Skip to main content

Amino Acids

  • Living reference work entry
  • First Online:
Handbook of Biorefinery Research and Technology

Abstract

Since discovery of Corynebacterium glutamicum in 1956, amino acid production by microbial fermentation is one of most successful biotechnology models in a sustainable bioeconomy. Amino acid market is growing steadily by gradual increase of commodity, l-glutamate, l-lysine, and methionine, as well as rapid expansion of specialty amino acids, such as branched amino acids, l-arginine, and l-cysteine. Currently, most amino acids are produced by microbial fermentation, while sulfur-containing l-methionine and l-cysteine are commercialized by combined technology of fermentation of precursor and enzyme catalysis. With the advent of genomics and functional genomics in the 2000s, creation of genetically defined C. glutamicum and Escherichia coli that produce l-lysine and l-threonine, respectively, is considered a remarkable milestone and breakthrough in strain engineering for industrial production of several amino acids. Systems metabolic engineering for superior amino acid-producing strains is supported by novel functional tools that provide simplicity, efficiency, and high-throughput as well as by individual engineering strategies that provide high titer, yield, productivity, and sustainability. This chapter outlines recent functional tools and important engineering strategies for amino acid production. Moreover, it covers the recent advances in systems metabolic engineering for amino acids production, including l-glutamate, l-arginine, l-lysine, l-methionine, l-cysteine, and l-histidine. Myriad efforts to develop novel engineering tools and strategies are expected to dramatically increase the production performance of amino acid producers and accelerate the expansion of product portfolios such as amino acid derivatives and other value-added compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AICAR:

Aminoimidazole carboxamide ribonucleotide

ALE:

Adaptive laboratory evolution

BCAA:

Branched-chain amino acid

CAGR:

Compound Annual Growth Rate

CRISPR:

Clustered Regularly Interspaced Short Palindromic Repeats

CRISPRi:

CRISPR interference

DMDS:

Dimethyl disulfide

FACS:

Fluorescence-activated cell sorting

GlcNAc:

N-acetylglucosamine

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

Msc:

Mechanosensitive channel

NOG:

Non-oxidative glycolysis

OAH:

O-acetylhomoserine

OAS:

O-acetylserine

ODHC:

2-oxoglutarate dehydrogenase complex

OPS:

O-phosphoserine

OSH:

O-succinylhomoserine

PPP:

Pentose phosphate pathway

PRPP:

Phosphoribosyl pyrophosphate

PTS:

Phosphotransferase system

SAM:

S-adenosyl-l-methionine

References

  1. D’Este M, Alvarado-Morales M, Angelidaki I (2018) Amino acids production focusing on fermentation technologies – a review. Biotechnol Adv 36:14–25. https://doi.org/10.1016/j.biotechadv.2017.09.001

    Article  CAS  Google Scholar 

  2. Ikeda M, Takeno S (2020) Recent advances in amino acid production. In: Inui M, Toyoda K (eds) Corynebacterium glutamicum. Microbiology monographs, vol 23. Springer, Cham, pp 175–226. https://doi.org/10.1007/978-3-030-39267-3_7

    Chapter  Google Scholar 

  3. IMARC group (2022) Amino acids market: global industry trends, share, size, growth, opportunity and forecast 2022–2027. https://www.imarcgroup.com/amino-acid-technical-material-market-report. Accessed 19 May 2022

  4. Research and Markets (2022) Amino acids – global market trajectory & analytics. https://www.researchandmarkets.com/reports/362136. Accessed 15 May 2022

  5. Takagi H, Ohtsu I (2017) L-cysteine metabolism and fermentation in microorganisms. Adv Biochem Eng Biotechnol 159:129–151. https://doi.org/10.1007/10_2016_29

    Article  CAS  Google Scholar 

  6. Shim J, Shin Y, Lee I et al (2017) L-Methionine production. Adv Biochem Eng Biotechnol 159:153–177. https://doi.org/10.1007/10_2016_30

    Article  CAS  Google Scholar 

  7. Yamamoto S, Gunji W, Suzuki H et al (2012) Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl Environ Microbiol 78:4447–4457. https://doi.org/10.1128/AEM.07998-11

    Article  CAS  Google Scholar 

  8. Sharma A, Noda M, Sugiyama M et al (2021) Metabolic engineering of Pediococcus acidilactici BD16 for heterologous expression of synthetic alaD gene cassette and L-alanine production in the recombinant strain using fed-batch fermentation. Foods 10:1964. https://doi.org/10.3390/foods10081964

    Article  CAS  Google Scholar 

  9. Park SH, Kim HU, Kim TY et al (2014) Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat Commun 5:4618. https://doi.org/10.1038/ncomms5618

    Article  CAS  Google Scholar 

  10. Derbikov DD, Novikov AD, Gubanova TA et al (2017) Aspartic acid synthesis by Escherichia coli strains with deleted fumarase genes as biocatalysts. Appl Biochem Microbiol 53:859–866. https://doi.org/10.1134/S0003683817090046

    Article  CAS  Google Scholar 

  11. Liu H, Fang G, Wu H et al (2018) L-Cysteine production in Escherichia coli based on rational metabolic engineering and modular strategy. Biotechnol J 13:e1700695. https://doi.org/10.1002/biot.201700695

    Article  CAS  Google Scholar 

  12. Chang JS, Jo JH, Bae HA et al (2012) Microorganism producing O-phosphoserine and method of producing L-cysteine or derivatives thereof from O-phosphoserine using the same. US patent 2012/0190081 A1 26 Jul 2012

    Google Scholar 

  13. Li X, Bao T, Osire T et al (2021) MarR-type transcription factor RosR regulates glutamate metabolism network and promotes accumulation of L-glutamate in Corynebacterium glutamicum G01. Bioresour Technol 342:125945. https://doi.org/10.1016/j.biortech.2021.125945

    Article  CAS  Google Scholar 

  14. Lv Q, Hu M, Tian L et al (2021) Enhancing L-glutamine production in Corynebacterium glutamicum by rational metabolic engineering combined with a two-stage pH control strategy. Bioresour Technol 341:125799. https://doi.org/10.1016/j.biortech.2021.125799

    Article  CAS  Google Scholar 

  15. Hitoshi S, Chiharu F, Takakazu E (1993) Process for preparing glycine from glycinonitrile. US Patent. 5,238,827. 24 Aug 1993

    Google Scholar 

  16. Wu H, Tian D, Fan X et al (2020) Highly efficient production of L-histidine from glucose by metabolically engineered Escherichia coli. ACS Synth Biol 9:1813–1822. https://doi.org/10.1021/acssynbio.0c00163

    Article  CAS  Google Scholar 

  17. Ma W, Wang J, Li Y et al (2016) Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve L-isoleucine production. Biotechnol Appl Biochem 63:877–885. https://doi.org/10.1002/bab.1442

    Article  CAS  Google Scholar 

  18. Zhang Y, Xiong H, Chen Z et al (2021) Effect of fed-batch and chemostat cultivation processes of C. glutamicum CP for L-leucine production. Bioengineered 12:426–439. https://doi.org/10.1080/21655979.2021.1874693

    Article  CAS  Google Scholar 

  19. Xu JZ, Yu HB, Han M et al (2019) Metabolic engineering of glucose uptake systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production. J Ind Microbiol Biotechnol 46:937–949. https://doi.org/10.1007/s10295-019-02170-w

