ohno M. Accelerated evolution of snake venom phospholipase A2 isozymes for acquisition of diverse physiological functions. Toxicon. 1996;34(11–12):1229–36.CrossRefPubMedGoogle Scholar
  52. Oguiura N, Collares MA, Furtado MFD, Ferrarezzi H, Suzuki H. Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene. 2009;446(1):35–40.CrossRefPubMedGoogle Scholar
  53. Pahari S, Bickford D, Fry BG, Kini RM. Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes. BMC Evol Biol. 2007;7:175.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Rachamim T, Morgenstern D, Aharonovich D, Brekhman V, Lotan T, Sher D. The dynamically evolving nematocyst content of an anthozoan, a scyphozoan, and a hydrozoan. Mol Biol Evol. 2015;32:740–53.CrossRefPubMedGoogle Scholar
  55. Reyes-Velasco J, Card DC, Andrew AL, Shaney KJ, Adams RH, Schield DR, Casewell NR, Mackessy SP, Castoe TA. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Mol Biol Evol. 2015;32(1):173–83.CrossRefPubMedGoogle Scholar
  56. Sano E, Maisnier-Patin S, Aboubechara JP, Quiñones-Soto S, Roth JR. Plasmid copy number underlies adaptive mutability in bacteria. Genetics. 2014;198(3):919–33.PubMedCentralCrossRefPubMedGoogle Scholar
  57. Sunagar K, Casewell NR, Varma S, Kolla R, Antunes A, Moran Y. Deadly innovations: unravelling the molecular evolution of animal venoms. In: Gopalakrishnakone P, Calvete JJ, editors. Toxinology: venom genomics and proteomics. Springer: Netherlands. 2015.Google Scholar
  58. Szöllősi GJ, Tannier E, Daubin V, Boussau B. The inference of gene trees with species trees. Syst Biol. 2015;64(1):e42–62.PubMedCentralCrossRefPubMedGoogle Scholar
  59. von Reumont BM, Campbell LI, Jenner RA. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins. 2014;6(12):3488–551.CrossRefGoogle Scholar
  60. Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJR, Kerkkamp HME, Vos RA, Guerreiro I, Calvete JJ, Wüster W, Woods AE, Logan JM, Harrison RA, Castoe TA, de Koning APJ, Pollock DD, Yandell M, Calderon D, Renjifo C, Currier RB, Salgado D, Pla D, Sanz L, Hyder AS, Ribeiro JMC, Arntzen JW, van den Thillart GEEJM, Boetzer M, Pirovano W, Dirks RP, Spaink HP, Duboule D, McGlinn E, Kini RM, Richardson MK. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110(51):20651–6.PubMedCentralCrossRefPubMedGoogle Scholar
  61. Wilburn DB, Bowen KE, Gregg RG, Cai J, Feldhoff PW, Houck LD, Feldhoff RC. Proteomics and UTR analyses of a rapidly evolving hypervariable family of vertebrate pheromones. Evolution. 2012;66:2227–39.CrossRefPubMedGoogle Scholar
  62. Wong ESW, Belov K. Venom evolution through gene duplications. Gene. 2012;496(1):1–7.CrossRefPubMedGoogle Scholar
  63. Zhang Y, Huang Y, He Q, Liu J, Luo J, Zhu L, et al. Toxin diversity revealed by a transcriptomic study of Ornithoctonus huwena. PLoS One. 2014;9(6), e100682.PubMedCentralCrossRefPubMedGoogle Scholar
  64. Zhou X, Lin Z, Ma H. Phylogenetic detection of numerous gene duplications shared by animals, fungi and plants. Genome Biol. 2010;11(4):R38.PubMedCentralCrossRefPubMedGoogle Scholar
  65. Zilversmit MM, Chase EK, Chen DS, Awadalla P, Day KP, McVean G. Hypervariable antigen genes in malaria have ancient roots. BMC Evol Biol. 2013;13:110.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Biological SciencesBangor UniversityBangorUK

Personalised recommendations