β Cell Store-Operated Ion Channels

  • Colin A. Leech
  • Richard F. Kopp
  • Louis H. Philipson
  • Michael W. Roe
Reference work entry

Abstract

Signaling molecules produced in the pancreatic β-cell following mitochondrial oxidation of glycolytic intermediate metabolites and oxidative phosphorylation trigger Ca2+-dependent signaling pathways that regulate insulin exocytosis. Much is known about ATP-sensitive K+ and voltage-gated Ca2+ currents that contribute to Ca2+-dependent signal transduction in β-cells and insulin secretion, but relatively little is known about other Ca2+ channels that regulate β-cell Ca2+ signaling dynamics and insulin secretion. In a wide range of eukaryotic cells, store-operated Ca2+ entry (SOCE) plays a critical role regulating spatial and temporal changes in cytoplasmic Ca2+ concentration, endoplasmic reticulum (ER) Ca2+ homeostasis, gene expression, protein biosynthesis, and cell viability. Although SOCE has been proposed to play important roles in β-cell Ca2+ signaling and insulin secretion, the underlying molecular mechanisms remain undefined. In this chapter, we provide both an overview of our current understanding of ionic currents regulated by ER Ca2+ stores in insulin-secreting cells and a review of studies in other cell systems that have identified the molecular basis and regulation of SOCE.

Keywords

Calcium signaling Stimulus-secretion coupling Store-operated ion channels Store-operated calcium entry Calcium release-activated calcium channel Calcium release-activated nonselective cation channel Stromal interaction molecule TRP channels Orai Insulin secretion 

Notes

Acknowledgments

Research in the authors’ laboratories was supported by the American Diabetes Association Research Award 1-12-BS-109 (CAL) and by the National Institutes of Health R01 grants DK074966 and DK092616 (MWR).

References

  1. Aivatiadou E, Ripolone M, Brunetti F, Berruti G (2009) cAMP-Epac2-mediated activation of Rap1 in developing male germ cells: RA-RhoGAP as a possible direct down-stream effector. Mol Reprod Dev 76:407–416PubMedGoogle Scholar
  2. Akiba Y, Kato S, Katsube K, Nakamura M, Takeuchi K, Ishii H, Hibi T (2004) Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet β cells modulates insulin secretion in rats. Biochem Biophys Res Commun 321:219–225PubMedGoogle Scholar
  3. Ambudkar IS, Bandyopadhyay BC, Liu X, Lockwich TP, Paria B, Ong HL (2006) Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains. Cell Calcium 40:495–504PubMedGoogle Scholar
  4. Antonelli A, Ferrannini E (2004) CD38 autoimmunity: recent advances and relevance to human diabetes. J Endocrinol Invest 27:695–707PubMedGoogle Scholar
  5. Arredouani A, Guiot Y, Jonas JC, Liu LH, Nenquin M, Pertusa JA, Rahier J, Rolland JF, Shull GE, Stevens M, Wuytack F, Henquin JC, Gilon P (2002) SERCA3 ablation does not impair insulin secretion but suggests distinct roles of different sarcoendoplasmic reticulum Ca2+ pumps for Ca2+ homeostasis in pancreatic β-cells. Diabetes 51:3245–3253PubMedGoogle Scholar
  6. Arredouani A, Evans AM, Ma J, Parrington J, Zhu MX, Galione A (2010) An emerging role for NAADP-mediated Ca2+ signaling in the pancreatic β-cell. Islets 2:323–330PubMedPubMedCentralGoogle Scholar
  7. Bari MR, Akbar S, Eweida M, Kuhn FJ, Gustafsson AJ, Luckhoff A, Islam MS (2009) H2O2-induced Ca2+ influx and its inhibition by N-(p-amylcinnamoyl) anthranilic acid in the β-cells: involvement of TRPM2 channels. J Cell Mol Med 13:3260–3267PubMedGoogle Scholar
  8. Barro-Soria R, Aldehni F, Almaca J, Witzgall R, Schreiber R, Kunzelmann K (2010) ER-localized bestrophin 1 activates Ca2+-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel. Pflugers Arch 459:485–497PubMedGoogle Scholar
  9. Bauer MC, O’Connell D, Cahill DJ, Linse S (2008) Calmodulin binding to the polybasic C-termini of STIM proteins involved in store-operated calcium entry. Biochemistry 47:6089–6091PubMedGoogle Scholar
  10. Beauvois MC, Merezak C, Jonas JC, Ravier MA, Henquin JC, Gilon P (2006) Glucose-induced mixed [Ca2+]c oscillations in mouse β-cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum. Am J Physiol Cell Physiol 290:C1503–C1511PubMedGoogle Scholar
  11. Beech DJ (2005) TRPC1: store-operated channel and more. Pflugers Arch 451:53–60PubMedGoogle Scholar
  12. Berna-Erro A, Redondo PC, Rosado JA (2012) Store-operated Ca2+ entry. Adv Exp Med Biol 740:349–382PubMedGoogle Scholar
  13. Bertram R, Arceo RC 2nd (2008) A mathematical study of the differential effects of two SERCA isoforms on Ca2+ oscillations in pancreatic islets. Bull Math Biol 70:1251–1271PubMedGoogle Scholar
  14. Best L (2002) Study of a glucose-activated anion-selective channel in rat pancreatic β-cells. Pflugers Arch 445:97–104PubMedGoogle Scholar
  15. Bolotina VM (2004) Store-operated channels: diversity and activation mechanisms. Sci STKE 2004:pe34PubMedGoogle Scholar
  16. Bolotina VM (2008) Orai, STIM1 and iPLA2β: a view from a different perspective. J Physiol 586:3035–3042PubMedPubMedCentralGoogle Scholar
  17. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339PubMedPubMedCentralGoogle Scholar
  18. Brann JH, Dennis JC, Morrison EE, Fadool DA (2002) Type-specific inositol 1,4,5-trisphosphate receptor localization in the vomeronasal organ and its interaction with a transient receptor potential channel, TRPC2. J Neurochem 83:1452–1460PubMedPubMedCentralGoogle Scholar
  19. Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, Johnson PR, Rorsman P (2008) Voltage-gated ion channels in human pancreatic β-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628PubMedGoogle Scholar
  20. Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278:27208–27215PubMedPubMedCentralGoogle Scholar