    Article  Google Scholar 

  20. Figge RM, Soucaille P, Barbier G et al (2009) Increasing methionine yield. WO 2009043803A2. 9 Apr 2009

    Google Scholar 

  21. Kim SY, Cho KM, Shin YU et al (2008) Microorganisms producing L-methionine precursor and method of producing L-methionine and organic acid from the L-methionine precursor. WO2008013432 A1, 31 Jan 2008

    Google Scholar 

  22. Liu Y, Xu Y, Ding D et al (2018) Genetic engineering of Escherichia coli to improve L-phenylalanine production. BMC Biotechnol 18:5. https://doi.org/10.1186/s12896-018-0418-1

    Article  CAS  Google Scholar 

  23. Liu J, Liu M, Shi T et al (2022) CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an L-proline exporter for L-proline hyperproduction. Nat Commun 13:891. https://doi.org/10.1038/s41467-022-28501-7

    Article  CAS  Google Scholar 

  24. Zhang X, Gao Y, Chen Z et al (2020) High-yield production of L-serine through a novel identified exporter combined with synthetic pathway in Corynebacterium glutamicum. Microb Cell Factories 19:115. https://doi.org/10.1186/s12934-020-01374-5

    Article  CAS  Google Scholar 

  25. Zhao L, Lu Y, Yang J et al (2020) Expression regulation of multiple key genes to improve L-threonine in Escherichia coli. Microb Cell Factories 19:46. https://doi.org/10.1186/s12934-020-01312-5

    Article  CAS  Google Scholar 

  26. Ikeda M, Katsumata R (1999) Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl Environ Microbiol 65:2497–2502. https://doi.org/10.1128/AEM.65.6.2497-2502.1999

    Article  CAS  Google Scholar 

  27. Kim B, Binkley R, Kim HU et al (2018) Metabolic engineering of Escherichia coli for the enhanced production of L-tyrosine. Biotechnol Bioeng 115:2554–2564. https://doi.org/10.1002/bit.26797

    Article  CAS  Google Scholar 

  28. Hasegawa S, Suda M, Uematsu K et al (2013) Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79:1250–1257. https://doi.org/10.1128/AEM.02806-12

    Article  CAS  Google Scholar 

  29. Willke T (2014) Methionine production – a critical review. Appl Microbiol Biotechnol 98:9893–9914. https://doi.org/10.1007/s00253-014-6156-y

    Article  CAS  Google Scholar 

  30. CJ Cheiljedang (2022a) IR activities and data. https://www.cj.co.kr/kr/about/investors-information/resources-and-events. Accessed 8 May 2022

  31. CJ CheilJedang (2022b) Bestamino. https://www.cjbio.net/en/products/bestamino. Accessed 15 May 2022

  32. Becker J, Wittmann C (2020) Pathways at work: metabolic flux analysis of the industrial cell factory Corynebacterium glutamicum. In: Inui M, Toyoda K (eds) Corynebacterium glutamicum. Microbiology monographs, vol 23. Springer, Cham, pp 227–266. https://doi.org/10.1007/978-3-030-39267-3_8

    Chapter  Google Scholar 

  33. Ikeda M, Ohnishi J, Hayashi M et al (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J Ind Microbiol Biotechnol 33:610–615. https://doi.org/10.1007/s10295-006-0104-5

    Article  CAS  Google Scholar 

  34. Kalinowski J, Bathe B, Bartels D et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25. https://doi.org/10.1016/s0168-1656(03)00154-8

    Article  CAS  Google Scholar 

  35. Lee JH, Lee DE, Lee BU et al (2003) Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain. J Bacteriol 185:5442–5451. https://doi.org/10.1128/JB.185.18.5442-5451.2003

    Article  CAS  Google Scholar 

  36. Becker J, Zelder O, Häfner S et al (2011) From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13:159–168. https://doi.org/10.1016/j.ymben.2011.01.003

    Article  CAS  Google Scholar 

  37. Lee KH, Park JH, Kim TY et al (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3:149. https://doi.org/10.1038/msb4100196

    Article  CAS  Google Scholar 

  38. Wang Q, Zhang J, Al Makishah NH et al (2021) Advances and perspectives for genome editing tools of Corynebacterium glutamicum. Front Microbiol 12:654058. https://doi.org/10.3389/fmicb.2021.654058

    Article  Google Scholar 

  39. Kaczmarek JA, Prather KLJ (2021) Effective use of biosensors for high-throughput library screening for metabolite production. J Ind Microbiol Biotechnol 48(9–10):kuab049. https://doi.org/10.1093/jimb/kuab049

    Article  CAS  Google Scholar 

  40. Wang Y, Fan L, Tuyishime P et al (2020) Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Commun Biol 3:217. https://doi.org/10.1038/s42003-020-0954-9

    Article  CAS  Google Scholar 

  41. Wendisch VF, Lee JH (2020) Metabolic engineering in Corynebacterium glutamicum. In: Inui M, Toyoda K (eds) Corynebacterium glutamicum. Microbiology monographs, vol 23. Springer, Cham, pp 287–322. https://doi.org/10.1007/978-3-030-39267-3_10

    Chapter  Google Scholar 

  42. Wendisch VF, Nampoothiri KM, Lee JH (2022) Metabolic engineering for valorization of agri- and aqua-culture sidestreams for production of nitrogenous compounds by Corynebacterium glutamicum. Front Microbiol 13:835131. https://doi.org/10.3389/fmicb.2022.835131

    Article  Google Scholar 

  43. Becker J, Gießelmann G, Hoffmann SL et al (2018) Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. Adv Biochem Eng Biotechnol 162:217–263. https://doi.org/10.1007/10_2016_21

    Article  CAS  Google Scholar 

  44. Chae TU, Choi SY, Kim JW et al (2017) Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 47:67–82. https://doi.org/10.1016/j.copbio.2017.06.007

    Article  CAS  Google Scholar 

  45. Choi KR, Jang WD, Yang D et al (2019) Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol 37:817–837. https://doi.org/10.1016/j.tibtech.2019.01.003

    Article  CAS  Google Scholar 

  46. Hirasawa T, Shimizu H (2016) Recent advances in amino acid production by microbial cells. Curr Opin Biotechnol 42:133–146. https://doi.org/10.1016/j.copbio.2016.04.017

    Article  CAS  Google Scholar 

  47. Ikeda M (2017) Lysine fermentation: history and genome breeding. Adv Biochem Eng Biotechnol 159:73–102. https://doi.org/10.1007/10_2016_27

    Article  CAS  Google Scholar 

  48. Lee JH, Wendisch VF (2017b) Production of amino acids – genetic and metabolic engineering approaches. Bioresour Technol 245(Pt B):1575–1587. https://doi.org/10.1016/j.biortech.2017.05.065

    Article  CAS  Google Scholar 

  49. Ma Q, Zhang Q, Xu Q et al (2017) Systems metabolic engineering strategies for the production of amino acids. Synth Syst Biotechnol 2:87–96. https://doi.org/10.1016/j.synbio.2017.07.003

    Article  Google Scholar 

  50. Wendisch VF (2020) Metabolic engineering advances and prospects for amino acid production. Metab Eng 58:17–34. https://doi.org/10.1016/j.ymben.2019.03.008

    Article  CAS  Google Scholar 

  51. Liu J, Xu JZ, Wang B et al (2021) L-valine production in Corynebacterium glutamicum based on systematic metabolic engineering: progress and prospects. Amino Acids 53:1301–1312. https://doi.org/10.1007/s00726-021-03066-9

    Article  CAS  Google Scholar 

  52. Liu S, Xu JZ, Zhang WG (2022) Advances and prospects in metabolic engineering of Escherichia coli for L-tryptophan production. World J Microbiol Biotechnol 38:22. https://doi.org/10.1007/s11274-021-03212-1

