Anionic Transporters and Channels in Pancreatic Islet Cells

  • Nurdan Bulur
  • Willy J. Malaisse
Reference work entry


After a brief description of the so-called consensus hypothesis for the mechanism of stimulus-secretion coupling in the process of glucose-induced insulin release, the present chapter, which deals with anionic transporters and channels in pancreatic islet cells, concerns mainly a second modality for the control of insulin secretion by the hexose. In such a perspective, it draws attention to the NBCe1 Na+/HCO3 cotransporters, the volume-regulated anion channel hypothesis, the experimental model of extracellular hypotonicity, the possible role of NAD(P)H oxidase-derived H2O2 in the activation of volume-regulated anion channels in β-cells exposed to a hypotonic medium, the identity of the anions concerned by the volume-regulated anion channel hypothesis, the expression and function of anoctamin 1 in rodent and human pancreatic islet cells, the possible role of bicarbonate-activated soluble adenylyl cyclase, the identity and role of aquaporins in insulin-producing cells, and a proposed role for volume-regulated anion channels in glucagon secretion.


NBCe1 Na+/HCO3 cotransporter Volume-regulated anion channels Extracellular hypoosmolarity NAD(P)H oxidase-derived H2O2 Anoctamin 1 Soluble adenylyl cyclase Aquaporins Glucagon secretion 


  1. Agre P (2004) Aquaporin water channels. Angew Chem Int Ed Engl 43:4278–4290PubMedCrossRefGoogle Scholar
  2. Almaca J, Tian Y, Aldehni F, Ousingsawat J, Kongsuphol P, Rock JR, Harfe BD, Schreiber R, Kunzelmann K (2009) TMEM16A proteins produce volume regulated chloride currents that are reduced in mice lacking TMEM16A. J Biol Chem 284:28571–28578PubMedCrossRefPubMedCentralGoogle Scholar
  3. Beauwens R, Best L, Markadieu N, Crutzen R, Louchami K, Brown P, Yates AP, Malaisse WJ, Sener A (2006) Stimulus-secretion coupling of hypotonicity-induced insulin release in BRIN-BD11 cells. Endocrine 30:353–363PubMedCrossRefGoogle Scholar
  4. Best L (1997) Glucose and a-ketoisocaproate induce transient inward currents in rat pancreatic β cells. Diabetologia 40:1–6PubMedCrossRefGoogle Scholar
  5. Best L (1999) Cell-attached recordings of the volume-sensitive anion channel in rat pancreatic B cells. Biochim Biophys Acta 1419:248–256PubMedCrossRefGoogle Scholar
  6. Best L (2000) Glucose-sensitive conductances in rat pancreatic β-cells: contribution to electrical activity. Biochim Biophys Acta 1468:311–319PubMedCrossRefGoogle Scholar
  7. Best L (2002) Study of a glucose-activated anion-selective channel in rat pancreatic β-cells. Pflugers Arch 445:97–104PubMedCrossRefGoogle Scholar
  8. Best L (2005) Glucose-induced electrical activity in rat pancreatic β-cells: dependence in intracellular chloride concentration. J Physiol (Lond) 568:137–144CrossRefGoogle Scholar
  9. Best L, Trebilcock R, Tomlinson S (1992) Lactate transport in insulin-secreting β-cells: contrast between rat islets and HIT-T15 insulinoma cells. Mol Cell Endocrinol 86:49–56PubMedCrossRefGoogle Scholar
  10. Best L, Sheader EA, Brown PD (1996) A volume-activated anion conductance in insulin-secreting cells. Pflugers Arch 431:363–370PubMedCrossRefGoogle Scholar
  11. Best L, Brown PD, Tomlinson S (1997) Anion fluxes, volume regulation and electrical activity in the mammalian β cell. Exp Physiol 82:957–966PubMedGoogle Scholar
  12. Best L, Miley HE, Brown PD, Cook LJ (1999) Methylglyoxal causes swelling and activation of a volume-sensitive anion conductance in rat pancreatic β-cells. Membr Biol 167:65–71CrossRefGoogle Scholar