  21. Bruun TZ, Hoy M, Gromada J (2000) Scinderin-derived actin-binding peptides inhibit Ca2+- and GTPgammaS-dependent exocytosis in mouse pancreatic β-cells. Eur J Pharmacol 403:221–224PubMedGoogle Scholar
  22. Cahalan MD (2009) STIMulating store-operated Ca2+ entry. Nat Cell Biol 11:669–677PubMedPubMedCentralGoogle Scholar
  23. Calloway N, Holowka D, Baird B (2010) A basic sequence in STIM1 promotes Ca2+ influx by interacting with the C-terminal acidic coiled coil of Orai1. Biochemistry 49:1067–1071PubMedPubMedCentralGoogle Scholar
  24. Casas S, Novials A, Reimann F, Gomis R, Gribble FM (2008) Calcium elevation in mouse pancreatic β cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia 51:2252–2262PubMedGoogle Scholar
  25. Chen M, Dong Y, Simard JM (2003) Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci 23:8568–8577PubMedGoogle Scholar
  26. Chen J, Chen YG, Reifsnyder PC, Schott WH, Lee CH, Osborne M, Scheuplein F, Haag F, Koch-Nolte F, Serreze DV, Leiter EH (2006) Targeted disruption of CD38 accelerates autoimmune diabetes in NOD/Lt mice by enhancing autoimmunity in an ADP-ribosyltransferase 2-dependent fashion. J Immunol 176:4590–4599PubMedGoogle Scholar
  27. Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R (2007) TRPM4 controls insulin secretion in pancreatic β-cells. Cell Calcium 41:51–61PubMedGoogle Scholar
  28. Chillemi A, Zaccarello G, Quarona V, Ferracin M, Ghimenti C, Massaia M, Horenstein AL, Malavasi F (2013) Anti-CD38 antibody therapy: windows of opportunity yielded by the functional characteristics of the target molecule. Mol Med 19:99–108PubMedPubMedCentralGoogle Scholar
  29. Clapham DE, Montell C, Schultz G, Julius D (2003) International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol Rev 55:591–596PubMedGoogle Scholar
  30. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107PubMedGoogle Scholar
  31. Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, Owsianik G, Talavera K, Voets T, Margolskee RF, Kokrashvili Z, Gilon P, Nilius B, Schuit FC, Vennekens R (2010) Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in TRPM5−/− mice. Proc Natl Acad Sci USA 107:5208–5213PubMedPubMedCentralGoogle Scholar
  32. Csutora P, Zarayskiy V, Peter K, Monje F, Smani T, Zakharov SI, Litvinov D, Bolotina VM (2006) Activation mechanism for CRAC current and store-operated Ca2+ entry: calcium influx factor and Ca2+-independent phospholipase A2β-mediated pathway. J Biol Chem 281:34926–34935PubMedGoogle Scholar
  33. Csutora P, Peter K, Kilic H, Park KM, Zarayskiy V, Gwozdz T, Bolotina VM (2008) Novel role for STIM1 as a trigger for calcium influx factor production. J Biol Chem 283:14524–14531PubMedPubMedCentralGoogle Scholar
  34. DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587:2275–2298PubMedPubMedCentralGoogle Scholar
  35. Dishinger JF, Kee HL, Jenkins PM, Fan S, Hurd TW, Hammond JW, Truong YN, Margolis B, Martens JR, Verhey KJ (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP. Nat Cell Biol 12:703–710PubMedPubMedCentralGoogle Scholar
  36. Dufer M, Neye Y, Horth K, Krippeit-Drews P, Hennige A, Widmer H, McClafferty H, Shipston MJ, Haring HU, Ruth P, Drews G (2011) BK channels affect glucose homeostasis and cell viability of murine pancreatic β cells. Diabetologia 54:423–432PubMedPubMedCentralGoogle Scholar
  37. Dzhura I, Chepurny OG, Kelley GG, Leech CA, Roe MW, Dzhura E, Afshari P, Malik S, Rindler MJ, Xu X, Lu Y, Smrcka AV, Holz GG (2010) Epac2-dependent mobilization of intracellular Ca2+ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in β-cells of phospholipase C-ε knockout mice. J Physiol 588:4871–4889PubMedPubMedCentralGoogle Scholar
  38. Engelke M, Friedrich O, Budde P, Schafer C, Niemann U, Zitt C, Jungling E, Rocks O, Luckhoff A, Frey J (2002) Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1β. FEBS Lett 523:193–199PubMedGoogle Scholar
  39. Enklaar T, Brixel LR, Zabel B, Prawitt D (2010) Adding efficiency: the role of the CAN ion channels TRPM4 and TRPM5 in pancreatic islets. Islets 2:337–338PubMedGoogle Scholar
  40. Eto K, Kaur V, Thomas MK (2006) Regulation of insulin gene transcription by the immediate-early growth response gene Egr-1. Endocrinology 147:2923–2935PubMedGoogle Scholar
  41. Fahrner M, Muik M, Derler I, Schindl R, Fritsch R, Frischauf I, Romanin C (2009) Mechanistic view on domains mediating STIM1-Orai coupling. Immunol Rev 231:99–112PubMedGoogle Scholar
  42. Feng M, Grice DM, Faddy HM, Nguyen N, Leitch S, Wang Y, Muend S, Kenny PA, Sukumar S, Roberts-Thomson SJ, Monteith GR, Rao R (2010) Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 143:84–98PubMedPubMedCentralGoogle Scholar
  43. Galan C, Dionisio N, Smani T, Salido GM, Rosado JA (2011) The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochem Pharmacol 82:400–410PubMedGoogle Scholar
  44. Garside VC, Kowalik AS, Johnson CL, DiRenzo D, Konieczny SF, Pin CL (2010) MIST1 regulates the pancreatic acinar cell expression of Atp2c2, the gene encoding secretory pathway calcium ATPase 2. Exp Cell Res 316:2859–2870PubMedPubMedCentralGoogle Scholar
  45. Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic β-cell function. Endocr Rev 22:565–604PubMedGoogle Scholar
  46. Gross RW, Ramanadham S, Kruszka KK, Han X, Turk J (1993) Rat and human pancreatic islet cells contain a calcium ion independent phospholipase A2 activity selective for hydrolysis of arachidonate which is stimulated by adenosine triphosphate and is specifically localized to islet β-cells. Biochemistry 32:327–336PubMedGoogle Scholar
  47. Grubisha O, Rafty LA, Takanishi CL, Xu X, Tong L, Perraud AL, Scharenberg AM, Denu JM (2006) Metabolite of SIR2 reaction modulates TRPM2 ion channel. J Biol Chem 281:14057–14065PubMedGoogle Scholar
  48. Gupta RK, Vatamaniuk MZ, Lee CS, Flaschen RC, Fulmer JT, Matschinsky FM, Duncan SA, Kaestner KH (2005) The MODY1 gene HNF-4α regulates selected genes involved in insulin secretion. J Clin Invest 115:1006–1015PubMedPubMedCentralGoogle Scholar
  49. Gustafsson AJ, Ingelman-Sundberg H, Dzabic M, Awasum J, Nguyen KH, Ostenson CG, Pierro C, Tedeschi P, Woolcott O, Chiounan S, Lund PE, Larsson O, Islam MS (2005) Ryanodine receptor-operated activation of TRP-like channels can trigger critical Ca2+ signaling events in pancreatic β-cells. FASEB J 19:301–303PubMedGoogle Scholar
  50. Gwozdz T, Dutko-Gwozdz J, Zarayskiy V, Peter K, Bolotina VM (2008) How strict is the correlation between STIM1 and Orai1 expression, puncta formation, and I-CRAC activation? Am J Physiol Cell Physiol 295:C1133–C1140PubMedPubMedCentralGoogle Scholar
  51. Hansen SK, Parrizas M, Jensen ML, Pruhova S, Ek J, Boj SF, Johansen A, Maestro MA, Rivera F, Eiberg H, Andel M, Lebl J, Pedersen O, Ferrer J, Hansen T (2002) Genetic evidence that HNF-1α-dependent transcriptional control of HNF-4a is essential for human pancreatic β cell function. J Clin Invest 110:827–833PubMedPubMedCentralGoogle Scholar
  52. Hisanaga E, Nagasawa M, Ueki K, Kulkarni RN, Mori M, Kojima I (2009) Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic β-cells. Diabetes 58:174–184PubMedPubMedCentralGoogle Scholar
  53. Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS, Jawhari H, Grigoriev I, van Rijssel FJ, Buey RM, Lawera A, Jelesarov I, Winkler FK, Wuthrich K, Akhmanova A, Steinmetz MO (2009) An EB1-binding motif acts as a microtubule tip localization signal. Cell 138:366–376PubMedGoogle Scholar
  54. How J, Zhang A, Phillips M, Reynaud A, Lu SY, Pan LX, Ho HT, Yau YH, Guskov A, Pervushin K, Shochat SG, Eshaghi S (2013) Comprehensive analysis and identification of the human STIM1 domains for structural and functional studies. PLoS One 8:e53979PubMedPubMedCentralGoogle Scholar
  55. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I-CRAC and TRPC1 channels. Nat Cell Biol 8:1003–1010PubMedGoogle Scholar
  56. Ishii M, Shimizu S, Hara Y, Hagiwara T, Miyazaki A, Mori Y, Kiuchi Y (2006) Intracellular-produced hydroxyl radical mediates H2O2-induced Ca2+ influx and cell death in rat β-cell line RIN-5F. Cell Calcium 39:487–494PubMedGoogle Scholar
  57. Islam MS (2011) TRP channels of islets. Adv Exp Med Biol 704:811–830PubMedGoogle Scholar
  58. Itagaki K, Kannan KB, Singh BB, Hauser CJ (2004) Cytoskeletal reorganization internalizes multiple transient receptor potential channels and blocks calcium entry into human neutrophils. J Immunol 172:601–607PubMedGoogle Scholar
  59. Jacobo SM, Guerra ML, Jarrard RE, Przybyla JA, Liu G, Watts VJ, Hockerman GH (2009) The intracellular II-III loops of Cav1.2 and Cav1.3 uncouple L-type voltage-gated Ca2+ channels from glucagon-like peptide-1 potentiation of insulin secretion in INS-1 cells via displacement from lipid rafts. J Pharmacol Exp Ther 330:283–293PubMedPubMedCentralGoogle Scholar
  60. Jacobson DA, Philipson LH (2007) TRP channels of the pancreatic β cell. Handb Exp Pharmacol 179:409–424PubMedGoogle Scholar
  61. Jacobson DA, Weber CR, Bao S, Turk J, Philipson LH (2007) Modulation of the pancreatic islet β-cell-delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate. J Biol Chem 282:7442–7449PubMedPubMedCentralGoogle Scholar
  62. Jacobson DA, Mendez F, Thompson M, Torres J, Cochet O, Philipson LH (2010) Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. J Physiol 588:3525–3537PubMedPubMedCentralGoogle Scholar
  63. Janssen SW, Hoenderop JG, Hermus AR, Sweep FC, Martens GJ, Bindels RJ (2002) Expression of the novel epithelial Ca2+ channel ECaC1 in rat pancreatic islets. J Histochem Cytochem 50:789–798PubMedGoogle Scholar
  64. Jardin I, Salido GM, Rosado JA (2008) Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1. Channels (Austin) 2:401–403Google Scholar
  65. Jardin I, Gomez LJ, Salido GM, Rosado JA (2009) Dynamic interaction of hTRPC6 with the Orai1-STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca2+ entry pathways. Biochem J 420:267–276PubMedGoogle Scholar
  66. Jardin I, Lopez JJ, Zbidi H, Bartegi A, Salido GM, Rosado JA (2011) Attenuated store-operated divalent cation entry and association between STIM1, Orai1, hTRPC1 and hTRPC6 in platelets from type 2 diabetic patients. Blood Cell Mol Dis 46:252–260Google Scholar
  67. Jha A, Ahuja M, Maleth J, Moreno CM, Yuan JP, Kim MS, Muallem S (2013) The STIM1 CTID domain determines access of SARAF to SOAR to regulate Orai1 channel function. J Cell Biol 202:71–79PubMedPubMedCentralGoogle Scholar
  68. Ji W, Xu P, Li Z, Lu J, Liu L, Zhan Y, Chen Y, Hille B, Xu T, Chen L (2008) Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci USA 105:13668–13673PubMedPubMedCentralGoogle Scholar
  69. Johnson JD, Ford EL, Bernal-Mizrachi E, Kusser KL, Luciani DS, Han Z, Tran H, Randall TD, Lund FE, Polonsky KS (2006) Suppressed insulin signaling and increased apoptosis in CD38-null islets. Diabetes 55:2737–2746PubMedGoogle Scholar
  70. Josefsen K, Sorensen LR, Buschard K, Birkenbach M (1999) Glucose induces early growth response gene (Egr-1) expression in pancreatic β cells. Diabetologia 42:195–203PubMedGoogle Scholar
  71. Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1:165–170PubMedGoogle Scholar
  72. Kar P, Bakowski D, Di Capite J, Nelson C, Parekh AB (2012) Different agonists recruit different stromal interaction molecule proteins to support cytoplasmic Ca2+ oscillations and gene expression. Proc Natl Acad Sci USA 109:6969–6974PubMedPubMedCentralGoogle Scholar
  73. Kerschbaum HH, Cahalan MD (1998) Monovalent permeability, rectification, and ionic block of store-operated calcium channels in Jurkat T lymphocytes. J Gen Physiol 111:521–537PubMedPubMedCentralGoogle Scholar