    Article  CAS  Google Scholar 

  53. Liu X, Niu H, Li Q et al (2019) Metabolic engineering for the production of L-phenylalanine in Escherichia coli. 3 Biotech 9:85. https://doi.org/10.1007/s13205-019-1619-6

    Article  Google Scholar 

  54. Wang YY, Xu JZ, Zhang WG (2019) Metabolic engineering of L-leucine production in Escherichia coli and Corynebacterium glutamicum: a review. Crit Rev Biotechnol 39:633–647. https://doi.org/10.1080/07388551.2019.1577214

    Article  CAS  Google Scholar 

  55. Wendisch VF (2010) Amino acid biosynthesis – pathways, regulation and metabolic engineering. Microbiology monographs, vol 5. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-540-48596-4

    Book  Google Scholar 

  56. Yamamoto K, Tsuchisaka A, Yukawa H (2017) Branched-chain amino acids. Adv Biochem Eng Biotechnol 159:103–128. https://doi.org/10.1007/10_2016_28

    Article  CAS  Google Scholar 

  57. Yu S, Zheng B, Chen Z et al (2021) Metabolic engineering of Corynebacterium glutamicum for producing branched chain amino acids. Microb Cell Factories 20:230. https://doi.org/10.1186/s12934-021-01721-0

    Article  CAS  Google Scholar 

  58. Cleto S, Jensen JV, Wendisch VF et al (2016) Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol 5:375–385. https://doi.org/10.1021/acssynbio.5b00216

    Article  CAS  Google Scholar 

  59. Yao C, Hu X, Wang X (2021) Construction and application of a CRISPR/Cas9-assisted genomic editing system for Corynebacterium glutamicum. AMB Express 11:70. https://doi.org/10.1186/s13568-021-01231-7

    Article  CAS  Google Scholar 

  60. Hashemi A (2020) CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli. World J Microbiol Biotechnol 36:96. https://doi.org/10.1007/s11274-020-02872-9

    Article  Google Scholar 

  61. Peng F, Wang X, Sun Y et al (2017) Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Factories 16:201. https://doi.org/10.1186/s12934-017-0814-6

    Article  CAS  Google Scholar 

  62. Jiang Y, Qian F, Yang J et al (2017) CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun 8:15179. https://doi.org/10.1038/ncomms15179

    Article  Google Scholar 

  63. Wang B, Hu Q, Zhang Y et al (2018a) A RecET assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Microb Cell Factories 17:63. https://doi.org/10.1186/s12934-018-0910-2

    Article  CAS  Google Scholar 

  64. Krumbach K, Sonntag CK, Eggeling L et al (2019) CRISPR/Cas12a mediated genome editing to introduce amino acid substitutions into the mechanosensitive channel MscCG of Corynebacterium glutamicum. ACS Synth Biol 8:2726–2734. https://doi.org/10.1021/acssynbio.9b00361

    Article  CAS  Google Scholar 

  65. Cho JS, Choi KR, Prabowo CPS et al (2017) CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng 42:157–167. https://doi.org/10.1016/j.ymben.2017.06.010

    Article  CAS  Google Scholar 

  66. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645. https://doi.org/10.1073/pnas.120163297

    Article  CAS  Google Scholar 

  67. Tong Y, Jørgensen TS, Whitford CM et al (2021) A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing. Nat Commun 12:5206. https://doi.org/10.1038/s41467-021-25541-3

    Article  CAS  Google Scholar 

  68. Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239. https://doi.org/10.1038/nbt.2508

    Article  CAS  Google Scholar 

  69. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  Google Scholar 

  70. Jiang Y, Chen B, Duan C et al (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514. https://doi.org/10.1128/AEM.04023-14

    Article  CAS  Google Scholar 

  71. Li Y, Lin Z, Huang C et al (2015) Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng 31:13–21. https://doi.org/10.1016/j.ymben.2015.06.006

    Article  CAS  Google Scholar 

  72. Pyne ME, Moo-Young M, Chung DA et al (2015) Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol 81:5103–5114. https://doi.org/10.1128/AEM.01248-15

    Article  CAS  Google Scholar 

  73. Reisch CR, Prather KL (2015) The no-SCAR (Scarless Cas9 assisted recombineering) system for genome editing in Escherichia coli. Sci Rep 5:15096. https://doi.org/10.1038/srep15096

    Article  CAS  Google Scholar 

  74. Xia J, Wang L, Zhu JB et al (2016) Expression of Shewanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/cas9-coupled lambda Red recombineering. Biotechnol Lett 38:117–122. https://doi.org/10.1007/s10529-015-1956-4

    Article  CAS  Google Scholar 

  75. Liang L, Liu R, Garst AD et al (2017) CRISPR enabled trackable genome engineering for isopropanol production in Escherichia coli. Metab Eng 41:1–10. https://doi.org/10.1016/j.ymben.2017.02.009

    Article  CAS  Google Scholar 

  76. Li M, Chen J, Wang Y et al (2020) Efficient multiplex gene repression by CRISPR-dCpf1 in Corynebacterium glutamicum. Front Bioeng Biotechnol 8:357. https://doi.org/10.3389/fbioe.2020.00357

    Article  Google Scholar 

  77. Wu J, Zhou P, Zhang X et al (2017) Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol 44:1083–1095. https://doi.org/10.1007/s10295-017-1937-9

    Article  CAS  Google Scholar 

  78. Zhang B, Liu ZQ, Liu C et al (2016) Application of CRISPRi in Corynebacterium glutamicum for shikimic acid production. Biotechnol Lett 38:2153–2161. https://doi.org/10.1007/s10529-016-2207-z

    Article  CAS  Google Scholar 

  79. Li S, Jendresen CB, Grünberger A et al (2016) Enhanced protein and biochemical production using CRISPRi-based growth switches. Metab Eng 38:274–284. https://doi.org/10.1016/j.ymben.2016.09.003

    Article  CAS  Google Scholar 

  80. Göttl VL, Schmitt I, Braun K et al (2021) CRISPRi-library-guided target identification for engineering carotenoid production by Corynebacterium glutamicum. Microorganisms 9:670. https://doi.org/10.3390/microorganisms9040670

    Article  CAS  Google Scholar 

  81. Mustafi N, Grünberger A, Kohlheyer D et al (2012) The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metab Eng 14:449–457. https://doi.org/10.1016/j.ymben.2012.02.002

    Article  CAS  Google Scholar 

  82. Zhang F, Keasling J (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol 19:323–329. https://doi.org/10.1016/j.tim.2011.05.003

    Article  CAS  Google Scholar 

  83. Mahr R, Gätgens C, Gätgens J et al (2015) Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metab Eng 32:184–194. https://doi.org/10.1016/j.ymben.2015.09.017

    Article  CAS  Google Scholar 

  84. Binder S, Schendzielorz G, Stäbler N et al (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13:R40. https://doi.org/10.1186/gb-2012-13-5-r40

    Article  CAS  Google Scholar 

  85. Schendzielorz G, Dippong M, Grünberger A et al (2014) Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synth Biol 3:21–29. https://doi.org/10.1021/sb400059y

    Article  CAS  Google Scholar 

  86. Liu Y, Zhuang Y, Ding D et al (2017) Biosensor based evolution and elucidation of a biosynthetic pathway in Escherichia coli. ACS Synth Biol 6:837–848. https://doi.org/10.1021/acssynbio.6b00328

    Article  CAS  Google Scholar 

  87. Zhang X, Zhang X, Xu G et al (2018) Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum. Appl Microbiol Biotechnol 102:5939–5951. https://doi.org/10.1007/s00253-018-9025-2