  13. Best L, Speake T, Brown PD (2001) Characterization of the volume-sensitive anion channel in rat pancreatic β-cells. Exp Physiol 86:145–150PubMedCrossRefGoogle Scholar
  14. Best L, Brown PD, Yates AP, Perret J, Virreira M, Beauwens R, Malaisse WJ, Sener A, Delporte C (2009) Contrasting effects of glycerol and urea transport on rat pancreatic β-cell function. Cell Physiol Biochem 23:255–264PubMedCrossRefGoogle Scholar
  15. Best L, Brown PD, Sener A, Malaisse WJ (2010a) Opposing effects of tenidap on the volume-regulated anion channel and KATP channel activity in rat pancreatic β-cells. Eur J Pharmacol 629:159–163PubMedCrossRefGoogle Scholar
  16. Best L, Brown PD, Sener A, Malaisse WJ (2010b) Electrical activity in pancreatic islet cells: the VRAC hypothesis. Islets 2:59–64PubMedCrossRefGoogle Scholar
  17. Blackard WG, Likuchi M, Rabinovitch A, Renold AE (1975) An effect of hypoosmolarity on insulin release in vitro. Am J Physiol 228:706–713PubMedGoogle Scholar
  18. Boom A, Lybaert P, Pollet J-F, Jacobs P, Jijakli H, Golstein PE, Sener A, Malaisse WJ, Beauwens R (2007) Expression and localization of cystic fibrosis transmembrane conductance regulator in the endocrine pancreas. Endocrine 32:197–205PubMedCrossRefGoogle Scholar
  19. Bukowiecki L, Trus M, Matschinsky FM, Freinkel N (1979) Alteration in pancreatic islet phosphate content during secretory stimulation with glucose. Biochim Biophys Acta 583:370–377PubMedCrossRefGoogle Scholar
  20. Bulur N, Virreira M, Soyfoo MS, Louchami K, Delporte C, Perret J, Beauwens R, Malaisse WJ, Sener A (2009) Expression of the electrogenic Na+ -HCO3 cotransporter NBCe1 in tumoral insulin-producing BRIN-BD11 cells. Cell Physiol Biochem 24:187–192PubMedCrossRefGoogle Scholar
  21. Bulur N, Zhang Y, Malaisse WJ, Sener A (2010) Insulin release from isolated pancreatic islets, dispersed islet cells and tumoral insulin producing cells: a re-examination. Metab Funct Res Diab 3:20–24Google Scholar
  22. Bulur N, Crutzen R, Malaisse WJ, Sener A, Beauwens R, Golstein P (2013) Interaction between 3′,5′-cyclic monophosphate, volume-regulated anion channels and the Na+-HCO3 cotransporter NBCe1 in the regulation of nutrient- and hypotonicity-induced insulin release from rat pancreatic islets and tumoral insulin-producing BRIN-BD11 cells. Mol Med Rep 7:1666–1672PubMedGoogle Scholar
  23. Carpinelli AR, Malaisse WJ (1980) The stimulus-secretion coupling of glucose-induced insulin release. XLIV. A possible link between glucose metabolism and phosphate flush. Diabetologia 19:458–464PubMedCrossRefGoogle Scholar
  24. Carpinelli AR, Malaisse WJ (1981) Regulation of 86Rb outflow from pancreatic islets. V. The dual effect of nutrient secretagogues. J Physiol (Lond) 315:143–156Google Scholar
  25. Casas S, Gomis R, Gribble FM, Altirriba J, Knuutila S, Novials A (2007) Impairment of the ubiquitin-proteasome pathway is a downstream endoplasmic reticulum stress response induced by extracellular human islet amyloid polypeptide and contributes to pancreatic β-cell apoptosis. Diabetes 56:2284–2294PubMedCrossRefGoogle Scholar
  26. Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic β-cells. Nature 311:271–273PubMedCrossRefGoogle Scholar
  27. Crutzen R, Shlyonsky V, Louchami K, Virreira M, Hupkens E, Boom A, Sener A, Malaisse WJ, Beauwens R (2012) Does NAD(P)H oxidase-derived H2O2 participate in hypotonicity-induced insulin release by activating VRAC in β-cells? Eur J Physiol 463:377–390CrossRefGoogle Scholar
  28. Davies SL, Roussa E, Le Rouzic P, Thevenod F, Alper SL, Best L, Brown PD (2004) Expression of K/Cl cotransporters in the a-cells of rat endocrine pancreas. Biochim Biophys Acta 1667:7–14PubMedCrossRefGoogle Scholar
  29. Delporte C, Virreira M, Crutzen R, Louchami K, Sener A, Malaisse WJ, Beauwens R (2009) Functional role of aquaglyceroporin 7 expression in the pancreatic β-cell line BRIN-BD11. J Cell Physiol 221:424–429PubMedCrossRefGoogle Scholar
  30. Freinkel N (1979) Phosphate translocation during secretory stimulation of pancreatic islets. In: Camerini-Davalos A, Hanover B (eds) Treatment of early diabetes. Plenum Press, New York, pp 71–77CrossRefGoogle Scholar
  31. Freinkel N, El Younsi C, Bonnar J, Dawson MC (1974) Rapid transient efflux of phosphate ions from pancreatic islets as an early action of insulin secretagogues. J Clin Invest 54:1179–1189PubMedCrossRefPubMedCentralGoogle Scholar
  32. Freinkel N, El Younsi C, Dawson RMC (1976) Insulin release and phosphate ion efflux from rat pancreatic islets induced by L-leucine and its nonmetabolizable analogue, 2-amino-bicyclo[2-2-1]heptane-2-carboxylic acid. Proc Natl Acad Sci USA 73:3403–3407PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gawenis LR, Bradford EM, Prasad V, Lorenz JN, Simpson JE, Charke LL, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE (2007) Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3 cotransporter. J Biol Chem 282:9042–9052PubMedCrossRefGoogle Scholar
  34. Hanzu FA, Gasa R, Bulur N, Lybaert P, Gomis R, Malaisse WJ, Beauwens R, Sener A (2012) Expression of TMEM16A and SLC4A4 in human pancreatic islets. Cell Physiol Biochem 29:61–64PubMedCrossRefGoogle Scholar
  35. Henquin JC, Detimary P, Gembal M, Jonas JC, Shepherd RM, Warnotte C, Gilon P (1994) Aspects biophysiques du contrôle de la sécrétion d’insuline. Journées de Diabétologie de l’Hôtel-Dieu:21–32Google Scholar
  36. Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY (2009) Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci USA 106:21413–21418PubMedCrossRefPubMedCentralGoogle Scholar
  37. Li D-Q, Jing X, Salehi A, Collins SC, Hoppa MB, Rosengren AH, Zhang E, Lundquist I, Oloffson CS, Mörgerlin M, Eliasson L, Rorsman P, Renström E (2009) Suppression of sulfonylurea- and glucose-induced insulin secretion in vitro and in vivo in mice lacking the chloride transport protein CIC-3. Cell Metab 10:309–315PubMedCrossRefGoogle Scholar
  38. Louchami K, Zhang Y, Beauwens R, Malaisse WJ, Sener A (2007) Is the glucose-induced phosphate flush in pancreatic islets attributable to gating of volume-sensitive anion channels? Endocrine 31:1–4PubMedCrossRefGoogle Scholar
  39. Louchami K, Best L, Brown P, Virreira M, Hupkens E, Perret J, Devuyst O, Uchida S, Delporte C, Malaisse WJ, Beauwens R, Sener A (2012) A new role for aquaporin 7 in insulin secretion. Cell Physiol Biochem 29:65–74PubMedCrossRefGoogle Scholar
  40. Majid A, Speake T, Best L, Brown PD (2001) Expression of the Na-K-2Cl cotransporter in and β cells isolated from the rat pancreas. Pflugers Arch 442:570–576PubMedCrossRefGoogle Scholar
  41. Malaisse WJ, Orci L (1979) The role of the cytoskeleton in pancreatic β-cell function. In: Gabbiani G (ed) Methods of achievements in experimental pathology, vol 9. S. Karger, Basel, pp 112–136Google Scholar
  42. Malaisse WJ, Sener A, Koser M, Herchuelz A (1976) The stimulus-secretion coupling of glucose-induced insulin release. XXIV. The metabolism of α- and β-D-glucose in isolated islets. J Biol Chem 251:5936–5943PubMedGoogle Scholar
  43. Malaisse WJ, Herchuelz A, Levy J, Sener A (1977) Calcium-antagonists and islet function. III. The possible site of action of verapamil. Biochem Pharmacol 26:735–740PubMedCrossRefGoogle Scholar
  44. Malaisse WJ, Sener A, Herchuelz A, Hutton JC (1979a) Insulin release: the fuel hypothesis. Metabolism 28:373–386PubMedCrossRefGoogle Scholar
  45. Malaisse WJ, Hutton JC, Kawazu S, Herchuelz A, Valverde I, Sener A (1979b) The stimulus-secretion coupling of glucose-induced insulin release. XXXV. The links between metabolic and cationic events. Diabetologia 16:331–341PubMedCrossRefGoogle Scholar
  46. Malaisse WJ, Malaisse-Lagae F, Mayhew D (1967) A possible role for the adenylcyclase system in insulin secretion. J Clin Invest 46:1724–1734Google Scholar
  47. Malaisse WJ, Sener A, Welsh M, Malaisse-Lagae F, Hellerström C, Christophe J (1983) Mechanism of 3-phenylpyruvate-induced insulin release. Metabolic aspects. Biochem J 210:921–927PubMedPubMedCentralGoogle Scholar
  48. Malaisse WJ, Zhang Y, Louchami K, Jijakli H (2004) Stimulation by D-glucose of 36Cl efflux from prelabeled rat pancreatic islets. Endocrine 25:23–25PubMedCrossRefGoogle Scholar
  49. Malaisse WJ, Best L, Beauwens R, Sener A (2008) Ionic determinants of the insulinotropic action of glucose: the anion channel hypothesis. Metab Funct Res Diab 1:2–6Google Scholar
  50. Malaisse WJ, Virreira M, Zhang Y, Crutzen R, Bulur N, Lybaert P, Golstein PE, Sener A, Beauwens R (2012) Role of anoctamin 1 (TMEM16A) as a volume regulated anion channel in insulin-producing cells. Diabetologia 55(Suppl 1):S204Google Scholar
  51. Malaisse WJ, Crutzen R, Bulur N, Virreira M, Rzajeva A, Golstein PE, Sener A, Beauwens R (2013) Effects of the inhibitor of anoctamin 1, tannic acid, on insulin-producing cells. Diabetologia 56(Suppl 1):S196Google Scholar
  52. Martins JR, Faria D, Kongsuphol P, Schreiber R, Kunzelmann K (2011) Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proc Natl Acad Sci USA 108:18168–18172PubMedCrossRefPubMedCentralGoogle Scholar
  53. Matsumura K, Chang BH, Fujimiya M, Chen W, Kulkarni RN, Eguchi Y, Kimura H, Kojima H, Chan L (2007) Aquaporin 7 is a β-cell protein and regulator of intraislet glycerol content and glycerol kinase activity, β-cell mass, and insulin production and secretion. Mol Cell Biol 27:6026–6037PubMedCrossRefPubMedCentralGoogle Scholar
  54. McClenaghan NH, Barnett CR, O’Harte FP, Flatt PR (1996) Mechanisms of amino acid-induced insulin secretion from the glucose-responsive BRIN-BD11 pancreatic β-cell line. J Endocrinol 151:349–357PubMedCrossRefGoogle Scholar
  55. McGlasson L, Best L, Brown PD (2011) The glucokinase activator GKA50 causes an increase in cell volume and activation of volume-regulated anion channels in rat pancreatic β-cells. Mol Cell Endocrinol 342:48–53PubMedCrossRefGoogle Scholar
  56. Miley HE, Sheader EA, Brown PD, Best L (1997) Glucose-induced swelling in rat pancreatic β-cells. J Physiol (Lond) 504:191–198CrossRefGoogle Scholar
  57. Muller-Berger S, Ducoudret O, Diakov A, Frömter E (2001) The renal Na-HCO3 cotransporter expressed in Xenopus laevis oocytes: change in stoichiometry in response to elevation of cytosolic Ca2 concentrations. Pflugers Arch 442:718–728PubMedCrossRefGoogle Scholar
  58. Namkung W, Phuan PW, Verkman AS (2011) TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem 286:2365–2374PubMedCrossRefPubMedCentralGoogle Scholar
  59. Orci L, Malaisse WJ (1980) Hypothesis: single and chain release of insulin secretory granules is related to anionic transport at exocytotic sites. Diabetes 29:943–944PubMedCrossRefGoogle Scholar
  60. Parker MD, Boron WF (2008) Sodium-coupled bicarbonate transporters. In: Alpern RJ, Hebert SC (eds) Seldin and Giebisch’s. The kidney physiology and pathophysiology. Elsevier Academic Press, Amsterdam, pp 1481–1497Google Scholar
  61. Ramos LS, Zippin JH, Kamenetsky M, Buck J, Levin LR (2008) Glucose and GLP-1 stimulate camp production via distinct adenylyl cyclases in INS-1E insulinoma cells. J Gen Physiol 132:329–338PubMedCrossRefPubMedCentralGoogle Scholar
  62. Rojek A, Praetorius J, Froklaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 70:301–327PubMedCrossRefGoogle Scholar
  63. Schreiber R, Uliyakina I, Kongsuphol P, Warth R, Mirza M, Martins JR, Kunzelmann K (2010) Expression and function of epithelial anoctamins. J Biol Chem 285:7838–7845PubMedCrossRefPubMedCentralGoogle Scholar
  64. Sehlin J (1978) Interrelationship between chloride fluxes in pancreatic islets and insulin release. Am J Physiol 235:E501–E508PubMedGoogle Scholar
  65. Sener A, Malaisse WJ (1976) Measurement of lactic acid in nanomolar amounts. Reliability of such a method as an index of glycolysis in pancreatic islets. Biochem Med 15:34–41PubMedCrossRefGoogle Scholar
  66. Sener A, Malaisse WJ (2012) Secretory, ionic and metabolic events in rat pancreatic islets deprived of extracellular NaHCO3. Metab Funct Res Diab 5:1–3Google Scholar
  67. Sener A, Malaisse-Lagae F, Malaisse WJ (1981) Stimulation of islet metabolism and insulin release by a nonmetabolizable amino acid. Proc Natl Acad Sci U S A 78:5460–5464PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sener A, Welsh M, Lebrun P, Garcia-Morales P, Saceda M, Malaisse-Lagae F, Herchuelz A, Valverde I, Hellerström C, Malaisse WJ (1983) Mechanism of 3-phenylpyruvate-induced insulin release. Secretory, ionic and oxidative aspects. Biochem J 210:913–919PubMedPubMedCentralGoogle Scholar
  69. Sener A, Jijakli H, Zahedi Asl S, Courtois P, Yates AP, Meuris S, Best LC, Malaisse WJ (2007) Possible role of carbonic anhydrase in rat pancreatic islets: enzymatic, secretory, metabolic, ionic, and electrical aspects. Am J Physiol 292:E1624–E1630Google Scholar
  70. Somers G, Blondel B, Orci L, Malaisse WJ (1979) Motile events in pancreatic endocrine cells. Endocrinology 104:255–264PubMedCrossRefGoogle Scholar
  71. Somers G, Sener A, Devis G, Malaisse WJ (1980) The stimulus-secretion coupling of glucose-induced insulin release. XLV. The anion-osmotic hypothesis for exocytosis. Pflugers Arch 388:249–253PubMedCrossRefGoogle Scholar
  72. Soyfoo MS, Bulur N, Virreira M, Louchami K, Lybaert P, Crutzen R, Perret J, Delporte C, Roussa E, Thevenod F, Best L, Yates AP, Malaisse WJ, Sener A, Beauwens R (2009) Expression of the electrogenic Na+ -HCO3 cotransporters NBCe1-A and NBCe1-B in rat pancreatic islet cells. Endocrine 35:449–458PubMedCrossRefGoogle Scholar
  73. Valverde I, Vandermeers A, Anjaneyulu R, Malaisse WJ (1979) Calmodulin activation of adenylate cyclase in pancreatic islets. Science 206:225–227PubMedCrossRefGoogle Scholar
  74. Valverde I, Garcia-Morales P, Ghiglione M, Malaisse WJ (1983) The stimulus-secretion coupling of glucose-induced insulin release. LIII. Calcium-dependency of the cyclic AMP response to nutrient secretagogues. Horm Metab Res 15:62–68PubMedCrossRefGoogle Scholar
  75. Virreira M, Malaisse WJ, Sener A, Beauwens R (2012) Expression of aquaporin isoforms in mouse pancreatic islets. Metab Funct Res Diab 5:27–28Google Scholar
  76. Zhao C, Wilson MC, Schuit F, Halestrap AP, Rutter GA (2001) Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas. Diabetes 50:361–366PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Laboratory of Experimental MedicineUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations