Skip to main content

Role of Reproductive Hormones in Islet Adaptation to Metabolic Stress

  • Reference work entry
  • First Online:
Islets of Langerhans

Abstract

There is an interaction between reproduction and energy stores. Both the production and secretion of insulin by pancreatic islet β-cells must adapt to the metabolic demands of various environmental stresses related to reproduction and energy status. These adaptations must occur in a sex-specific manner. It is therefore conceivable that reproductive hormones play a role in β-cell adaptation to environmental stresses. This review explores the roles of estrogen, androgen, progesterone, and lactogens in pancreatic β-cell mass and function under conditions of metabolic stress such as pregnancy, obesity, and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquie M et al (2008) Pancreatic insulin content regulation by the estrogen receptor ER α. PLoS One 3:e2069

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaral ME, Cunha DA, Anhe GF, Ueno M, Carneiro EM et al (2004) Participation of prolactin receptors and phosphatidylinositol 3-kinase and MAP kinase pathways in the increase in pancreatic islet mass and sensitivity to glucose during pregnancy. J Endocrinol 183:469–476

    Article  PubMed  CAS  Google Scholar 

  • Balhuizen A, Kumar R, Amisten S, Lundquist I, Salehi A (2010) Activation of G protein-coupled receptor 30 modulates hormone secretion and counteracts cytokine-induced apoptosis in pancreatic islets of female mice. Mol Cell Endocrinol 320:16–24

    Article  PubMed  CAS  Google Scholar 

  • Baquie M, St-Onge L, Kerr-Conte J, Cobo-Vuilleumier N, Lorenzo PI et al (2011) The liver receptor homolog-1 (LRH-1) is expressed in human islets and protects β-cells against stress-induced apoptosis. Hum Mol Genet 20:2823–2833

    Article  PubMed  CAS  Google Scholar 

  • Basaria S, Muller DC, Carducci MA, Egan J, Dobs AS (2006) Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy. Cancer 106:581–588

    Article  PubMed  CAS  Google Scholar 

  • Bordin S, Amaral ME, Anhe GF, Delghingaro-Augusto V, Cunha DA et al (2004) Prolactin-modulated gene expression profiles in pancreatic islets from adult female rats. Mol Cell Endocrinol 220:41–50

    Article  PubMed  CAS  Google Scholar 

  • Brelje TC, Svensson AM, Stout LE, Bhagroo NV, Sorenson RL (2002) An immunohistochemical approach to monitor the prolactin-induced activation of the JAK2/STAT5 pathway in pancreatic islets of Langerhans. J Histochem Cytochem 50:365–383

    Article  PubMed  Google Scholar 

  • Choe SS, Choi AH, Lee JW, Kim KH, Chung JJ et al (2007) Chronic activation of liver X receptor induces β-cell apoptosis through hyperactivation of lipogenesis: liver X receptor-mediated lipotoxicity in pancreatic β-cells. Diabetes 56:1534–1543

    Article  PubMed  CAS  Google Scholar 

  • Choi SB, Jang JS, Park S (2005) Estrogen and exercise may enhance β-cell function and mass via insulin receptor substrate 2 induction in ovariectomized diabetic rats. Endocrinology 146:4786–4794

    Article  PubMed  CAS  Google Scholar 

  • Contreras JL, Smyth CA, Bilbao G, Young CJ, Thompson JA et al (2002) 17β-Estradiol protects isolated human pancreatic islets against proinflammatory cytokine-induced cell death: molecular mechanisms and islet functionality. Transplantation 74:1252–1259

    Article  PubMed  CAS  Google Scholar 

  • Doglioni C, Gambacorta M, Zamboni G, Coggi G, Viale G (1990) Immunocytochemical localization of progesterone receptors in endocrine cells of the human pancreas. Am J Pathol 137:999–1005

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dunaif A, Finegood DT (1996) β-cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. J Clin Endocrinol Metab 81:942–947

    PubMed  CAS  Google Scholar 

  • Finan B, Yang B, Ottaway N, Stemmer K, Muller TD et al (2012) Targeted estrogen delivery reverses the metabolic syndrome. Nat Med 18:1847–1856

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Freemark M, Avril I, Fleenor D, Driscoll P, Petro A et al (2002) Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology 143:1378–1385

    Article  PubMed  CAS  Google Scholar 

  • Fujinaka Y, Takane K, Yamashita H, Vasavada RC (2007) Lactogens promote β cell survival through JAK2/STAT5 activation and Bcl-XL upregulation. J Biol Chem 282:30707–30717

    Article  PubMed  CAS  Google Scholar 

  • Goffin V, Binart N, Clement-Lacroix P, Bouchard B, Bole-Feysot C et al (1999) From the molecular biology of prolactin and its receptor to the lessons learned from knockout mice models. Genet Anal 15:189–201

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez F, Rote NS, Minium J, Kirwan JP (2006) Increased activation of nuclear factor kappaB triggers inflammation and insulin resistance in polycystic ovary syndrome. J Clin Endocrinol Metab 91:1508–1512

    Article  PubMed  CAS  Google Scholar 

  • Goodarzi MO, Erickson S, Port SC, Jennrich RI, Korenman SG (2005) β-Cell function: a key pathological determinant in polycystic ovary syndrome. J Clin Endocrinol Metab 90:310–315

    Article  PubMed  CAS  Google Scholar 

  • Goodman MN, Hazelwood RL (1974) Short-term effects of oestradiol benzoate in normal, hypophysectomized and alloxan-diabetic male rats. J Endocrinol 62:439–449

    Article  PubMed  CAS  Google Scholar 

  • Haffner SM, Laakso M, Miettinen H, Mykkanen L, Karhapaa P et al (1996) Low levels of sex hormone-binding globulin and testosterone are associated with smaller, denser low density lipoprotein in normoglycemic men. J Clin Endocrinol Metab 81:3697–3701

    PubMed  CAS  Google Scholar 

  • Holte J, Bergh T, Berne C, Berglund L, Lithell H (1994) Enhanced early insulin response to glucose in relation to insulin resistance in women with polycystic ovary syndrome and normal glucose tolerance. J Clin Endocrinol Metab 78:1052–1058

    PubMed  CAS  Google Scholar 

  • Houssay BA, Foglia VG, Rodriguez RR (1954) Production or prevention of some types of experimental diabetes by oestrogens or corticosteroids. Acta Endocrinol (Cph) 17:146–164

    CAS  Google Scholar 

  • Huang C, Snider F, Cross J (2009) Prolactin receptor is required for normal glucose homeostasis and modulation of β-cell mass during pregnancy. Endocrinology 150:1618–1626

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Chen J, Wang Q, Chen X, Wen W et al (2011) miR-338-3p suppresses invasion of liver cancer cell by targeting smoothened. J Pathol 225:463–472

    Article  PubMed  CAS  Google Scholar 

  • Hughes E, Huang C (2011) Participation of Akt, menin, and p21 in pregnancy-induced β-cell proliferation. Endocrinology 152:847–855

    Article  PubMed  CAS  Google Scholar 

  • Jacovetti C, Abderrahmani A, Parnaud G, Jonas JC, Peyot ML et al (2012) MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity. J Clin Invest 122:3541–3551

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Johansson M, Olerud J, Jansson L, Carlsson PO (2009) Prolactin treatment improves engraftment and function of transplanted pancreatic islets. Endocrinology 150:1646–1653

    Article  PubMed  CAS  Google Scholar 

  • Kang L, Zhang X, Xie Y, Tu Y, Wang D et al (2010) Involvement of estrogen receptor variant ER-α36, not GPR30, in nongenomic estrogen signaling. Mol Endocrinol 24:709–721

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Keating NL, O’Malley A, Freedland SJ, Smith MR (2012) Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst 104(19):1518–1523

    Article  PubMed  Google Scholar 

  • Khaw KT, Barrett-Connor E (1992) Lower endogenous androgens predict central adiposity in men. Ann Epidemiol 2:675–682

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T et al (2010) Serotonin regulates pancreatic β cell mass during pregnancy. Nat Med 16:804–U106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kondegowda N, Mozar A, Chin C, Otero A, Garcia-Ocaña A et al (2012) Lactogens protect rodent and human β cells against glucolipotoxicity-induced cell death through Janus kinase-2 (JAK2)/signal transducer and activator of transcription-5 (STAT5) signalling. Diabetologia 55:1721–1732

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Balhuizen A, Amisten S, Lundquist I, Salehi A (2011) Insulinotropic and antidiabetic effects of 17β-estradiol and the GPR30 agonist G-1 on human pancreatic islets. Endocrinology 152:2568–2579

    Article  PubMed  CAS  Google Scholar 

  • Le May C, Chu K, Hu M, Ortega CS, Simpson ER et al (2006) Estrogens protect pancreatic β-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A 103:9232–9237

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Mauvais-Jarvis F (2009) Rapid, nongenomic estrogen actions protect pancreatic islet survival. Islets 1:273–275

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Le May C, Wong WP, Ward RD, Clegg DJ et al (2009) Importance of extranuclear estrogen receptor-α and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes 58:2292–2302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu S, Navarro G, Mauvais-Jarvis F (2010) Androgen excess produces systemic oxidative stress and predisposes to β-cell failure in female mice. PLoS One 5:e11302

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Kilic G, Meyers MS, Navarro G, Wang Y et al (2013) Oestrogens improve human pancreatic islet transplantation in a mouse model of insulin deficient diabetes. Diabetologia 56:370–381

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lombardo MF, De Angelis F, Bova L, Bartolini B, Bertuzzi F et al (2011) Human placental lactogen (hPL-A) activates signaling pathways linked to cell survival and improves insulin secretion in human pancreatic islets. Islets 3:250–258

    Article  PubMed  PubMed Central  Google Scholar 

  • Maclaren NK, Neufeld M, McLaughlin JV, Taylor G (1980) Androgen sensitization of streptozotocin-induced diabetes in mice. Diabetes 29:710–716

    Article  PubMed  CAS  Google Scholar 

  • Mauvais-Jarvis F (2011) Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol Metab 22:24–33

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moldrup A, Petersen ED, Nielsen JH (1993) Effects of sex and pregnancy hormones on growth hormone and prolactin receptor gene expression in insulin-producing cells. Endocrinology 133:1165–1172

    PubMed  CAS  Google Scholar 

  • Morimoto S, Cerbón MA, Alvarez-Alvarez A, Romero-Navarro G, Díaz-Sánchez V (2001) Insulin gene expression pattern in rat pancreas during the estrous cycle. Life Sci 68(26):2979–2985

    Article  PubMed  CAS  Google Scholar 

  • Morimoto S, Mendoza-Rodriguez CA, Hiriart M, Larrieta ME, Vital P et al (2005) Protective effect of testosterone on early apoptotic damage induced by streptozotocin in rat pancreas. J Endocrinol 187:217–224

    Article  PubMed  CAS  Google Scholar 

  • Navarro G, Mauvais-Jarvis F (2013) The role of the Androgen Receptor in β-cell function in male mice. Diabetes 62(Suppl 1):A571

    Google Scholar 

  • Navarro G, Suhuan Liu P, De Gendt K, Verhoeven G, Mauvais-Jarvis F (2011) Importance of the β – cell Androgen Receptor in type 2 diabetes. Endocr Rev 32:OR22–OR23

    Google Scholar 

  • Newberna N, Freemark M (2011) Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 18:409–416

    Article  Google Scholar 

  • Nieuwenhuizen AG, Schuiling GA, Liem SM, Moes H, Koiter TR et al (1999) Progesterone stimulates pancreatic cell proliferation in vivo. Eur J Endocrinol 140:256–263

    Article  PubMed  CAS  Google Scholar 

  • O’Meara NM, Blackman JD, Ehrmann DA, Barnes RB, Jaspan JB et al (1993) Defects in β-cell function in functional ovarian hyperandrogenism. J Clin Endocrinol Metab 76:1241–1247

    PubMed  Google Scholar 

  • Oh JY, Barrett-Connor E, Wedick NM, Wingard DL (2002) Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo study. Diabetes Care 25:55–60

    Article  PubMed  CAS  Google Scholar 

  • Ouhtit A, Kelly PA, Morel G (1994) Visualization of gene expression of short and long forms of prolactin receptor in rat digestive tissues. Am J Physiol 266:G807–G815

    PubMed  CAS  Google Scholar 

  • Paik SG, Michelis MA, Kim YT, Shin S (1982) Induction of insulin-dependent diabetes by streptozotocin. Inhibition by estrogens and potentiation by androgens. Diabetes 31:724–729

    Article  PubMed  CAS  Google Scholar 

  • Palomar-Morales M, Morimoto S, Mendoza-Rodriguez CA, Cerbon MA (2010) The protective effect of testosterone on streptozotocin-induced apoptosis in β cells is sex specific. Pancreas 39:193–200

    Article  PubMed  CAS  Google Scholar 

  • Picard F, Wanatabe M, Schoonjans K, Lydon J, O’Malley BW et al (2002) Progesterone receptor knockout mice have an improved glucose homeostasis secondary to β-cell proliferation. Proc Natl Acad Sci U S A 99:15644–15648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pitteloud N, Mootha VK, Dwyer AA, Hardin M, Lee H et al (2005) Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 28:1636–1642

    Article  PubMed  CAS  Google Scholar 

  • Ren Z, Zou C, Ji H, Zhang YA (2010) Oestrogen regulates proliferation and differentiation of human islet-derived precursor cells through oestrogen receptor α. Cell Biol Int 34:523–530

    Article  PubMed  CAS  Google Scholar 

  • Salonia A, Lanzi R, Scavini M, Pontillo M, Gatti E et al (2006) Sexual function and endocrine profile in fertile women with type 1 diabetes. Diabetes Care 29:312–316

    Article  PubMed  Google Scholar 

  • Schraenen A, Lemaire K, de Faudeur G, Hendrickx N, Granvik M et al (2010) Placental lactogens induce serotonin biosynthesis in a subset of mouse β cells during pregnancy. Diabetologia 53:2589–2599

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shao J, Qiao L, Friedman JE (2004) Prolactin, progesterone, and dexamethasone coordinately and adversely regulate glucokinase and cAMP/PDE cascades in MIN6 β-cells. Am J Physiol Endocrinol Metab 286:E304–E310

    Article  PubMed  CAS  Google Scholar 

  • Sharma G, Prossnitz ER (2011) Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic β-cells. Endocrinology 152:3030–3039

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sorenson RL, Brelje TC (1997) Adaptation of islets of langerhans to pregnancy: β-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 29:301–307

    Article  PubMed  CAS  Google Scholar 

  • Sorenson RL, Brelje TC (2009) Prolactin receptors are critical to the adaptation of islets to pregnancy. Endocrinology 150:1566–1569

    Article  PubMed  CAS  Google Scholar 

  • Sorenson RL, Brelje TC, Roth C (1993) Effects of steroid and lactogenic hormones on islets of Langerhans: a new hypothesis for the role of pregnancy steroids in the adaptation of islets to pregnancy. Endocrinology 133:2227–2234

    PubMed  CAS  Google Scholar 

  • Soriano S, Ropero AB, Alonso-Magdalena P, Ripoll C, Quesada I et al (2009) Rapid regulation of KATP channel activity by 17β-estradiol in pancreatic β-cells involves the estrogen receptor β and the atrial natriuretic peptide receptor. Mol Endocrinol 23:1973–1982

    Article  PubMed  CAS  Google Scholar 

  • Soriano S, Alonso-Magdalena P, Garcia-Arevalo M, Novials A, Muhammed SJ et al (2012) Rapid insulinotropic action of low doses of bisphenol-A on mouse and human islets of Langerhans: role of estrogen receptor β. PLoS One 7:e31109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Terra LF, Garay-Malpartida MH, Wailemann RA, Sogayar MC, Labriola L (2011) Recombinant human prolactin promotes human β cell survival via inhibition of extrinsic and intrinsic apoptosis pathways. Diabetologia 54:1388–1397

    Article  PubMed  CAS  Google Scholar 

  • Tiano JP, Mauvais-Jarvis F (2012a) Importance of oestrogen receptors to preserve functional β-cell mass in diabetes. Nat Rev Endocrinol 8:342–351

    PubMed  CAS  Google Scholar 

  • Tiano JP, Mauvais-Jarvis F (2012b) Molecular mechanisms of estrogen receptors’ suppression of lipogenesis in pancreatic β-cells. Endocrinology 153:2997–3005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tiano J, Mauvais-Jarvis F (2012c) Selective estrogen receptor modulation in pancreatic β-cells and the prevention of type 2 diabetes. Islets 4:173–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiano JP, Delghingaro-Augusto V, Le May C, Liu S, Kaw MK et al (2011) Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents β cell failure in rodent models of type 2 diabetes. J Clin Invest 121:3331–3342

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tiano J, Finan B, DiMarchi R, Mauvais-Jarvis F (2012) A Glucagon-like peptide-1-estrogen fusion peptide shows enhanced efficacy in preventing insulin-deficient diabetes in mice. Endocr Rev 33:OR21–OR26

    Google Scholar 

  • Vasavada RC, Garcia-Ocana A, Zawalich WS, Sorenson RL, Dann P et al (2000) Targeted expression of placental lactogen in the β cells of transgenic mice results in β cell proliferation, islet mass augmentation, and hypoglycemia. J Biol Chem 275:15399–15406

    Article  PubMed  CAS  Google Scholar 

  • Vetere A, Wagner BK (2012) Chemical methods to induce β-cell proliferation. Int J Endocrinol 2012:925143

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong WP, Tiano JP, Liu S, Hewitt SC, Le May C et al (2010) Extranuclear estrogen receptor-α stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc Natl Acad Sci USA 107:13057–13062

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamabe N, Kang KS, Zhu BT (2010) Beneficial effect of 17β-estradiol on hyperglycemia and islet β-cell functions in a streptozotocin-induced diabetic rat model. Toxicol Appl Pharmacol 249:76–85

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Ricordi C, Mita A, Miki A, Sakuma Y et al (2008) β-Cell specific cytoprotection by prolactin on human islets. Transplant Proc 40:382–383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zitzmann M (2009) Testosterone deficiency, insulin resistance and the metabolic syndrome. Nat Rev Endocrinol 5:673–681

    Article  PubMed  CAS  Google Scholar 

  • Zitzmann M, Faber S, Nieschlag E (2006) Association of specific symptoms and metabolic risks with serum testosterone in older men. J Clin Endocrinol Metab 91:4335–4343

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NIH RO1 DK074970, the Juvenile Diabetes Research Foundation (1-2006-837) and the March of Dimes (6-FY7-312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Mauvais-Jarvis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Alvarez-Mercado, A.I., Navarro, G., Mauvais-Jarvis, F. (2015). Role of Reproductive Hormones in Islet Adaptation to Metabolic Stress. In: Islam, M. (eds) Islets of Langerhans. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6686-0_44

Download citation

Publish with us

Policies and ethics