    Article  CAS  Google Scholar 

  88. Ferrer L, Elsaraf M, Mindt M et al (2022) l-Serine biosensor-controlled fermentative production of l-tryptophan derivatives by Corynebacterium glutamicum. Biology (Basel) 11:744. https://doi.org/10.3390/biology11050744

    Article  CAS  Google Scholar 

  89. Liu Y, Yuan H, Ding D et al (2021) Establishment of a biosensor-based high-throughput screening platform for tryptophan overproduction. ACS Synth Biol 10:1373–1383. https://doi.org/10.1021/acssynbio.0c00647

    Article  CAS  Google Scholar 

  90. Zhou LB, Zeng AP (2015b) Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth Biol 4:729–734. https://doi.org/10.1021/sb500332c

    Article  CAS  Google Scholar 

  91. Ames TD, Rodionov DA, Weinberg Z et al (2010) A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol 17:681–685. https://doi.org/10.1016/j.chembiol.2010.05.020

    Article  CAS  Google Scholar 

  92. Fowler CC, Brown ED, Li Y (2010) Using a riboswitch sensor to examine coenzyme B12 metabolism and transport in E. coli. Chem Biol 17:756–765. https://doi.org/10.1016/j.chembiol.2010.05.025

    Article  CAS  Google Scholar 

  93. Lu C, Smith AM, Fuchs RT et al (2008) Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Nat Struct Mol Biol 15:1076–1083. https://doi.org/10.1038/nsmb.1494

    Article  CAS  Google Scholar 

  94. Sudarsan N, Wickiser JK, Nakamura S et al (2003) An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 17:2688–2697. https://doi.org/10.1101/gad.1140003

    Article  CAS  Google Scholar 

  95. Kim JN, Blount KF, Puskarz I et al (2009) Design and antimicrobial action of purine analogues that bind Guanine riboswitches. ACS Chem Biol 4:915–927. https://doi.org/10.1021/cb900146k

    Article  CAS  Google Scholar 

  96. Mandal M, Breaker R (2004) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11:29–35. https://doi.org/10.1038/nsmb710

    Article  CAS  Google Scholar 

  97. Mandal M, Lee M, Barrick JE et al (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279. https://doi.org/10.1126/science.1100829

    Article  CAS  Google Scholar 

  98. Zhou LB, Zeng AP (2015) Engineering a lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum. ACS Synth Biol 4:1335–1340. https://doi.org/10.1021/acssynbio.5b00075

    Article  CAS  Google Scholar 

  99. Eggeling L (2017) Exporters for production of amino acids and other small molecules. Adv Biochem Eng Biotechnol 159:199–225. https://doi.org/10.1007/10_2016_32

    Article  CAS  Google Scholar 

  100. Wachi M (2020) Amino acid exporters in Corynebacterium glutamicum. In: Inui M, Toyoda K (eds) Corynebacterium glutamicum. Microbiology monographs, vol 23. Springer, Cham, pp 267–286. https://doi.org/10.1007/978-3-030-39267-3_9

    Chapter  Google Scholar 

  101. Pérez-García F, Wendisch VF (2018) Transport and metabolic engineering of the cell factory Corynebacterium glutamicum. FEMS Microbiol Lett 365(16). https://doi.org/10.1093/femsle/fny166

  102. Bellmann A, Vrljić M, Pátek M et al (2001) Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology (Reading) 147(Pt 7):1765–1774. https://doi.org/10.1099/00221287-147-7-1765

    Article  CAS  Google Scholar 

  103. Vrljic M, Garg J, Bellmann A et al (1999) The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradyme for a novel superfamily of transmembrane solute translocators. J Mol Microbiol Biotechnol 1:327–336

    CAS  Google Scholar 

  104. Marbaniang CN, Gowrishankar J (2012) Transcriptional cross-regulation between Gram-negative and gram-positive bacteria, demonstrated using ArgP-argO of Escherichia coli and LysG-lysE of Corynebacterium glutamicum. J Bacteriol 194:5657–5666. https://doi.org/10.1128/JB.00947-12

    Article  CAS  Google Scholar 

  105. Lange C, Mustafi N, Frunzke J et al (2012) Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. J Biotechnol 158:231–241. https://doi.org/10.1016/j.jbiotec.2011.06.003

    Article  CAS  Google Scholar 

  106. Shang X, Zhang Y, Zhang G et al (2013) Characterization and molecular mechanism of AroP as an aromatic amino acid and histidine transporter in Corynebacterium glutamicum. J Bacteriol 195:5334–5342. https://doi.org/10.1128/JB.00971-13

    Article  CAS  Google Scholar 

  107. Zhao Z, Ding JY, Li T et al (2011) The ncgl1108 (PheP (Cg)) gene encodes a new L-Phe transporter in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:2005–2013. https://doi.org/10.1007/s00253-011-3245-z

    Article  CAS  Google Scholar 

  108. Gu P, Yang F, Li F et al (2013) Knocking out analysis of tryptophan permeases in Escherichia coli for improving L-tryptophan production. Appl Microbiol Biotechnol 97:6677–6683. https://doi.org/10.1007/s00253-013-4988-5

    Article  CAS  Google Scholar 

  109. Huang JF, Liu ZQ, Jin LQ et al (2017) Metabolic engineering of Escherichia coli for microbial production of L-methionine. Biotechnol Bioeng 114:843–851. https://doi.org/10.1002/bit.26198

    Article  CAS  Google Scholar 

  110. Qin T, Hu X, Hu J et al (2015) Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine. Biotechnol Appl Biochem 62:563–573. https://doi.org/10.1002/bab.1290

    Article  CAS  Google Scholar 

  111. Sheng Q, Wu XY, Xu X et al (2021) Production of L-glutamate family amino acids in Corynebacterium glutamicum: physiological mechanism, genetic modulation, and prospects. Synth Syst Biotechnol 6:302–325. https://doi.org/10.1016/j.synbio.2021.09.005

    Article  CAS  Google Scholar 

  112. Unthan S, Baumgart M, Radek A et al (2015) Chassis organism from Corynebacterium glutamicum – a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J 10:290–301. https://doi.org/10.1002/biot.201400041

    Article  CAS  Google Scholar 

  113. Xu M, Rao Z, Yang J et al (2013) The effect of a LYSE exporter overexpression on L-arginine production in Corynebacterium crenatum. Curr Microbiol 67:271–278. https://doi.org/10.1007/s00284-013-0358-x

    Article  CAS  Google Scholar 

  114. Rohles CM, Gießelmann G, Kohlstedt M et al (2016) Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Microb Cell Factories 15:154. https://doi.org/10.1186/s12934-016-0553-0

    Article  CAS  Google Scholar 

  115. Kind S, Neubauer S, Becker J et al (2014) From zero to hero – production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 25:113–123. https://doi.org/10.1016/j.ymben.2014.05.007

    Article  CAS  Google Scholar 

  116. Pérez-García F, Max Risse J, Friehs K et al (2017) Fermentative production of L-pipecolic acid from glucose and alternative carbon sources. Biotechnol J 12(7). https://doi.org/10.1002/biot.201600646

  117. Li Y, Cong H, Liu B et al (2016) Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Antonie Van Leeuwenhoek 109:1185–1197. https://doi.org/10.1007/s10482-016-0719-0

    Article  CAS  Google Scholar 

  118. Iyer MS, Pal A, Srinivasan S et al (2021) Global transcriptional regulators fine-tune the translational and metabolic efficiency for optimal growth of Escherichia coli. mSystems 6(2):e00001–e00021. https://doi.org/10.1128/mSystems.00001-21

    Article  CAS  Google Scholar 

  119. Koduru L, Lakshmanan M, Lee DY (2018) In silico model-guided identification of transcriptional regulator targets for efficient strain design. Microb Cell Factories 17:167. https://doi.org/10.1186/s12934-018-1015-7

    Article  CAS  Google Scholar 

  120. Martínez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6:482–489. https://doi.org/10.1016/j.mib.2003.09.002

    Article  CAS  Google Scholar 

  121. Geng H, Jiang R (2015) cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: mechanism and utilization in biotechnology. Appl Microbiol Biotechnol 99:4533–4543. https://doi.org/10.1007/s00253-015-6587-0

    Article  CAS  Google Scholar 

  122. Huang L, Pu Y, Yang X et al (2015) Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production. J Biotechnol 199:55–61. https://doi.org/10.1016/j.jbiotec.2015.02.006

    Article  CAS  Google Scholar 

  123. Liu L, Duan X, Wu J (2016) Modulating the direction of carbon flow in Escherichia coli to improve L-tryptophan production by inactivating the global regulator FruR. J Biotechnol 231:141–148. https://doi.org/10.1016/j.jbiotec.2016.06.008

    Article  CAS  Google Scholar 

  124. Park JH, Lee KH, Kim TY et al (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802. https://doi.org/10.1073/pnas.0702609104

    Article  CAS  Google Scholar 

  125. Park JH, Oh JE, Lee KH et al (2012) Rational design of Escherichia coli for L-isoleucine production. ACS Synth Biol 1:532–540. https://doi.org/10.1021/sb300071a

    Article  CAS  Google Scholar 

  126. Yakandawala N, Romeo T, Friesen AD et al (2008) Metabolic engineering of Escherichia coli to enhance phenylalanine production. Appl Microbiol Biotechnol 78:283–291. https://doi.org/10.1007/s00253-007-1307-z

    Article  CAS  Google Scholar 

  127. Toyoda K, Inui M (2020) Global transcriptional regulators involved in carbon, nitrogen, phosphorus, and sulfur metabolisms in Corynebacterium glutamicum. In: Inui M, Toyoda K (eds) Corynebacterium glutamicum. Microbiology monographs, vol 23. Springer, Cham, pp 113–148. https://doi.org/10.1007/978-3-030-39267-3_5

    Chapter  Google Scholar 

  128. Kohl TA, Tauch A (2009) The GlxR regulon of the amino acid producer Corynebacterium glutamicum: detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J Biotechnol 143:239–246. https://doi.org/10.1016/j.jbiotec.2009.08.005

    Article  CAS  Google Scholar 

  129. Schröder J, Tauch A (2010) Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 34:685–737. https://doi.org/10.1111/j.1574-6976.2010.00228.x

    Article  CAS  Google Scholar 

  130. Engels V, Lindner SN, Wendisch VF (2008) The global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in Corynebacterium glutamicum. J Bacteriol 190:8033–8044. https://doi.org/10.1128/JB.00705-08

    Article  CAS  Google Scholar 

  131. Blombach B, Arndt A, Auchter M et al (2009) L-valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl Environ Microbiol 75:1197–1200. https://doi.org/10.1128/AEM.02351-08

    Article  CAS  Google Scholar 

  132. Pérez-García F, Peters-Wendisch P, Wendisch VF (2016) Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid. Appl Microbiol Biotechnol 100:8075–8090. https://doi.org/10.1007/s00253-016-7682-6

    Article  CAS  Google Scholar 

  133. Wang Y, Xu J, Jin Z et al (2021) Improvement of acetyl-CoA supply and glucose utilization increases l-leucine production in Corynebacterium glutamicum. Biotechnol J:e2100349. https://doi.org/10.1002/biot.202100349

  134. Pittard J, Camakaris H, Yang J (2005) The TyrR regulon. Mol Microbiol 55:16–26. https://doi.org/10.1111/j.1365-2958.2004.04385.x

    Article  CAS  Google Scholar 

  135. Koma D, Kishida T, Yoshida E et al (2020) Chromosome engineering to generate plasmid-free phenylalanine- and tyrosine-overproducing Escherichia coli strains that can be applied in the generation of aromatic-compound-producing bacteria. Appl Environ Microbiol 86:e00525–e00520. https://doi.org/10.1128/AEM.00525-20

    Article  CAS  Google Scholar 

  136. Wendisch VF, Jorge JMP, Pérez-García F et al (2016) Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol 32:105. https://doi.org/10.1007/s11274-016-2060-1

    Article  CAS  Google Scholar 

  137. Seibold G, Auchter M, Berens S et al (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124:381–391. https://doi.org/10.1016/j.jbiotec.2005.12.027

    Article  CAS  Google Scholar 

  138. Tateno T, Fukuda H, Kondo A (2007) Production of L-lysine from starch by Corynebacterium glutamicum displaying alpha-amylase on its cell surface. Appl Microbiol Biotechnol 74:1213–1220. https://doi.org/10.1007/s00253-006-0766-y

    Article  CAS  Google Scholar 

  139. Yao W, Chu C, Deng X et al (2009) Display of alpha-amylase on the surface of Corynebacterium glutamicum cells by using NCgl1221 as the anchoring protein, and production of glutamate from starch. Arch Microbiol 191:751–759. https://doi.org/10.1007/s00203-009-0506-7

    Article  CAS  Google Scholar 

  140. Bhatia SK, Shim YH, Jeon JM et al (2015) Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess Biosyst Eng 38:1479–1484. https://doi.org/10.1007/s00449-015-1390-y

    Article  CAS  Google Scholar 

  141. Okamoto S, Chin T, Nagata K et al (2015) Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate. J Biosci Bioeng 119:548–553. https://doi.org/10.1016/j.jbiosc.2014.10.021

    Article  CAS  Google Scholar 

  142. Bayer EA, Belaich JP, Shoham Y et al (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554. https://doi.org/10.1146/annurev.micro.57.030502.091022

    Article  CAS  Google Scholar 

  143. Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7:275–281. https://doi.org/10.1016/s0966-842x(99)01533-4

    Article  CAS  Google Scholar 

  144. Hyeon JE, Jeon WJ, Whang SY et al (2011) Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzym Microb Technol 48:371–377. https://doi.org/10.1016/j.enzmictec.2010.12.014

    Article  CAS  Google Scholar 

  145. Kim SJ, Hyeon JE, Jeon SD et al (2014) Bi-functional cellulases complexes displayed on the cell surface of Corynebacterium glutamicum increase hydrolysis of lignocelluloses at elevated temperature. Enzym Microb Technol 66:67–73. https://doi.org/10.1016/j.enzmictec.2014.08.010

    Article  CAS  Google Scholar 

  146. Zhang B, Jiang Y, Li Z et al (2020) Recent progress on chemical production from non-food renewable feedstocks using Corynebacterium glutamicum. Front Bioeng Biotechnol 8:606047. https://doi.org/10.3389/fbioe.2020.606047

    Article  Google Scholar 

  147. Lee J, Saddler JN, Um Y et al (2016) Adaptive evolution and metabolic engineering of a cellobiose- and xylose-negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose. Microb Cell Factories 15:20. https://doi.org/10.1186/s12934-016-0420-z

    Article  CAS  Google Scholar 

  148. Anusree M, Wendisch VF, Nampoothiri KM (2016) Co-expression of endoglucanase and β-glucosidase in Corynebacterium glutamicum DM1729 towards direct lysine fermentation from cellulose. Bioresour Technol 213:239–244. https://doi.org/10.1016/j.biortech.2016.03.019

    Article  CAS  Google Scholar 

  149. Matsuura R, Kishida M, Konishi R et al (2019) Metabolic engineering to improve 1,5-diaminopentane production from cellobiose using β-glucosidase-secreting Corynebacterium glutamicum. Biotechnol Bioeng 116:2640–2651. https://doi.org/10.1002/bit.27082

    Article  CAS  Google Scholar 

  150. Wierzbicki MP, Maloney V, Mizrachi E et al (2019) Xylan in the middle: understanding xylan biosynthesis and its metabolic dependencies toward improving wood fiber for industrial processing. Front Plant Sci 10:176. https://doi.org/10.3389/fpls.2019.00176

    Article  Google Scholar 

  151. Yim SS, Choi JW, Lee SH et al (2016) Modular optimization of a hemicellulose-utilizing pathway in Corynebacterium glutamicum for consolidated bioprocessing of hemicellulosic biomass. ACS Synth Biol 5:334–343. https://doi.org/10.1021/acssynbio.5b00228

    Article  CAS  Google Scholar 

  152. Radek A, Krumbach K, Gätgens J et al (2014) Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. J Biotechnol 192 Pt A:156–160. https://doi.org/10.1016/j.jbiotec.2014.09.026

    Article  CAS  Google Scholar 

  153. Brüsseler C, Späth A, Sokolowsky S et al (2019) Alone at last! - heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum. Metab Eng Commun 9:e00090. https://doi.org/10.1016/j.mec.2019.e00090

    Article  Google Scholar 

  154. Tenhaef N, Kappelmann J, Eich A et al (2021) Microaerobic growth-decoupled production of α-ketoglutarate and succinate from xylose in a one-pot process using Corynebacterium glutamicum. Biotechnol J 16:e2100043. https://doi.org/10.1002/biot.202100043

    Article  CAS  Google Scholar 

  155. Usuda Y, Hara Y, Kojima H (2017) Toward sustainable amino acid production. Adv Biochem Eng Biotechnol 159:289–304. https://doi.org/10.1007/10_2016_36

    Article  CAS  Google Scholar 

  156. Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res (Indore) 4:411–427

    CAS  Google Scholar 

  157. Plumbridge J (2015) Regulation of the utilization of amino sugars by Escherichia coli and Bacillus subtilis: same genes, different control. J Mol Microbiol Biotechnol 25:154–167. https://doi.org/10.1159/000369583

    Article  CAS  Google Scholar 

  158. Uhde A, Youn JW, Maeda T et al (2013) Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biotechnol 97:1679–1687. https://doi.org/10.1007/s00253-012-4313-8

    Article  CAS  Google Scholar 

  159. Matano C, Uhde A, Youn JW et al (2014) Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine. Appl Microbiol Biotechnol 98:5633–5643. https://doi.org/10.1007/s00253-014-5676-9

    Article  CAS  Google Scholar 

  160. Westbrook AW, Miscevic D, Kilpatrick S et al (2019) Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv 37:538–568. https://doi.org/10.1016/j.biotechadv.2018.10.006

    Article  CAS  Google Scholar 

  161. Durnin G, Clomburg J, Yeates Z et al (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103:148–161. https://doi.org/10.1002/bit.22246

    Article  CAS  Google Scholar 

  162. Chen Z, Liu D (2016) Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol. Biotechnol Biofuels 9:205. https://doi.org/10.1186/s13068-016-0625-8

    Article  CAS  Google Scholar 

  163. Meiswinkel TM, Rittmann D, Lindner SN et al (2013) Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol 145:254–258. https://doi.org/10.1016/j.biortech.2013.02.053

    Article  CAS  Google Scholar 

  164. Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74:6216–6222. https://doi.org/10.1128/AEM.00963-08

    Article  CAS  Google Scholar 

  165. Tuyishime P, Wang Y, Fan L et al (2018) Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab Eng 49:220–231. https://doi.org/10.1016/j.ymben.2018.07.011

    Article  CAS  Google Scholar 

  166. Müller JE, Heggeset TM, Wendisch VF et al (2015) Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol. Appl Microbiol Biotechnol 99:535–551. https://doi.org/10.1007/s00253-014-6224-3

    Article  CAS  Google Scholar 

  167. Gregory GJ, Bennett RK, Papoutsakis ET (2022) Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs. Metab Eng 71:99–116. https://doi.org/10.1016/j.ymben.2021.09.005

    Article  CAS  Google Scholar 

  168. Whitaker WB, Jones JA, Bennett RK et al (2017) Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab Eng 39:49–59. https://doi.org/10.1016/j.ymben.2016.10.015

    Article  CAS  Google Scholar 

  169. Chen FY, Jung HW, Tsuei CY et al (2020) Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell 182:933–946.e14. https://doi.org/10.1016/j.cell.2020.07.010

    Article  CAS  Google Scholar 

  170. Witthoff S, Schmitz K, Niedenführ S et al (2015) Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl Environ Microbiol 81:2215–2225. https://doi.org/10.1128/AEM.03110-14

    Article  CAS  Google Scholar 

  171. Hennig G, Haupka C, Brito LF et al (2020) Methanol-essential growth of Corynebacterium glutamicum: adaptive laboratory evolution overcomes limitation due to methanethiol assimilation pathway. Int J Mol Sci 21:3617. https://doi.org/10.3390/ijms21103617

    Article  CAS  Google Scholar 

  172. Nakayama Y (2021) Corynebacterium glutamicum mechanosensing: from osmoregulation to L-glutamate secretion for the avian microbiota-gut-brain axis. Microorganisms 9:201. https://doi.org/10.3390/microorganisms9010201

    Article  CAS  Google Scholar 

  173. Ogata S, Hirasawa T (2021) Induction of glutamic acid production by copper in Corynebacterium glutamicum. Appl Microbiol Biotechnol 105:6909–6920. https://doi.org/10.1007/s00253-021-11516-3

    Article  CAS  Google Scholar 

  174. Niebisch A, Kabus A, Schultz C et al (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307. https://doi.org/10.1074/jbc.M512515200

    Article  CAS  Google Scholar 

  175. Raasch K, Bocola M, Labahn J et al (2014) Interaction of 2-oxoglutarate dehydrogenase OdhA with its inhibitor OdhI in Corynebacterium glutamicum: mutants and a model. J Biotechnol 191:99–105. https://doi.org/10.1016/j.jbiotec.2014.05.023

    Article  CAS  Google Scholar 

  176. Schultz C, Niebisch A, Gebel L et al (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700. https://doi.org/10.1007/s00253-007-0933-9

    Article  CAS  Google Scholar 

  177. Kawasaki H, Martinac B (2020) Mechanosensitive channels of Corynebacterium glutamicum functioning as exporters of L-glutamate and other valuable metabolites. Curr Opin Chem Biol 59:77–83. https://doi.org/10.1016/j.cbpa.2020.05.005

    Article  CAS  Google Scholar 

  178. Hashimoto K, Murata J, Konishi T et al (2012) Glutamate is excreted across the cytoplasmic membrane through the NCgl1221 channel of Corynebacterium glutamicum by passive diffusion. Biosci Biotechnol Biochem 76:1422–1424. https://doi.org/10.1271/bbb.120366

    Article  CAS  Google Scholar 

  179. Wang Y, Cao G, Xu D et al (2018) A novel Corynebacterium glutamicum L-glutamate exporter. Appl Environ Microbiol 84:e02691–e02617. https://doi.org/10.1128/AEM.02691-17

    Article  Google Scholar 

  180. Bogorad IW, Lin TS, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502:693–697. https://doi.org/10.1038/nature12575

    Article  CAS  Google Scholar 

  181. Dele-Osibanjo T, Li Q, Zhang X et al (2019) Growth-coupled evolution of phosphoketolase to improve L-glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 103:8413–8425. https://doi.org/10.1007/s00253-019-10043-6

    Article  CAS  Google Scholar 

  182. Wen J, Bao J (2019) Engineering Corynebacterium glutamicum triggers glutamic acid accumulation in biotin-rich corn stover hydrolysate. Biotechnol Biofuels 12:86. https://doi.org/10.1186/s13068-019-1428-5

    Article  Google Scholar 

  183. Jiang Y, Sheng Q, Wu XY et al (2021) L-arginine production in Corynebacterium glutamicum: manipulation and optimization of the metabolic process. Crit Rev Biotechnol 41:172–185. https://doi.org/10.1080/07388551.2020.1844625

    Article  CAS  Google Scholar 

  184. Wang Q, Jiang A, Tang J et al (2021) Enhanced production of L-arginine by improving carbamoyl phosphate supply in metabolically engineered Corynebacterium crenatum. Appl Microbiol Biotechnol 105:3265–3276. https://doi.org/10.1007/s00253-021-11242-w

    Article  CAS  Google Scholar 

  185. Petri K, Walter F, Persicke M et al (2013) A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum. BMC Genomics 14:713. https://doi.org/10.1186/1471-2164-14-713

    Article  CAS  Google Scholar 

  186. Ikeda M, Mitsuhashi S, Tanaka K et al (2009) Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol 75:1635–1641. https://doi.org/10.1128/AEM.02027-08

    Article  CAS  Google Scholar 

  187. Xu M, Rao Z, Dou W et al (2012) Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids 43:255–266. https://doi.org/10.1007/s00726-011-1069-x

    Article  CAS  Google Scholar 

  188. Man Z, Xu M, Rao Z et al (2016) Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production. Sci Rep 6:28629. https://doi.org/10.1038/srep28629

    Article  CAS  Google Scholar 

  189. Zhan M, Kan B, Dong J et al (2019) Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. J Ind Microbiol Biotechnol 46:45–54. https://doi.org/10.1007/s10295-018-2103-8

    Article  CAS  Google Scholar 

  190. Lee JH, Wendisch VF (2017a) Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J Biotechnol 257:211–221. https://doi.org/10.1016/j.jbiotec.2016.11.016

    Article  CAS  Google Scholar 

  191. Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:3387–3394. https://doi.org/10.1007/s00253-015-6508-2

    Article  CAS  Google Scholar 

  192. Ikeda M, Mizuno Y, Awane S et al (2011) Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:1443–1451. https://doi.org/10.1007/s00253-011-3210-x

    Article  CAS  Google Scholar 

  193. Marx A, Hans S, Möckel B et al (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197. https://doi.org/10.1016/s0168-1656(03)00153-6

    Article  CAS  Google Scholar 

  194. Ohnishi J, Katahira R, Mitsuhashi S et al (2005) A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274. https://doi.org/10.1016/j.femsle.2004.11.014

    Article  CAS  Google Scholar 

  195. Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7:291–301. https://doi.org/10.1016/j.ymben.2005.05.001

    Article  CAS  Google Scholar 

  196. Kabus A, Georgi T, Wendisch VF et al (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl Microbiol Biotechnol 75:47–53. https://doi.org/10.1007/s00253-006-0804-9

    Article  CAS  Google Scholar 

  197. Bommareddy RR, Chen Z, Rappert S et al (2014) A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 25:30–37. https://doi.org/10.1016/j.ymben.2014.06.005

    Article  CAS  Google Scholar 

  198. Xu JZ, Yang HK, Liu LM et al (2018) Rational modification of Corynebacterium glutamicum dihydrodipicolinate reductase to switch the nucleotide-cofactor specificity for increasing L-lysine production. Biotechnol Bioeng 115:1764–1777. https://doi.org/10.1002/bit.26591

    Article  CAS  Google Scholar 

  199. Chen Z, Bommareddy RR, Frank D et al (2013) Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol 80:1388–1393. https://doi.org/10.1128/AEM.03535-13

    Article  CAS  Google Scholar 

  200. Buchholz J, Schwentner A, Brunnenkan B et al (2013) Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate. Appl Environ Microbiol 79:5566–5575

    Article  CAS  Google Scholar 

  201. Xu JZ, Wu ZH, Gao SJ et al (2018) Rational modification of tricarboxylic acid cycle for improving L-lysine production in Corynebacterium glutamicum. Microb Cell Factories 17:105. https://doi.org/10.1186/s12934-018-0958-z

    Article  CAS  Google Scholar 

  202. Lindner SN, Seibold GM, Henrich A et al (2011) Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol 77:3571–3581. https://doi.org/10.1128/AEM.02713-10

    Article  CAS  Google Scholar 

  203. Liu N, Zhang TT, Rao ZM et al (2021) Reconstruction of the diaminopimelic acid pathway to promote L-lysine production in Corynebacterium glutamicum. Int J Mol Sci 22:9065. https://doi.org/10.3390/ijms22169065

    Article  CAS  Google Scholar 

  204. Li CL, Ruan HZ, Liu LM et al (2022) Rational reformation of Corynebacterium glutamicum for producing L-lysine by one-step fermentation from raw corn starch. Appl Microbiol Biotechnol 106:145–160. https://doi.org/10.1007/s00253-021-11714-z

    Article  CAS  Google Scholar 

  205. Lei M, Peng X, Sun W et al (2021) Nonsterile L-lysine fermentation using engineered phosphite-grown Corynebacterium glutamicum. ACS Omega 6:10160–10167. https://doi.org/10.1021/acsomega.1c00226

    Article  CAS  Google Scholar 

  206. Schwardmann LS, Dransfeld AK, Schäffer T et al (2022) Metabolic engineering of Corynebacterium glutamicum for sustainable production of the aromatic dicarboxylic acid dipicolinic acid. Microorganisms 10:730. https://doi.org/10.3390/microorganisms10040730

    Article  CAS  Google Scholar 

  207. Redox (2022) News. http://redox.com/news. Accessed 15 May 2022

  208. Friedman M, Levin CE (2012) Nutritional and medicinal aspects of D-amino acids. Amino Acids 42:1553–1582. https://doi.org/10.1007/s00726-011-0915-1

    Article  CAS  Google Scholar 

  209. Figge RM (2006) Methionine biosynthesis in Escherichia coli and Corynebacterium glutamicum. In: Wendisch VF (ed) Amino acid biosynthesis – pathways, regulation and metabolic engineering. Microbiology monographs, vol 5. Springer, Berlin/Heidelberg, pp 163–194. https://doi.org/10.1007/7171_2006_059

    Chapter  Google Scholar 

  210. Rey DA, Nentwich SS, Koch DJ et al (2005) The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56:871–887. https://doi.org/10.1111/j.1365-2958.2005.04586.x

    Article  CAS  Google Scholar 

  211. Bourhy P, Martel A, Margarita D et al (1997) Homoserine O-acetyltransferase, involved in the Leptospira meyeri methionine biosynthetic pathway, is not feedback inhibited. J Bacteriol 179:4396–4398. https://doi.org/10.1128/jb.179.13.4396-4398.1997

    Article  CAS  Google Scholar 

  212. Bestel-Corre G, Chateau M, Figge R et al (2005) Recombinant enzyme with altered feedback sensitivity. US 2009/0029424 A1. 29 Jan 2009

    Google Scholar 

  213. Huang JF, Shen ZY, Mao QL et al (2018) Systematic analysis of bottlenecks in a multibranched and multilevel regulated pathway: the molecular fundamentals of L-methionine biosynthesis in Escherichia coli. ACS Synth Biol 7:2577–2589. https://doi.org/10.1021/acssynbio.8b00249

    Article  CAS  Google Scholar 

  214. Moeckel B, Pfefferle W, Huthmacher K et al (2002) Nucleotide sequences which code for the metY gene. US 6,812,016 B2. 02 Nov 2004

    Google Scholar 

  215. Bolten CJ, Schröder H, Dickschat J et al (2010) Towards methionine overproduction in Corynebacterium glutamicum-methanethiol and dimethyldisulfide as reduced sulfur sources. J Microbiol Biotechnol 20:1196–1203. https://doi.org/10.4014/jmb.1002.02018

    Article  CAS  Google Scholar 

  216. Wei L, Wang H, Xu N et al (2019) Metabolic engineering of Corynebacterium glutamicum for L-cysteine production. Appl Microbiol Biotechnol 103:1325–1338. https://doi.org/10.1007/s00253-018-9547-7

    Article  CAS  Google Scholar 

  217. Takumi K, Ziyatdinov MK, Samsonov V et al (2017) Fermentative production of cysteine by Pantoea ananatis. Appl Environ Microbiol 83:e02502–e02516. https://doi.org/10.1128/AEM.02502-16

    Article  Google Scholar 

  218. Joo YC, Hyeon JE, Han SO (2017) Metabolic design of Corynebacterium glutamicum for production of L-cysteine with consideration of sulfur-supplemented animal feed. J Agric Food Chem 65:4698–4707. https://doi.org/10.1021/acs.jafc.7b01061

    Article  CAS  Google Scholar 

  219. Kishino M, Kondoh M, Hirasawa T (2019) Enhanced L-cysteine production by overexpressing potential L-cysteine exporter genes in an L-cysteine-producing recombinant strain of Corynebacterium glutamicum. Biosci Biotechnol Biochem 83:2390–2393. https://doi.org/10.1080/09168451.2019.1659715

    Article  CAS  Google Scholar 

  220. Zhao C, Kumada Y, Imanaka H et al (2006) Cloning, overexpression, purification, and characterization of O-acetylserine sulfhydrylase-B from Escherichia coli. Protein Expr Purif 47:607–613. https://doi.org/10.1016/j.pep.2006.01.002

    Article  CAS  Google Scholar 

  221. Agren D, Schnell R, Oehlmann W et al (2008) Cysteine synthase (CysM) of Mycobacterium tuberculosis is an O-phosphoserine sulfhydrylase: evidence for an alternative cysteine biosynthesis pathway in mycobacteria. J Biol Chem 283:31567–31574. https://doi.org/10.1074/jbc.M804877200

    Article  CAS  Google Scholar 

  222. Burns KE, Baumgart S, Dorrestein PC et al (2005) Reconstitution of a new cysteine biosynthetic pathway in Mycobacterium tuberculosis. J Am Chem Soc 127:11602–11603. https://doi.org/10.1021/ja053476x

    Article  CAS  Google Scholar 

  223. Mino K, Ishikawa K (2003) A novel O-phospho-L-serine sulfhydrylation reaction catalyzed by O- acetylserine sulfhydrylase from Aeropyrum pernix K1. FEBS Lett 551:133–138. https://doi.org/10.1016/s0014-5793(03)00913-x

    Article  CAS  Google Scholar 

  224. Westrop GD, Goodall G, Mottram JC et al (2006) Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine. J Biol Chem 281:25062–25075. https://doi.org/10.1074/jbc.M600688200

    Article  CAS  Google Scholar 

  225. Agren D, Schnell R, Schneider G (2009) The C-terminal of CysM from Mycobacterium tuberculosis protects the aminoacrylate intermediate and is involved in sulfur donor selectivity. FEBS Lett 583:330–336. https://doi.org/10.1016/j.febslet.2008.12.019

    Article  CAS  Google Scholar 

  226. Sørensen MA, Pedersen S (1991) Cysteine, even in low concentrations, induces transient amino acid starvation in Escherichia coli. J Bacteriol 173:5244–5246. https://doi.org/10.1128/jb.173.16.5244-5246.1991

    Article  Google Scholar 

  227. Yang E, Meng J, Cai H et al (2021) Effect of biochar on the production of L-histidine from glucose through Escherichia coli metabolism. Front Bioeng Biotechnol 8:605096. https://doi.org/10.3389/fbioe.2020.605096

    Article  Google Scholar 

  228. Peterson BC, Burr GS, Gaylord GT (2022) Effects of histidine on growth performance of North American Atlantic salmon. J World Aquac Soc 53:401–410. https://doi.org/10.1111/jwas.12873

    Article  CAS  Google Scholar 

  229. Kulis-Horn RK, Persicke M, Kalinowski J (2014) Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microb Biotechnol 7:5–25. https://doi.org/10.1111/1751-7915.12055

    Article  CAS  Google Scholar 

  230. Winkler ME, Ramos-Montañez S (2009) Biosynthesis of histidine. EcoSal Plus 3. https://doi.org/10.1128/ecosalplus.3.6.1.9

  231. Kulis-Horn RK, Persicke M, Kalinowski J (2015) Corynebacterium glutamicum ATP phosphoribosyltransferases suitable for L-histidine production – strategies for the elimination of feedback inhibition. J Biotechnol 206:26–37. https://doi.org/10.1016/j.jbiotec.2015.04.001

    Article  CAS  Google Scholar 

  232. Schwentner A, Feith A, Münch E et al (2019) Modular systems metabolic engineering enables balancing of relevant pathways for L-histidine production with Corynebacterium glutamicum. Biotechnol Biofuels 12:65. https://doi.org/10.1186/s13068-019-1410-2

    Article  Google Scholar 

  233. Industry-Experts (2022) Global amino acids market – products and applications. http://industry-experts.com/verticals/food-and-beverage/global-amino-acids-market-products-and-applications. Accessed 8 May 2022

  234. Business wire (2022) 2021 Global market overview on the feed amino acids market. https://www.businesswire.com/news/home/20210510005456/en. Accessed 15 May 2022

  235. Greenhalgh S, McInerney BV, McQuade LR et al (2020) Capping dietary starch:protein ratios in moderately reduced crude protein, wheat-based diets showed promise but further reductions generated inferior growth performance in broiler chickens. Anim Nutr 6:168–178. https://doi.org/10.1016/j.aninu.2020.01.002

    Article  Google Scholar 

  236. Evonik (2022) Press releases – investor relations. http://corporate.evonik.com/en/investor-relations/news-reports. Accessed 15 May 2022

  237. Baker DH (2006) Comparative species utilization and toxicity of sulfur amino acids. J Nutr 136:1670S–1675S. https://doi.org/10.1093/jn/136.6.1670S

    Article  CAS  Google Scholar 

  238. Ajinomoto (2022) Amino acids. https://www.ajinomoto.com/aboutus/amino-acids. Accessed 15 May 2022

  239. Future market insights (2022) Market snapshot. https://www.futuremarketinsights.com/reports/food-amino-acids-market. Accessed 15 May 2022

Download references

Acknowledgments

This chapter was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2018R1D1A1B07047207) and the BB21+ Project in 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ho Lee .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lee, JH. (2023). Amino Acids. In: Bisaria, V. (eds) Handbook of Biorefinery Research and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6724-9_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6724-9_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6724-9

  • Online ISBN: 978-94-007-6724-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics