Skip to main content

AFEX™ Pretreatment-Based Biorefinery Technologies

Book cover Handbook of Biorefinery Research and Technology

Abstract

Ammonia fiber expansion (AFEX™) pretreatment is a novel thermochemical pretreatment using ammonia as catalyst. AFEX-pretreated lignocellulosic biomass features high enzymatic digestibility, high fermentability, and low toxicity. Extractive ammonia (EA) pretreatment is developed based on AFEX. EA converts native cellulose I to more reactive cellulose III and removes lignin to further improve enzymatic digestibility. Rapid bioconversion with integrated recycle technology (RaBIT) is invented to resolve high enzyme loading and low ethanol productivity issues encountered using traditional process for conversion of pretreated biomass to ethanol. RaBIT shortens enzymatic hydrolysis time, recycles enzymes using unhydrolyzed solids, and accelerates fermentation using high-cell-density microbial cells with cell recycle after fermentation. RaBIT reduces enzyme loading by around 40% and improves ethanol productivity by twofold. This chapter covers the development of AFEX-related biorefinery technologies in recent years.

AFEX is a registered trademark of MBI International (Lansing, Michigan).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Geddes CC, Nieves IU, Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22:312

    Article  CAS  Google Scholar 

  2. Dale BE, Bals BD, Kim S, Eranki P (2010) Biofuels done right: land efficient animal feeds enable large environmental and energy benefits. Environ Sci Technol 44:8385–8389

    Article  CAS  Google Scholar 

  3. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Report No. DOE/GO-102995-2135; Oak Ridge National Laboratory: Oak Ridge, TN

    Google Scholar 

  4. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40

    Article  CAS  Google Scholar 

  5. Sousa LD, Chundawat SPS, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347

    Article  CAS  Google Scholar 

  6. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  CAS  Google Scholar 

  7. Balan V, Bals B, Chundawat SPS, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: methods and protocols. Humana Press, Totowa, NJ, pp 61–77

    Google Scholar 

  8. Chundawat SPS, Donohoe BS, Sousa LD, Elder T, Agarwal UP, Lu FC, Ralph J, Himmel ME, Balan V, Dale BE (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4:973–984

    Article  CAS  Google Scholar 

  9. Campbell TJ, Teymouri F, Bals B, Glassbrook J, Nielson CD, Videto J (2013) A packed bed ammonia fiber expansion reactor system for pretreatment of agricultural residues at regional depots. Biofuels 4:23–34

    Article  CAS  Google Scholar 

  10. Eranki PL, Dale BE (2011) Comparative life cycle assessment of centralized and distributed biomass processing systems combined with mixed feedstock landscapes. GCB Bioenergy 3:427–438

    Article  Google Scholar 

  11. Chundawat SPS, Vismeh R, Sharma LN, Humpula JF, da Costa Sousa L, Chambliss CK, Jones AD, Balan V, Dale BE (2010) Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresour Technol 101:8429–8438

    Article  CAS  Google Scholar 

  12. Lau MW, Gunawan C, Dale BE (2009) The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Biotechnol Biofuels 2:30

    Article  Google Scholar 

  13. Tang X, da Costa Sousa L, Jin M, Chundawat SP, Chambliss CK, Lau MW, Xiao Z, Dale BE, Balan V (2015) Designer synthetic media for studying microbial-catalyzed biofuel production. Biotechnol Biofuels 8:1

    Article  Google Scholar 

  14. Lau MW, Bals BD, Chundawat SPS, Jin MJ, Gunawan C, Balan V, Jones AD, Dale BE (2012) An integrated paradigm for cellulosic biorefineries: utilization of lignocellulosic biomass as self-sufficient feedstocks for fuel, food precursors and saccharolytic enzyme production. Energy Environ Sci 5:7100–7110

    Article  CAS  Google Scholar 

  15. Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proc Natl Acad Sci USA 106:1368–1373

    Article  CAS  Google Scholar 

  16. Lau MW, Gunawan C, Balan V, Dale BE (2010) Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol Biofuels 3:11

    Article  Google Scholar 

  17. Li BZ, Balan V, Yuan YJ, Dale BE (2010) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour Technol 101:1285–1292

    Article  CAS  Google Scholar 

  18. Shao Q, Chundawat SPS, Krishnan C, Bals B, Sousa LD, Thelen KD, Dale BE, Balan V (2010) Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant. Biotechnol Biofuels 3:12

    Article  Google Scholar 

  19. Jin M, Balan V, Lau MW, Dale BE (2010) Consolidated bioprocessing (CBP) of AFEX treated corn stover by Clostridium phytofermentans. In: The 32nd symposium on biotechnology for fuels and chemicals

    Google Scholar 

  20. Shao X, Jin M, Guseva A, Liu C, Balan V, Hogsett D, Dale BE, Lynd L (2011) Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Bioresour Technol 102:8040–8045

    Article  CAS  Google Scholar 

  21. Jin M, Balan V, Gunawan C, Dale BE (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108:1290–1297

    Article  CAS  Google Scholar 

  22. Jin M, Gunawan C, Balan V, Dale BE (2012) Consolidated bioprocessing (CBP) of AFEX™ pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading. Biotechnol Bioeng 109:1929–1936

    Article  CAS  Google Scholar 

  23. Chundawat SPS, Bellesia G, Uppugundla N, da Costa Sousa L, Gao DH, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN Jr, Langan P, Balan V, Gnanakaran S, Dale BE (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174

    Article  CAS  Google Scholar 

  24. da Costa Sousa L, Jin M, Chundawat SPS, Bokade V, Tang X, Azarpira A, Lu F, Avci U, Humpula J, Uppugundla N, Gunawan C, Pattathil S, Cheh AM, Kothari N, Kumar R, Ralph J, Hahn MG, Wyman CE, Singh S, Simmons BA, Dale BE, Balan V (2016) Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ Sci 9:1215–1223

    Article  Google Scholar 

  25. Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555

    Article  CAS  Google Scholar 

  26. Gao D, Chundawat SPS, Sethi A, Balan V, Gnanakaran S, Dale BE (2013) Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proc Natl Acad Sci 110:10922–10927

    Article  CAS  Google Scholar 

  27. Gao DH, Chundawat SPS, Uppugundla N, Balan V, Dale BE (2011) Binding characteristics of Trichoderma reesei cellulases on untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated lignocellulosic biomass. Biotechnol Bioeng 108:1788–1800

    Article  CAS  Google Scholar 

  28. Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B, Holtzapple MT, Ladisch MR, Lee YY, Mosier N, Pallapolu VR, Shi J, Thomas SR, Warner RE (2011) Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour Technol 102:11052–11062

    Article  CAS  Google Scholar 

  29. Zhang J, Osmani A, Awudu I, Gonela V (2013) An integrated optimization model for switchgrass-based bioethanol supply chain. Appl Energy 102:1205–1217

    Article  Google Scholar 

  30. Roy P, Tokuyasu K, Orikasa T, Nakamura N, Shiina T (2012) A techno-economic and environmental evaluation of the life cycle of bioethanol produced from rice straw by RT-CaCCO process. Biomass Bioenergy 37:188–195

    Article  CAS  Google Scholar 

  31. Jin M, Gunawan C, Uppugundla N, Balan V, Dale B (2012) A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling, and yeast cells reuse. Energy Environ Sci 5:7168–7175

    Article  CAS  Google Scholar 

  32. Jin M, da Costa Sousa L, Schwartz C, He Y, Sarks C, Gunawan C, Balan V, Dale BE (2016) Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chem 18:957–966

    Article  CAS  Google Scholar 

  33. Chundawat S, Beckham G, Himmel M, Dale B (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145

    Article  CAS  Google Scholar 

  34. Zhang S, Wolfgang DE, Wilson DB (1999) Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnol Bioeng 66:35–41

    Article  CAS  Google Scholar 

  35. Zhou W, Xu Y, Schuttler HB (2010) Cellulose hydrolysis in evolving substrate morphologies III: time-scale analysis. Biotechnol Bioeng 107:224–234

    Article  CAS  Google Scholar 

  36. Kumar R, Wyman CE (2009) Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresour Technol 100:4193–4202

    Article  CAS  Google Scholar 

  37. Eriksson T, Karlsson J, Tjerneld F (2002) A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reesei. Appl Biochem Biotechnol 101:41–60

    Article  CAS  Google Scholar 

  38. Gusakov AV, Sinitsyn AP (1992) A theoretical-analysis of cellulase product inhibition – effect of cellulase binding constant, enzyme substrate ratio, and beta-glucosidase activity on the inhibition pattern. Biotechnol Bioeng 40:663–671

    Article  CAS  Google Scholar 

  39. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  CAS  Google Scholar 

  40. Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1–13

    Article  CAS  Google Scholar 

  41. Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, LaButti KM, Sun H, Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C, Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev IV, Gasch AP (2011) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci 108:13212–13217

    Article  CAS  Google Scholar 

  42. Kuyper M, Winkler AA, Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664

    Article  CAS  Google Scholar 

  43. Sedlak M, Ho NWY (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 113:403–416

    Article  Google Scholar 

  44. Ha SJ, Galazka JM, Rin Kim S, Choi JH, Yang X, Seo JH, Louise Glass N, Cate JHD, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci 108:504

    Article  CAS  Google Scholar 

  45. Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  CAS  Google Scholar 

  46. Jin M, Balan V, Gunawan C, Dale BE (2012) Quantitatively understanding reduced xylose fermentation performance in AFEXTM treated corn stover hydrolysate using Saccharomyces cerevisiae 424A (LNH-ST) and Escherichia coli KO11. Bioresour Technol 111:294–300

    Article  CAS  Google Scholar 

  47. Zhong C, Lau MW, Balan V, Dale BE, Yuan Y-J (2009) Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl Microbiol Biotechnol 84:667–676

    Article  CAS  Google Scholar 

  48. Bertilsson M, Andersson J, Liden G (2008) Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters. Bioprocess Biosyst Eng 31:369–377

    Article  CAS  Google Scholar 

  49. Jin MJ, Lau MW, Balan V, Dale BE (2010) Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresour Technol 101:8171–8178

    Article  CAS  Google Scholar 

  50. Jin M, Liu Y, da Costa Sousa L, Dale BE, Balan V (2017) Development of rapid bioconversion with integrated recycle technology for ethanol production from extractive ammonia pretreated corn stover. Biotechnol Bioeng 114:1713–1720

    Article  CAS  Google Scholar 

  51. Sarks C, Jin M, Sato TK, Balan V, Dale BE (2014) Studying the rapid bioconversion of lignocellulosic sugars into ethanol using high cell density fermentations with cell recycle. Biotechnol Biofuels 7:73

    Article  Google Scholar 

  52. Sarks C, Jin M, Balan V, Dale BE (2017) Fed-batch hydrolysate addition and cell separation by settling in high cell density lignocellulosic ethanol fermentations on AFEX (TM) corn stover in the Rapid Bioconversion with Integrated recycling Technology process. J Ind Microbiol Biotechnol 44:1261–1272

    Article  CAS  Google Scholar 

  53. Lau MW, Bals BD, Chundawat S, Jin M, Gunawan C, Balan V, Jones AD, Dale BE (2012) An integrated paradigm for cellulosic biorefineries: utilization of lignocellulosic biomass as self sufficient feedstocks feedstocks for fuel, food precursors and saccharolytic enzyme production. Energy Environ Sci 5:7100–7110

    Google Scholar 

  54. Culbertson A, Jin M, da Costa Sousa L, Dale BE, Balan V (2013) In-house cellulase production from AFEX™ pretreated corn stover using Trichoderma reesei RUT C-30. RSC Adv 3:25960–25969

    Article  CAS  Google Scholar 

  55. Jin M, Sarks C, Bals BD, Posawatz N, Gunawan C, Dale BE, Balan V (2017) Toward high solids loading process for lignocellulosic biofuel production at a low cost. Biotechnol Bioeng 114:980–989

    Article  CAS  Google Scholar 

  56. Kollaras A, Bell P, Attfield P (2011) An alternative approach for making 2nd generation bioethanol viable. In: The 33rd symposium on biotechnology for fuels and chemicals

    Google Scholar 

  57. Xue Y-P, Jin M, Orjuela A, Slininger PJ, Dien BS, Dale BE, Balan V (2015) Microbial lipid production from AFEX (TM) pretreated corn stover. RSC Adv 5:28725–28734

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by “National Key R&D Program of China”, Grant No. 2016YFE0105400, “National Natural Science Foundation of China”, Grant No. 21606132, “Natural Science Foundation of Jiangsu Province”, Grant Nos. BK20160823 & BK20170037, “The Fundamental Research Funds for the Central Universities”, Grant No. 30916011202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjie Jin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jin, M., Dale, B.E. (2018). AFEX™ Pretreatment-Based Biorefinery Technologies. In: Park, J. (eds) Handbook of Biorefinery Research and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6724-9_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6724-9_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6724-9

  • Online ISBN: 978-94-007-6724-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    AFEX™ Pretreatment-Based Biorefinery Technologies
    Published:
    16 October 2018

    DOI: https://doi.org/10.1007/978-94-007-6724-9_2-2

  2. Original

    AFEX™ Pretreatment-Based Biorefinery Technologies
    Published:
    28 August 2018

    DOI: https://doi.org/10.1007/978-94-007-6724-9_2-1