  74. Kim BJ, Park KH, Yim CY, Takasawa S, Okamoto H, Im MJ, Kim UH (2008a) Generation of nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose by glucagon-like peptide-1 evokes Ca2+ signal that is essential for insulin secretion in mouse pancreatic islets. Diabetes 57:868–878PubMedGoogle Scholar
  75. Kim MJ, Kang JH, Chang SY, Jang HJ, Ryu GR, Ko SH, Jeong IK, Kim MS, Jo YH (2008b) Exendin-4 induction of Egr-1 expression in INS-1 β-cells: interaction of SRF, not YY1, with SRE site of rat Egr-1 promoter. J Cell Biochem 104:2261–2271PubMedGoogle Scholar
  76. Kinard TA, Satin LS (1995) An ATP-sensitive Cl channel current that is activated by cell swelling, cAMP, and glyburide in insulin-secreting cells. Diabetes 44:1461–1466PubMedGoogle Scholar
  77. Kinard TA, Goforth PB, Tao Q, Abood ME, Teague J, Satin LS (2001) Chloride channels regulate HIT cell volume but cannot fully account for swelling-induced insulin secretion. Diabetes 50:992–1003PubMedGoogle Scholar
  78. Klappe K, Hummel I, Kok JW (2013) Separation of actin-dependent and actin-independent lipid rafts. Anal Biochem 438:133–135PubMedGoogle Scholar
  79. Kolisek M, Beck A, Fleig A, Penner R (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18:61–69PubMedGoogle Scholar
  80. Konno M, Shirakawa H, Miyake T, Sakimoto S, Nakagawa T, Kaneko S (2012) Calumin, a Ca2+-binding protein on the endoplasmic reticulum, alters the ion permeability of Ca2+ release-activated Ca2+ (CRAC) channels. Biochem Biophys Res Commun 417:784–789PubMedGoogle Scholar
  81. Korzeniowski MK, Manjarres IM, Varnai P, Balla T (2010) Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci Signal 3:ra82PubMedPubMedCentralGoogle Scholar
  82. Kulkarni RN, Roper MG, Dahlgren G, Shih DQ, Kauri LM, Peters JL, Stoffel M, Kennedy RT (2004) Islet secretory defect in insulin receptor substrate 1 null mice is linked with reduced calcium signaling and expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)-2b and -3. Diabetes 53:1517–1525PubMedGoogle Scholar
  83. Kwan HY, Shen B, Ma X, Kwok YC, Huang Y, Man YB, Yu S, Yao X (2009) TRPC1 associates with BKCa channel to form a signal complex in vascular smooth muscle cells. Circ Res 104:670–678PubMedGoogle Scholar
  84. Landa LR Jr, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO, Lohse MJ, Holz GG, Roe MW (2005) Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 β-cell line. J Biol Chem 280:31294–31302PubMedPubMedCentralGoogle Scholar
  85. Lang F, Gorlach A, Vallon V (2009) Targeting SGK1 in diabetes. Expert Opin Ther Targets 13:1303–1311PubMedPubMedCentralGoogle Scholar
  86. Lang F, Eylenstein A, Shumilina E (2012) Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium 52:347–354PubMedGoogle Scholar
  87. Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R (2009) TRPM2 functions as a lysosomal Ca2+-release channel in β cells. Sci Signal 2:ra23PubMedPubMedCentralGoogle Scholar
  88. Lee KP, Yuan JP, So I, Worley PF, Muallem S (2010) STIM1-dependent and STIM1-independent function of transient receptor potential canonical (TRPC) channels tunes their store-operated mode. J Biol Chem 285:38666–38673PubMedPubMedCentralGoogle Scholar
  89. Leech CA, Habener JF (1997) Insulinotropic glucagon-like peptide-1-mediated activation of non-selective cation currents in insulinoma cells is mimicked by maitotoxin. J Biol Chem 272:17987–17993PubMedGoogle Scholar
  90. Leech CA, Holz GG, Habener JF (1994) Voltage-independent calcium channels mediate slow oscillations of cytosolic calcium that are glucose dependent in pancreatic β-cells. Endocrinology 135:365–372PubMedPubMedCentralGoogle Scholar
  91. Leech CA, Kopp RF, Chepurny OG, Holz GG, Roe MW (2012) Molecular characterization of store-operated Ca2+ influx in pancreatic β cells: role of STIM1. Diabetes 61(S1):A31Google Scholar
  92. Lefkimmiatis K, Srikanthan M, Maiellaro I, Moyer MP, Curci S, Hofer AM (2009) Store-operated cyclic AMP signalling mediated by STIM1. Nat Cell Biol 11:433–442PubMedGoogle Scholar
  93. Li G, Rungger-Brandle E, Just I, Jonas JC, Aktories K, Wollheim CB (1994) Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets. Mol Biol Cell 5:1199–1213PubMedPubMedCentralGoogle Scholar
  94. Li Z, Liu L, Deng Y, Ji W, Du W, Xu P, Chen L, Xu T (2010) Graded activation of CRAC channel by binding of different numbers of STIM1 to Orai1 subunits. Cell Res 21:305–315PubMedPubMedCentralGoogle Scholar
  95. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci USA 104:4682–4687PubMedPubMedCentralGoogle Scholar
  96. Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L (2009) A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC: Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci USA 106:3202–3206PubMedPubMedCentralGoogle Scholar
  97. Liu S, Mauvais-Jarvis F (2010) Minireview: Estrogenic protection of β-cell failure in metabolic diseases. Endocrinology 151:859–864PubMedPubMedCentralGoogle Scholar
  98. Liu G, Dilmac N, Hilliard N, Hockerman GH (2003) Ca v 1.3 is preferentially coupled to glucose-stimulated insulin secretion in the pancreatic β-cell line INS-1. J Pharmacol Exp Ther 305:271–278PubMedGoogle Scholar
  99. Liu M, Large WA, Albert AP (2005a) Stimulation of β-adrenoceptors inhibits store-operated channel currents via a cAMP-dependent protein kinase mechanism in rabbit portal vein myocytes. J Physiol 562:395–406PubMedPubMedCentralGoogle Scholar
  100. Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS (2005b) Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280:21600–21606PubMedGoogle Scholar
  101. Lopez E, Salido GM, Rosado JA, Berna-Erro A (2012) Unraveling STIM2 function. J Physiol Biochem 68:619–633PubMedGoogle Scholar
  102. Lu M, Branstrom R, Berglund E, Hoog A, Bjorklund P, Westin G, Larsson C, Farnebo LO, Forsberg L (2010) Expression and association of TRPC subtypes with Orai1 and STIM1 in human parathyroid. J Mol Endocrinol 44:285–294PubMedGoogle Scholar
  103. Lussier MP, Cayouette S, Lepage PK, Bernier CL, Francoeur N, St-Hilaire M, Pinard M, Boulay G (2005) MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. J Biol Chem 280:19393–19400PubMedGoogle Scholar
  104. Luu L, Dai FF, Prentice KJ, Huang X, Hardy AB, Hansen JB, Liu Y, Joseph JW, Wheeler MB (2013) The loss of Sirt1 in mouse pancreatic β cells impairs insulin secretion by disrupting glucose sensing. Diabetologia 56:2010–2020PubMedGoogle Scholar
  105. Ma X, Cao J, Luo J, Nilius B, Huang Y, Ambudkar IS, Yao X (2010) Depletion of intracellular Ca2+ stores stimulates the translocation of vanilloid transient receptor potential 4-c1 heteromeric channels to the plasma membrane. Arterioscler Thromb Vasc Biol 30:2249–2255PubMedGoogle Scholar
  106. Ma MT, Yeo JF, Farooqui AA, Ong WY (2011) Role of calcium independent phospholipase A2 in maintaining mitochondrial membrane potential and preventing excessive exocytosis in PC12 cells. Neurochem Res 36:347–354PubMedGoogle Scholar
  107. Mallone R, Perin PC (2006) Anti-CD38 autoantibodies in type? Diabetes. Diabetes Metab Res Rev 22:284–294PubMedPubMedCentralGoogle Scholar
  108. Marchetti P, Antonelli A, Lupi R, Marselli L, Fallahi P, Nesti C, Baj G, Ferrannini E (2002) Prolonged in vitro exposure to autoantibodies against CD38 impairs the function and survival of human pancreatic islets. Diabetes 51(Suppl 3):S474–S477PubMedGoogle Scholar
  109. Marigo V, Courville K, Hsu WH, Feng JM, Cheng H (2009) TRPM4 impacts on Ca2+ signals during agonist-induced insulin secretion in pancreatic β-cells. Mol Cell Endocrinol 299:194–203PubMedGoogle Scholar
  110. Martin AC, Willoughby D, Ciruela A, Ayling LJ, Pagano M, Wachten S, Tengholm A, Cooper DM (2009) Capacitative Ca2+ entry via Orai1 and stromal interacting molecule 1 (STIM1) regulates adenylyl cyclase type 8. Mol Pharmacol 75:830–842PubMedPubMedCentralGoogle Scholar
  111. McNally BA, Yamashita M, Engh A, Prakriya M (2009) Structural determinants of ion permeation in CRAC channels. Proc Natl Acad Sci USA 106:22516–22521PubMedPubMedCentralGoogle Scholar
  112. Metz SA (1988) Exogenous arachidonic acid promotes insulin release from intact or permeabilized rat islets by dual mechanisms. Putative activation of Ca2+ mobilization and protein kinase C. Diabetes 37:1453–1469PubMedGoogle Scholar
  113. Miao Y, Miner C, Zhang L, Hanson PI, Dani A, Vig M (2013) An essential and NSF independent role for a-SNAP in store-operated calcium entry. Elife 2:e00802PubMedPubMedCentralGoogle Scholar
  114. Mignen O, Thompson JL, Shuttleworth TJ (2001) Reciprocal regulation of capacitative and arachidonate-regulated noncapacitative Ca2+ entry pathways. J Biol Chem 276:35676–35683PubMedGoogle Scholar
  115. Mignen O, Thompson JL, Shuttleworth TJ (2007) STIM1 regulates Ca2+ entry via arachidonate-regulated Ca2+-selective (ARC) channels without store depletion or translocation to the plasma membrane. J Physiol 579:703–715PubMedPubMedCentralGoogle Scholar
  116. Mignen O, Thompson JL, Shuttleworth TJ (2009) The molecular architecture of the arachidonate-regulated Ca2+-selective ARC channel is a pentameric assembly of Orai1 and Orai3 subunits. J Physiol 587:4181–4197PubMedPubMedCentralGoogle Scholar
  117. Motiani RK, Abdullaev IF, Trebak M (2010) A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J Biol Chem 285:19173–19183PubMedPubMedCentralGoogle Scholar
  118. Motiani RK, Zhang X, Harmon KE, Keller RS, Matrougui K, Bennett JA, Trebak M (2013) Orai3 is an estrogen receptor α-regulated Ca2+ channel that promotes tumorigenesis. FASEB J 27:63–75PubMedPubMedCentralGoogle Scholar
  119. Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S (2005) Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2:105–117PubMedGoogle Scholar
  120. Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022PubMedGoogle Scholar
  121. Mullins FM, Park CY, Dolmetsch RE, Lewis RS (2009) STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proc Natl Acad Sci USA 106:15495–15500PubMedPubMedCentralGoogle Scholar
  122. Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93:829–838PubMedGoogle Scholar
  123. Nadal A, Alonso-Magdalena P, Soriano S, Ripoll C, Fuentes E, Quesada I, Ropero AB (2011) Role of estrogen receptors α, β and GPER1/GPR30 in pancreatic β-cells. Front Biosci 16:251–260Google Scholar
  124. Nagamatsu S, Ohara-Imaizumi M, Nakamichi Y, Kikuta T, Nishiwaki C (2006) Imaging docking and fusion of insulin granules induced by antidiabetes agents: sulfonylurea and glinide drugs preferentially mediate the fusion of newcomer, but not previously docked, insulin granules. Diabetes 55:2819–2825PubMedGoogle Scholar
  125. Nevins AK, Thurmond DC (2003) Glucose regulates the cortical actin network through modulation of Cdc42 cycling to stimulate insulin secretion. Am J Physiol Cell Physiol 285:C698–C710PubMedGoogle Scholar
  126. Nichols CG, Lopatin AN (1997) Inward rectifier potassium channels. Annu Rev Physiol 59:171–191PubMedGoogle Scholar
  127. Niehof M, Borlak J (2008) HNF4α and the Ca-channel TRPC1 are novel disease candidate genes in diabetic nephropathy. Diabetes 57:1069–1077PubMedGoogle Scholar
  128. Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280:6423–6433PubMedGoogle Scholar
  129. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478PubMedPubMedCentralGoogle Scholar
  130. Nitert MD, Nagorny CL, Wendt A, Eliasson L, Mulder H (2008) CaV1.2 rather than CaV1.3 is coupled to glucose-stimulated insulin secretion in INS-1 832/13 cells. J Mol Endocrinol 41:1–11PubMedGoogle Scholar
  131. Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9:432–443PubMedPubMedCentralGoogle Scholar
  132. Orci L, Gabbay KH, Malaisse WJ (1972) Pancreatic β-cell web: its possible role in insulin secretion. Science 175:1128–1130PubMedGoogle Scholar
  133. Osterhout JL, Shuttleworth TJ (2000) A Ca2+-independent activation of a type IV cytosolic phospholipase A(2) underlies the receptor stimulation of arachidonic acid-dependent noncapacitative calcium entry. J Biol Chem 275:8248–8254PubMedGoogle Scholar
  134. Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E (2012) SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 149:425–438PubMedGoogle Scholar
  135. Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890PubMedPubMedCentralGoogle Scholar
  136. Park SH, Ryu SY, Yu WJ, Han YE, Ji YS, Oh K, Sohn JW, Lim A, Jeon JP, Lee H, Lee KH, Lee SH, Berggren PO, Jeon JH, Ho WK (2013) Leptin promotes KATP channel trafficking by AMPK signaling in pancreatic β-cells. Proc Natl Acad Sci USA 110:12673–12678PubMedPubMedCentralGoogle Scholar
  137. Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456:116–120PubMedPubMedCentralGoogle Scholar
  138. Perraud AL, Schmitz C, Scharenberg AM (2003) TRPM2 Ca2+ permeable cation channels: from gene to biological function. Cell Calcium 33:519–531PubMedGoogle Scholar
  139. Pulver RA, Rose-Curtis P, Roe MW, Wellman GC, Lounsbury KM (2004) Store-operated Ca2+ entry activates the CREB transcription factor in vascular smooth muscle. Circ Res 94:1351–1358PubMedGoogle Scholar
  140. Qian F, Huang P, Ma L, Kuznetsov A, Tamarina N, Philipson LH (2002) TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 51(Suppl 1):S183–S189PubMedGoogle Scholar
  141. Rao JN, Rathor N, Zhuang R, Zou T, Liu L, Xiao L, Turner DJ, Wang JY (2012) Polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca2+ signaling by differentially modulating STIM1 and STIM2. Am J Physiol Cell Physiol 303:C308–C317PubMedPubMedCentralGoogle Scholar
  142. Reichhart N, Milenkovic VM, Halsband CA, Cordeiro S, Strauss O (2010) Effect of bestrophin-1 on L-type Ca2+ channel activity depends on the Ca2+ channel β-subunit. Exp Eye Res 91:630–639PubMedGoogle Scholar
  143. Ritchie MF, Yue C, Zhou Y, Houghton PJ, Soboloff J (2010) Wilms tumor suppressor 1 (WT1) and early growth response 1 (EGR1) are regulators of STIM1 expression. J Biol Chem 285:10591–10596PubMedPubMedCentralGoogle Scholar
  144. Roe MW, Philipson LH, Frangakis CJ, Kuznetsov A, Mertz RJ, Lancaster ME, Spencer B, Worley JF 3rd, Dukes ID (1994) Defective glucose-dependent endoplasmic reticulum Ca2+ sequestration in diabetic mouse islets of Langerhans. J Biol Chem 269:18279–18282PubMedGoogle Scholar
  145. Roe MW, Worley JF 3rd, Qian F, Tamarina N, Mittal AA, Dralyuk F, Blair NT, Mertz RJ, Philipson LH, Dukes ID (1998) Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenically derived β-cells. J Biol Chem 273:10402–10410PubMedGoogle Scholar
  146. Saitoh N, Oritani K, Saito K, Yokota T, Ichii M, Sudo T, Fujita N, Nakajima K, Okada M, Kanakura Y (2011) Identification of functional domains and novel binding partners of STIM proteins. J Cell Biochem 112:147–151Google Scholar
  147. Sakura H, Ashcroft FM (1997) Identification of four TRP1 gene variants murine pancreatic β-cells. Diabetologia 40:528–532PubMedGoogle Scholar
  148. Sala-Rabanal M, Wang S, Nichols CG (2012) On potential interactions between non-selective cation channel TRPM4 and sulfonylurea receptor SUR1. J Biol Chem 287:8746–8756PubMedPubMedCentralGoogle Scholar
  149. Schindl R, Frischauf I, Bergsmann J, Muik M, Derler I, Lackner B, Groschner K, Romanin C (2009) Plasticity in Ca2+ selectivity of Orai1/Orai3 heteromeric channel. Proc Natl Acad Sci USA 106:19623–19628PubMedPubMedCentralGoogle Scholar
  150. Schmid E, Bhandaru M, Nurbaeva MK, Yang W, Szteyn K, Russo A, Leibrock C, Tyan L, Pearce D, Shumilina E, Lang F (2012) SGK3 regulates Ca2+ entry and migration of dendritic cells. Cell Physiol Biochem 30:1423–1435PubMedGoogle Scholar
  151. Seino S, Chen L, Seino M, Blondel O, Takeda J, Johnson JH, Bell GI (1992) Cloning of the a1 subunit of a voltage-dependent calcium channel expressed in pancreatic β cells. Proc Natl Acad Sci USA 89:584–588PubMedPubMedCentralGoogle Scholar
  152. Shawl AI, Park KH, Kim UH (2009) Insulin receptor signaling for the proliferation of pancreatic β-cells: involvement of Ca2+ second messengers, IP3, NAADP and cADPR. Islets 1:216–223PubMedGoogle Scholar
  153. Shawl AI, Park KH, Kim BJ, Higashida C, Higashida H, Kim UH (2012) Involvement of actin filament in the generation of Ca2+ mobilizing messengers in glucose-induced Ca2+ signaling in pancreatic β-cells. Islets 4:145–151PubMedGoogle Scholar
  154. Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, Zhang C, Tamamoto A, Satoh T, Miyazaki J, Seino S (2007) Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci USA 104:19333–19338PubMedPubMedCentralGoogle Scholar
  155. Silva AM, Rosario LM, Santos RM (1994) Background Ca2+ influx mediated by a dihydropyridine- and voltage-insensitive channel in pancreatic β-cells. Modulation by Ni2+, diphenylamine-2-carboxylate, and glucose metabolism. J Biol Chem 269:17095–17103PubMedGoogle Scholar
  156. Simard JM, Kahle KT, Gerzanich V (2010) Molecular mechanisms of microvascular failure in central nervous system injury–synergistic roles of NKCC1 and SUR1/TRPM4. J Neurosurg 113:622–629PubMedPubMedCentralGoogle Scholar
  157. Singaravelu K, Nelson C, Bakowski D, Martins de Brito O, Ng SW, Di Capite J, Powell T, Scorrano L, Parekh AB (2011) Mitofusin 2 regulates STIM1 migration from the Ca2+ store to the plasma membrane in cells with depolarized mitochondria. J Biol Chem 286:12189–12201PubMedPubMedCentralGoogle Scholar
  158. Singh BB, Liu X, Tang J, Zhu MX, Ambudkar IS (2002) Calmodulin regulates Ca2+-dependent feedback inhibition of store-operated Ca2+ influx by interaction with a site in the C terminus of TRPC1. Mol Cell 9:739–750PubMedGoogle Scholar
  159. Smani T, Zakharov SI, Leno E, Csutora P, Trepakova ES, Bolotina VM (2003) Ca2+-independent phospholipase A2 is a novel determinant of store-operated Ca2+ entry. J Biol Chem 278:11909–11915PubMedGoogle Scholar
  160. Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM (2004) A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 6:113–120PubMedGoogle Scholar
  161. Soboloff J, Spassova MA, Hewavitharana T, He LP, Xu W, Johnstone LS, Dziadek MA, Gill DL (2006) STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ entry. Curr Biol 16:1465–1470PubMedGoogle Scholar
  162. Song H, Rohrs H, Tan M, Wohltmann M, Ladenson JH, Turk J (2010) Effects of endoplasmic reticulum stress on group VIA phospholipase A2 in β cells include tyrosine phosphorylation and increased association with calnexin. J Biol Chem 285:33843–33857PubMedPubMedCentralGoogle Scholar
  163. Sookoian S, Gemma C, Pirola CJ (2010) Influence of hepatocyte nuclear factor 4α (HNF4α) gene variants on the risk of type 2 diabetes: a meta-analysis in 49,577 individuals. Mol Genet Metab 99:80–89PubMedGoogle Scholar
  164. Sordi V, Lampasona V, Cainarca S, Bonifacio E (2005) No evidence of diabetes-specific CD38 (ADP ribosil cyclase/cyclic ADP-ribose hydrolase) autoantibodies by liquid-phase immunoprecipitation. Diabet Med 22:1770–1773PubMedGoogle Scholar
  165. Srikanth S, Ribalet B, Gwack Y (2013) Regulation of CRAC channels by protein interactions and post-translational modification. Channels (Austin) 7:354–363Google Scholar
  166. Srivastava M, Eidelman O, Leighton X, Glasman M, Goping G, Pollard HB (2002) Anx7 is required for nutritional control of gene expression in mouse pancreatic islets of Langerhans. Mol Med 8:781–797PubMedPubMedCentralGoogle Scholar
  167. Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135:110–122PubMedGoogle Scholar
  168. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702PubMedGoogle Scholar
  169. Sundivakkam PC, Kwiatek AM, Sharma TT, Minshall RD, Malik AB, Tiruppathi C (2009) Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. Am J Physiol Cell Physiol 296:C403–C413PubMedPubMedCentralGoogle Scholar
  170. Takasawa S, Ishida A, Nata K, Nakagawa K, Noguchi N, Tohgo A, Kato I, Yonekura H, Fujisawa H, Okamoto H (1995) Requirement of calmodulin-dependent protein kinase II in cyclic ADP-ribose-mediated intracellular Ca2+ mobilization. J Biol Chem 270:30257–30259PubMedGoogle Scholar
  171. Tamarina NA, Kuznetsov A, Philipson LH (2008) Reversible translocation of EYFP-tagged STIM1 is coupled to calcium influx in insulin secreting β-cells. Cell Calcium 44:533–544PubMedGoogle Scholar
  172. Tang MM, Zhu QE, Fan WZ, Zhang SL, Li DZ, Liu LZ, Chen M, Zhang M, Zhou J, Wei CJ (2011) Intra-arterial targeted islet-specific expression of Sirt1 protects β cells from streptozotocin-induced apoptosis in mice. Mol Ther 19:60–66PubMedPubMedCentralGoogle Scholar
  173. Tersey SA, Colvin SC, Maier B, Mirmira RG (2014) Protective effects of polyamine depletion in mouse models of type 1 diabetes: implications for therapy. Amino Acids 46:633–642Google Scholar
  174. Thakur P, Dadsetan S, Fomina AF (2012) Bidirectional coupling between ryanodine receptors and Ca2+ release-activated Ca2+ (CRAC) channel machinery sustains store-operated Ca2+ entry in human T lymphocytes. J Biol Chem 287:37233–37244PubMedPubMedCentralGoogle Scholar
  175. Thompson JL, Mignen O, Shuttleworth TJ (2010) The N-terminal domain of Orai3 determines selectivity for activation of the store-independent ARC channel by arachidonic acid. Channels (Austin) 4:398–410Google Scholar
  176. Tian G, Tepikin AV, Tengholm A, Gylfe E (2012) cAMP induces stromal interaction molecule 1 (STIM1) puncta but neither Orai1 protein clustering nor store-operated Ca2+ entry (SOCE) in islet cells. J Biol Chem 287:9862–9872PubMedPubMedCentralGoogle Scholar
  177. Timmers S, Hesselink MK, Schrauwen P (2013) Therapeutic potential of resveratrol in obesity and type 2 diabetes: new avenues for health benefits? Ann N Y Acad Sci 1290:83–89PubMedGoogle Scholar
  178. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–1815PubMedPubMedCentralGoogle Scholar
  179. Tong Q, Zhang W, Conrad K, Mostoller K, Cheung JY, Peterson BZ, Miller BA (2006) Regulation of the transient receptor potential channel TRPM2 by the Ca2+ sensor calmodulin. J Biol Chem 281:9076–9085PubMedGoogle Scholar
  180. Turk J, Wolf BA, Lefkowith JB, Stump WT, McDaniel ML (1986) Glucose-induced phospholipid hydrolysis in isolated pancreatic islets: quantitative effects on the phospholipid content of arachidonate and other fatty acids. Biochim Biophys Acta 879:399–409PubMedGoogle Scholar
  181. Uchida K, Dezaki K, Damdindorj B, Inada H, Shiuchi T, Mori Y, Yada T, Minokoshi Y, Tominaga M (2010) Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60:119–126PubMedPubMedCentralGoogle Scholar
  182. Uenishi E, Shibasaki T, Takahashi H, Seki C, Hamaguchi H, Yasuda T, Tatebe M, Oiso Y, Takenawa T, Seino S (2013) Actin dynamics regulated by the balance of neuronal wiskott-aldrich syndrome protein (N-WASP) and cofilin activities determines the biphasic response of glucose-induced insulin secretion. J Biol Chem 288:25851–25864PubMedPubMedCentralGoogle Scholar
  183. Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P (2011) Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E β-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem 286:6049–6060PubMedPubMedCentralGoogle Scholar
  184. Wang Z, Oh E, Thurmond DC (2007) Glucose-stimulated Cdc42 signaling is essential for the second phase of insulin secretion. J Biol Chem 282:9536–9546PubMedPubMedCentralGoogle Scholar
  185. Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL (2010) The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 330:105–109PubMedPubMedCentralGoogle Scholar
  186. Woodard GE, Salido GM, Rosado JA (2008) Enhanced exocytotic-like insertion of Orai1 into the plasma membrane upon intracellular Ca2+ store depletion. Am J Physiol Cell Physiol 294:C1323–C1331PubMedGoogle Scholar
  187. Woodard GE, Lopez JJ, Jardin I, Salido GM, Rosado JA (2010) TRPC3 regulates agonist-stimulated Ca2+ mobilization by mediating the interaction between type I inositol 1,4,5-trisphosphate receptor, RACK1, and Orai1. J Biol Chem 285:8045–8053PubMedPubMedCentralGoogle Scholar
  188. Woolcott OO, Gustafsson AJ, Dzabic M, Pierro C, Tedeschi P, Sandgren J, Bari MR, Nguyen KH, Bianchi M, Rakonjac M, Radmark O, Ostenson CG, Islam MS (2006) Arachidonic acid is a physiological activator of the ryanodine receptor in pancreatic β-cells. Cell Calcium 39:529–537PubMedGoogle Scholar
  189. Worley JF 3rd, McIntyre MS, Spencer B, Dukes ID (1994a) Depletion of intracellular Ca2+ stores activates a maitotoxin-sensitive nonselective cationic current in β-cells. J Biol Chem 269:32055–32058PubMedGoogle Scholar
  190. Worley JF 3rd, McIntyre MS, Spencer B, Mertz RJ, Roe MW, Dukes ID (1994b) Endoplasmic reticulum calcium store regulates membrane potential in mouse islet β-cells. J Biol Chem 269:14359–14362PubMedGoogle Scholar
  191. Wuttke A, Idevall-Hagren O, Tengholm A (2013) P2Y(1) receptor-dependent diacylglycerol signaling microdomains in β cells promote insulin secretion. FASEB J 27:1610–1620PubMedGoogle Scholar
  192. Xie L, Zhu D, Gaisano HY (2012) Role of mammalian homologue of Caenorhabditis elegans unc-13-1 (Munc13-1) in the recruitment of newcomer insulin granules in both first and second phases of glucose-stimulated insulin secretion in mouse islets. Diabetologia 55:2693–2702PubMedGoogle Scholar
  193. Yamasaki M, Masgrau R, Morgan AJ, Churchill GC, Patel S, Ashcroft SJ, Galione A (2004) Organelle selection determines agonist-specific Ca2+ signals in pancreatic acinar and β cells. J Biol Chem 279:7234–7240PubMedGoogle Scholar
  194. Yao LJ, McCormick JA, Wang J, Yang KY, Kidwai A, Colussi GL, Boini KM, Birnbaum MJ, Lang F, German MS, Pearce D (2011) Novel role for SGK3 in glucose homeostasis revealed in SGK3/Akt2 double-null mice. Mol Endocrinol 25:2106–2118PubMedPubMedCentralGoogle Scholar
  195. Yeung-Yam-Wah V, Lee AK, Tse FW, Tse A (2010) Arachidonic acid stimulates extracellular Ca2+ entry in rat pancreatic β cells via activation of the noncapacitative arachidonate-regulated Ca2+ (ARC) channels. Cell Calcium 47:77–83PubMedGoogle Scholar
  196. Yu K, Xiao Q, Cui G, Lee A, Hartzell HC (2008) The best disease-linked Cl- channel hBest1 regulates CaV 1 (L-type) Ca2+ channels via src-homology-binding domains. J Neurosci 28:5660–5670PubMedPubMedCentralGoogle Scholar
  197. Yu F, Sun L, Machaca K (2010) Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis. J Cell Biol 191:523–535PubMedPubMedCentralGoogle Scholar
  198. Yu F, Sun L, Hubrack S, Selvaraj S, Machaca K (2013a) Intramolecular shielding maintains the ER Ca2+ sensor STIM1 in an inactive conformation. J Cell Sci 126:2401–2410PubMedGoogle Scholar
  199. Yu J, Zhang H, Zhang M, Deng Y, Wang H, Lu J, Xu T, Xu P (2013b) An aromatic amino acid in the CC1 domain plays a crucial role in the auto-inhibitory mechanism of STIM1. Biochem J 454:401–409PubMedGoogle Scholar
  200. Yuan JP, Kim MS, Zeng W, Shin DM, Huang G, Worley PF, Muallem S (2009a) TRPC channels as STIM1-regulated SOCs. Channels (Austin) 3:221–225Google Scholar
  201. Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009b) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343PubMedPubMedCentralGoogle Scholar
  202. Zarayskiy V, Monje F, Peter K, Csutora P, Khodorov BI, Bolotina VM (2007) Store-operated Orai1 and IP3 receptor-operated TRPC1 channel. Channels (Austin) 1:246–252Google Scholar
  203. Zbidi H, Lopez JJ, Amor NB, Bartegi A, Salido GM, Rosado JA (2009) Enhanced expression of STIM1/Orai1 and TRPC3 in platelets from patients with type 2 diabetes mellitus. Blood Cells Mol Dis 43:211–213PubMedGoogle Scholar
  204. Zbidi H, Jardin I, Woodard GE, Lopez JJ, Berna A, Salido GM, Rosado JA (2011) STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets. J Biol Chem 286:12257–12270PubMedPubMedCentralGoogle Scholar
  205. Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32:439–448PubMedPubMedCentralGoogle Scholar
  206. Zeng B, Chen GL, Xu SZ (2012) Store-independent pathways for cytosolic STIM1 clustering in the regulation of store-operated Ca2+ influx. Biochem Pharmacol 84:1024–1035PubMedGoogle Scholar
  207. Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, Miller BA (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278:16222–16229PubMedGoogle Scholar
  208. Zhang Z, Okawa H, Wang Y, Liman ER (2005) Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280:39185–39192PubMedGoogle Scholar
  209. Zhou Y, Ramachandran S, Oh-Hora M, Rao A, Hogan PG (2010) Pore architecture of the ORAI1 store-operated calcium channel. Proc Natl Acad Sci USA 107:4896–4901PubMedPubMedCentralGoogle Scholar
  210. Zweifach A, Lewis RS (1996) Calcium-dependent potentiation of store-operated calcium channels in T lymphocytes. J Gen Physiol 107:597–610PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Colin A. Leech
    • 1
  • Richard F. Kopp
    • 1
  • Louis H. Philipson
    • 2
  • Michael W. Roe
    • 1
  1. 1.Department of MedicineState University of New York Upstate Medical UniversitySyracuseUSA
  2. 2.Department of MedicineUniversity of ChicagoChicagoUSA

Personalised recommendations