Skip to main content

(Dys)Regulation of Insulin Secretion by Macronutrients

  • Reference work entry
  • First Online:

Abstract

Pancreatic β-cells are often referred to as “fuel sensors” as they continually monitor and respond to dietary nutrients, under the modulation of additional neurohormonal signals, in order to secrete insulin to best meet the needs of the organism. β-Cell nutrient sensing requires metabolic activation, resulting in production of stimulus-secretion coupling signals that promote insulin biosynthesis and release. The primary stimulus for insulin secretion is glucose, and islet β-cells are particularly responsive to this important nutrient secretagogue. It is important to consider individual effects of different classes of nutrient or other physiological or pharmacological agents on metabolism and insulin secretion. However, given that β-cells are continually exposed to a complex milieu of nutrients and other circulating factors, it is important to also acknowledge and examine the interplay between glucose metabolism and that of the two other primary nutrient classes, the amino acids and fatty acids. It is the mixed nutrient sensing and outputs of glucose, amino and fatty acid metabolism that generate the metabolic coupling factors (MCFs) involved in signaling for insulin exocytosis. Primary MCFs in the β-cell include ATP, NADPH, glutamate, long chain acyl-CoA and diacylglycerol and are discussed in detail in this article.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACC:

Acetyl-CoA carboxylase

CPT-1:

Carnitine Palmitoyl Transferase 1

DAG:

Diacylglycerol

FFA:

Free fatty acid

GIP:

Glucose-dependent insulinotropic polypeptide

GLP-1:

Glucagon-like peptide-1

Gly3P:

Glycerol-3-phosphate

GSIS:

Glucose-stimulated insulin secretion

LC-acyl:

CoA long-chain acyl-CoA

MCF:

Metabolic coupling factors

PI3K:

Phosphatidylinositide-3-kinases

PKA:

Protein kinase A

PKC:

Protein kinase C

PLC:

Phospholipase C

References

  • Andrali SS, Sampley ML, Vanderford NL, Ozcan S (2008) Glucose regulation of insulin gene expression in pancreatic β-cells. Biochem J 415:1–10

    PubMed  CAS  Google Scholar 

  • Bender K, Newsholme P, Brennan L, Maechler P (2006) The importance of redox shuttles to pancreatic β-cell energy metabolism and function. Biochem Soc Trans 34:811–814

    PubMed  CAS  Google Scholar 

  • Bender K, Maechler P, McClenaghan NH, Flatt PR, Newsholme P (2009) Overexpression of the malate-aspartate NADH shuttle member Aralar1 in the clonal β-cell line BRIN-BD11 enhances amino-acid-stimulated insulin secretion and cell metabolism. Clin Sci (Lond) 117:321–330

    CAS  Google Scholar 

  • Bensellam M, Van Lommel L, Overbergh L, Schuit FC, Jonas JC (2009) Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low-, intermediate- and high-glucose concentrations. Diabetologia 52:463–476

    PubMed  CAS  Google Scholar 

  • Bertrand G, Ishiyama N, Nenquin M, Ravier MA, Henquin JC (2002) The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J Biol Chem 277:32883–32891

    PubMed  CAS  Google Scholar 

  • Blau N, Duran M, Blaskovics M, Gibson K (2003) Amino acid analysis. Physician’s guide to the laboratory diagnosis of metabolic diseases, 2nd edn. Springer, New York, pp 11–26

    Google Scholar 

  • Brennan L, Shine A, Hewage C, Malthouse JP, Brindle KM, McClenaghan N, Flatt PR, Newsholme P (2002) A nuclear magnetic resonance-based demonstration of substantial oxidative l-alanine metabolism and l-alanine-enhanced glucose metabolism in a clonal pancreatic β-cell line: metabolism of l-alanine is important to the regulation of insulin secretion. Diabetes 51:1714–1721

    PubMed  CAS  Google Scholar 

  • Brennan L, Corless M, Hewage C, Malthouse JP, McClenaghan NH, Flatt PR, Newsholme P (2003)13C NMR analysis reveals a link between l-glutamine metabolism, d-glucose metabolism and gamma-glutamyl cycle activity in a clonal pancreatic β-cell line. Diabetologia 46:1512–1521

    PubMed  CAS  Google Scholar 

  • Briaud I, Lingohr MK, Dickson LM, Wrede CE, Rhodes CJ (2003) Differential activation mechanisms of Erk-1/2 and p70(S6K) by glucose in pancreatic β-cells. Diabetes 52:974–983

    PubMed  CAS  Google Scholar 

  • Broca C, Brennan L, Petit P, Newsholme P, Maechler P (2003) Mitochondria-derived glutamate at the interplay between branched-chain amino acid and glucose-induced insulin secretion. FEBS Lett 545:167–172

    PubMed  CAS  Google Scholar 

  • Carobbio S, Frigerio F, Rubi B, Vetterli L, Bloksgaard M, Gjinovci A, Pournourmohammadi S, Herrera PL, Reith W, Mandrup S, Maechler P (2009) Deletion of glutamate dehydrogenase in β cells abolishes part of the insulin secretory response not required for glucose homeostasis. J Biol Chem 284:921–929

    PubMed  CAS  Google Scholar 

  • Carpentier A, Mittelman SD, Bergman RN, Giacca A, Lewis GF (2000) Prolonged elevation of plasma free fatty acids impairs pancreatic β-cell function in obese non-diabetic humans but not in individuals with type 2 diabetes. Diabetes 49:399–408

    PubMed  CAS  Google Scholar 

  • Charles S, Henquin JC (1983) Distinct effects of various amino acids on 45Ca2+ fluxes in rat pancreatic islets. Biochem J 214:899–907

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic β-cells. Nature 311:271–273

    PubMed  CAS  Google Scholar 

  • Corkey BE, Glennon MC, Chen KS, Deeney JT, Matschinsky FM, Prentki M (1989) A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic β-cells. J Biol Chem 264:21608–21612

    PubMed  CAS  Google Scholar 

  • Corless M, Kiely A, McClenaghan NH, Flatt PR, Newsholme P (2006) Glutamine regulates expression of key transcription factor, signal transduction, metabolic gene, and protein expression in a clonal pancreatic β-cell line. J Endocrinol 190:719–727

    PubMed  CAS  Google Scholar 

  • Cunningham GA, McClenaghan NH, Flatt PR, Newsholme P (2005) l-Alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic β-cell line and protects from pro-inflammatory cytokine-induced apoptosis. Clin Sci (Lond) 109:447–455

    CAS  Google Scholar 

  • Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC, Corless M, Newsholme P (2005) Molecular mechanisms of glutamine action. J Cell Physiol 204:392–401

    PubMed  CAS  Google Scholar 

  • Danielsson A, Hellman B, Idahl LA (1970) Levels of α-ketoglutarate and glutamate in stimulated pancreatic β-cells. Horm Metab Res 2:28–31

    PubMed  CAS  Google Scholar 

  • Deeney JT, Gromada J, Hoy M, Olsen HL, Rhodes CJ, Prentki M, Berggren PO, Corkey BE (2000) Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI β-cells). J Biol Chem 275:9363–9368

    PubMed  CAS  Google Scholar 

  • del Arco A, Satrustegui J (1998) Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem 273:23327–23334

    PubMed  Google Scholar 

  • Dixon G, Nolan J, McClenaghan N, Flatt PR, Newsholme P (2003) A comparative study of amino acid consumption by rat islet cells and the clonal β-cell line BRIN-BD11 – the functional significance of l-alanine. J Endocrinol 179:447–454

    PubMed  CAS  Google Scholar 

  • Dixon G, Nolan J, McClenaghan NH, Flatt PR, Newsholme P (2004) Arachidonic acid, palmitic acid and glucose are important for the modulation of clonal pancreatic β-cell insulin secretion, growth and functional integrity. Clin Sci (Lond) 106:191–199

    CAS  Google Scholar 

  • Dukes ID, McIntyre MS, Mertz RJ, Philipson LH, Roe MW, Spencer B, Worley JF 3rd (1994) Dependence on NADH produced during glycolysis for β-cell glucose signaling. J Biol Chem 269:10979–10982

    PubMed  CAS  Google Scholar 

  • Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T (1999) Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 283:981–985

    PubMed  CAS  Google Scholar 

  • Fajans SS, Floyd JC Jr, Knopf RF, Conn FW (1967) Effect of amino acids and proteins on insulin secretion in man. Recent Prog Horm Res 23:617–662

    PubMed  CAS  Google Scholar 

  • Gammelsaeter R, Coppola T, Marcaggi P, Storm-Mathisen J, Chaudhry FA, Attwell D, Regazzi R, Gundersen V (2011) A role for glutamate transporters in the regulation of insulin secretion. PLoS One 6:e22960

    PubMed  CAS  PubMed Central  Google Scholar 

  • Green BD, Flatt PR (2007) Incretin hormone mimetics and analogues in diabetes therapeutics. Best Pract Res Clin Endocrinol Metab 21:497–516

    PubMed  CAS  Google Scholar 

  • Guo-Parke H, McCluskey JT, Kelly C, Hamid M, McClenaghan NH, Flatt PR (2012) Configuration of electrofusion-derived human insulin-secreting cell line as pseudoislets enhances functionality and therapeutic utility. J Endocrinol 214:257–265

    PubMed  Google Scholar 

  • Haber EP, Procopio J, Carvalho CR, Carpinelli AR, Newsholme P, Curi R (2006) New insights into fatty acid modulation of pancreatic β-cell function. Int Rev Cytol 248:1–41

    PubMed  CAS  Google Scholar 

  • Hagman DK, Hays LB, Parazzoli SD, Poitout V (2005) Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem 280:32413–32418

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hamilton JA, Kamp F (1999) How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48:2255–2269

    PubMed  CAS  Google Scholar 

  • Han J, Liu YQ (2010) Reduction of islet pyruvate carboxylase activity might be related to the development of type 2 diabetes mellitus in Agouti-K mice. J Endocrinol 204:143–152

    PubMed  CAS  PubMed Central  Google Scholar 

  • Heissig H, Urban KA, Hastedt K, Zunkler BJ, Panten U (2005) Mechanism of the insulin-releasing action of α-ketoisocaproate and related α-keto acid anions. Mol Pharmacol 68:1097–1105

    PubMed  CAS  Google Scholar 

  • Hoy M, Maechler P, Efanov AM, Wollheim CB, Berggren PO, Gromada J (2002) Increase in cellular glutamate levels stimulates exocytosis in pancreatic β-cells. FEBS Lett 531:199–203

    PubMed  CAS  Google Scholar 

  • Hsu BY, Kelly A, Thornton PS, Greenberg CR, Dilling LA, Stanley CA (2001) Protein-sensitive and fasting hypoglycaemia in children with the hyperinsulinism/hyperammonemia syndrome. J Pediatr 138:383–389

    PubMed  CAS  Google Scholar 

  • Itoh Y, Hinuma S (2005) GPR40, a free fatty acid receptor on pancreatic β cells, regulates insulin secretion. Hepatol Res 33:171–173

    PubMed  CAS  Google Scholar 

  • Jensen MV, Joseph JW, Ilkayeva O, Burgess S, Lu D, Ronnebaum SM, Odegaard M, Becker TC, Sherry AD, Newgard CB (2006) Compensatory responses to pyruvate carboxylase suppression in islet β-cells. Preservation of glucose-stimulated insulin secretion. J Biol Chem 281:22342–22351

    PubMed  CAS  Google Scholar 

  • Jensen MV, Joseph JW, Ronnebaum SM, Burgess SC, Sherry AD, Newgard CB (2008) Metabolic cycling in control of glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 295:E1287–E1297

    PubMed  CAS  PubMed Central  Google Scholar 

  • Joseph JW, Odegaard ML, Ronnebaum SM, Burgess SC, Muehlbauer J, Sherry AD, Newgard CB (2007) Normal flux through ATP-citrate lyase or fatty acid synthase is not required for glucose-stimulated insulin secretion. J Biol Chem 282:31592–31600

    PubMed  CAS  Google Scholar 

  • Keane D, Newsholme P (2008) Saturated and unsaturated (including arachidonic acid) non-esterified fatty acid modulation of insulin secretion from pancreatic β-cells. Biochem Soc Trans 36:955–958

    PubMed  CAS  Google Scholar 

  • Keane DC, Takahashi HK, Dhayal S, Morgan NG (2011) Curi, Newsholme P. Arachidonic acid actions on functional integrity and attenuation of the negative effects of palmitic acid in a clonal pancreatic β-cell line. Clin Sci (Lond) 120:195–206

    CAS  Google Scholar 

  • Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes CJ, Poitout V (2003) Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem 278:30015–30021

    PubMed  CAS  Google Scholar 

  • Kiely A, McClenaghan NH, Flatt PR, Newsholme P (2007) Pro-inflammatory cytokines increase glucose, alanine and triacylglycerol utilization but inhibit insulin secretion in a clonal pancreatic β-cell line. J Endocrinol 195:113–123

    PubMed  CAS  Google Scholar 

  • Kruman I, Guo Q, Mattson MP (1998) Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res 51:293–308

    PubMed  CAS  Google Scholar 

  • Kwon G, Marshall CA, Pappan KL, Remedi MS, McDaniel ML (2004) Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes 53(Suppl 3):S225–S232

    PubMed  CAS  Google Scholar 

  • Li C, Buettger C, Kwagh J, Matter A, Daikhin Y, Nissim IB, Collins HW, Yudkoff M, Stanley CA, Matschinsky FM (2004) A signaling role of glutamine in insulin secretion. J Biol Chem 279:13393–13401

    PubMed  CAS  Google Scholar 

  • MacDonald MJ (1995a) Influence of glucose on pyruvate carboxylase expression in pancreatic islets. Arch Biochem Biophys 319:128–132

    PubMed  CAS  Google Scholar 

  • MacDonald MJ (1995b) Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. J Biol Chem 270:20051–20058

    PubMed  CAS  Google Scholar 

  • Macdonald MJ (2003) Export of metabolites from pancreatic islet mitochondria as a means to study anaplerosis in insulin secretion. Metabolism 52:993–998

    PubMed  CAS  Google Scholar 

  • MacDonald MJ, Fahien LA (2000) Glutamate is not a messenger in insulin secretion. J Biol Chem 275:34025–34027

    PubMed  CAS  Google Scholar 

  • MacDonald MJ, Tang J, Polonsky KS (1996) Low mitochondrial glycerol phosphate dehydrogenase and pyruvate carboxylase in pancreatic islets of Zucker diabetic fatty rats. Diabetes 45:1626–1630

    PubMed  CAS  Google Scholar 

  • Maechler P (2002) Mitochondria as the conductor of metabolic signals for insulin exocytosis in pancreatic β-cells. Cell Mol Life Sci 59:1803–1818

    PubMed  CAS  Google Scholar 

  • Maechler P, Wollheim CB (1999) Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402:685–689

    PubMed  CAS  Google Scholar 

  • Maechler P, Kennedy ED, Pozzan T, Wollheim CB (1997) Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic β-cells. Embo J 16:3833–3841

    PubMed  CAS  PubMed Central  Google Scholar 

  • Malaisse-Lagae F, Sener A, Garcia-Morales P, Valverde I, Malaisse WJ (1982) The stimulus-secretion coupling of amino acid-induced insulin release. Influence of a non-metabolized analogue of leucine on the metabolism of glutamine in pancreatic islets. J Biol Chem 257:3754–3758

    PubMed  CAS  Google Scholar 

  • Marmol P, Pardo B, Wiederkehr A, del Arco A, Wollheim CB, Satrustegui J (2009) Requirement for Aralar and its Ca2+-binding sites in Ca2+ signal transduction in mitochondria from INS-1 clonal β-cells. J Biol Chem 284:515–524

    PubMed  CAS  Google Scholar 

  • McClenaghan NH (2007) Physiological regulation of the pancreatic β-cell: functional insights for understanding and therapy of diabetes. Exp Physiol 92:481–496

    PubMed  CAS  Google Scholar 

  • McClenaghan NH, Flatt PR (2000) Metabolic and KATP channel-independent actions of keto acid initiators of insulin secretion. Pancreas 20:38–46

    PubMed  CAS  Google Scholar 

  • McClenaghan NH, Barnett CR, Ah-Sing E, Abdel-Wahab YH, O'Harte FP, Yoon TW, Swanston-Flatt SK, Flatt PR (1996a) Characterization of a novel glucose-responsive insulin-secreting cell line, BRIN-BD11, produced by electrofusion. Diabetes 45:1132–1140

    PubMed  CAS  Google Scholar 

  • McClenaghan NH, Barnett CR, O'Harte FP, Flatt PR (1996b) Mechanisms of amino acid-induced insulin secretion from the glucose-responsive BRIN-BD11 pancreatic β-cell line. J Endocrinol 151:349–357

    PubMed  CAS  Google Scholar 

  • McClenaghan NH, Scullion SM, Mion B, Hewage C, Malthouse JP, Flatt PR, Newsholme P, Brennan L (2009) Prolonged l-alanine exposure induces changes in metabolism, Ca2+ handling and desensitization of insulin secretion in clonal pancreatic β-cells. Clin Sci (Lond) 116:341–351

    CAS  Google Scholar 

  • McCluskey JT, Hamid M, Guo-Parke H, McClenaghan NH, Gomis R, Flatt PR (2011) Development and functional characterization of insulin-releasing human pancreatic β cell lines produced by electrofusion. J Biol Chem 286:21982–21992

    PubMed  CAS  PubMed Central  Google Scholar 

  • McDaniel ML, Marshall CA, Pappan KL, Kwon G (2002) Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic β-cells. Diabetes 51:2877–2885

    PubMed  CAS  Google Scholar 

  • Moffitt JH, Fielding BA, Evershed R, Berstan R, Currie JM, Clark A (2005) Adverse physiochemical properties of tripalmitin in β cells lead to morphological changes and lipotoxicity in vitro. Diabetologia 48:1819–1829

    PubMed  CAS  Google Scholar 

  • Morgan D, Oliveira-Emilio HR, Keane D, Hirata AE, Santos da Rocha M, Bordin S, Curi R, Newsholme P, Carpinelli AR (2007) Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal β cell line. Diabetologia 50:359–369

    PubMed  CAS  Google Scholar 

  • Morgan D, Rebelato E, Abdulkader F, Graciano MF, Oliveira-Emilio HR, Hirata AE, Rocha MS, Bordin S, Curi R, Carpinelli AR (2009) Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic β cells. Endocrinology 150(5):2197–2201

    PubMed  CAS  Google Scholar 

  • Nakazaki M, Kakei M, Koriyama N, Tanaka H (1995) Involvement of ATP-sensitive K+ channels in free radical-mediated inhibition of insulin secretion in rat pancreatic β-cells. Diabetes 44:878–883

    PubMed  CAS  Google Scholar 

  • Newsholme P, Krause M (2012) Nutritional regulation of insulin secretion: implications for diabetes. Clin Biochem Rev 33:35–47

    PubMed  PubMed Central  Google Scholar 

  • Newsholme P, Brennan L, Bender K (2006) Amino-acid metabolism, β cell function and diabetes. Diabetes 55(Suppl 2):S39–S47

    CAS  Google Scholar 

  • Newsholme P, Keane D, Welters HJ, Morgan NG (2007a) Life and death decisions of the pancreatic β-cell: the role of fatty acids. Clin Sci (Lond) 112:27–42

    CAS  Google Scholar 

  • Newsholme P, Bender K, Kiely A, Brennan L (2007b) Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans 35:1180–1186

    PubMed  CAS  Google Scholar 

  • Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R (2007c) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583:9–24

    PubMed  CAS  PubMed Central  Google Scholar 

  • Newsholme P, Rebelato E, Abdulkader F, Krause M, Carpinelli A, Curi R (2012) Reactive oxygen and nitrogen species generation, antioxidant defenses, and β-cell function: a critical role for amino acids. J Endocrinol 214:11–20

    PubMed  CAS  Google Scholar 

  • Nguyen CA, Akiba Y, Kaunitz JD (2012) Recent advances in gut nutrient chemosensing. Curr Med Chem 19:28–34

    PubMed  CAS  Google Scholar 

  • Nielsen K, Sorensen PG, Hynne F (1997) Chaos in glycolysis. J Theor Biol 186:303–306

    PubMed  CAS  Google Scholar 

  • Nielsen K, Sorensen PG, Hynne F, Busse HG (1998) Sustained oscillations in glycolysis: an experimental and theoretical study of chaotic and complex periodic behaviour and of quenching of simple oscillations. Biophys Chem 72:49–62

    PubMed  CAS  Google Scholar 

  • Nolan CJ, Prentki M (2008) The islet β-cell. Fuel responsive and vulnerable. Trends Endocrinol Metab 19:285–291

    PubMed  CAS  Google Scholar 

  • Oh DY, Lagakos WS (2011) The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity. Curr Opin Clin Nutr Metab Care 14:322–327

    PubMed  CAS  Google Scholar 

  • Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698

    PubMed  CAS  PubMed Central  Google Scholar 

  • Patterson S, Flatt PR, Brennan L, Newsholme P, McClenaghan NH (2006) Detrimental actions of metabolic syndrome risk factor, homocysteine, on pancreatic β-cell glucose metabolism and insulin secretion. J Endocrinol 189:301–310

    PubMed  CAS  Google Scholar 

  • Patterson S, Scullion SM, McCluskey JT, Flatt PR, McClenaghan NH (2007) Prolonged exposure to homocysteine results in diminished but reversible pancreatic β-cell responsiveness to insulinotropic agents. Diabetes Metab Res Rev 23:324–334

    PubMed  CAS  Google Scholar 

  • Persaud SJ, Muller D, Belin VD, Kitsou-Mylona I, Asare-Anane H, Papadimitriou A, Burns CJ, Huang GC, Amiel SA, Jones PM (2007) The role of arachidonic acid and its metabolites in insulin secretion from human islets of langerhans. Diabetes 56:197–203

    PubMed  CAS  Google Scholar 

  • Peterson G (2012) Current treatments and strategies for type 2 diabetes: can we do better with GLP-1 receptor agonists? Ann Med 44:338–349

    PubMed  CAS  Google Scholar 

  • Poitout V, Hagman D, Stein R, Artner I, Robertson RP, Harmon JS (2006) Regulation of the insulin gene by glucose and fatty acids. J Nutr 136:873–876

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prentki M, Joly E, El-Assaad W, Roduit R (2002) Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in β-cell adaptation and failure in the etiology of diabetes. Diabetes 51(Suppl 3):S405–S413

    PubMed  CAS  Google Scholar 

  • Reid T (2012) Choosing GLP-1 receptor agonists or DPP-4 inhibitors: weighing the clinical trial evidence. Clin Diab 30:3–12

    Google Scholar 

  • Renstrom E, Ding WG, Bokvist K, Rorsman P (1996) Neurotransmitter-induced inhibition of exocytosis in insulin-secreting β cells by activation of calcineurin. Neuron 17:513–522

    PubMed  CAS  Google Scholar 

  • Roche E, Farfari S, Witters LA, Assimacopoulos-Jeannet F, Thumelin S, Brun T, Corkey BE, Saha AK, Prentki M (1998) Long-term exposure of β-INS cells to high glucose concentrations increases anaplerosis, lipogenesis, and lipogenic gene expression. Diabetes 47:1086–1094

    PubMed  CAS  Google Scholar 

  • Rubi B, del Arco A, Bartley C, Satrustegui J, Maechler P (2004) The malate-aspartate NADH shuttle member Aralar1 determines glucose metabolic fate, mitochondrial activity, and insulin secretion in β cells. J Biol Chem 279:55659–55666

    PubMed  CAS  Google Scholar 

  • Salehi A, Flodgren E, Nilsson NE, Jimenez-Feltstrom J, Miyazaki J, Owman C, Olde B (2005) Free fatty acid receptor 1 (FFA(1)R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell Tissue Res 322:207–215

    PubMed  CAS  Google Scholar 

  • Salvucci M, Neufeld Z, Newsholme P (2013) Mathematical model of metabolism and electrophysiology of amino acid and glucose stimulated insulin secretion: in vitro validation using a β-cell line. PLoS One 8:e52611

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sener A, Malaisse WJ (1980) l-Leucine and a non-metabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288:187–189

    PubMed  CAS  Google Scholar 

  • Sener A, Best LC, Yates AP, Kadiata MM, Olivares E, Louchami K, Jijakli H, Ladriere L, Malaisse WJ (2000) Stimulus-secretion coupling of arginine-induced insulin release: comparison between the cationic amino acid and its methyl ester. Endocrine 13:329–340

    PubMed  CAS  Google Scholar 

  • Shapiro H, Shachar S, Sekler I, Hershfinkel M, Walker MD (2005) Role of GPR40 in fatty acid action on the β cell line INS-1E. Biochem Biophys Res Commun 335:97–104

    PubMed  CAS  Google Scholar 

  • Smith PA, Sakura H, Coles B, Gummerson N, Proks P, Ashcroft FM (1997) Electrogenic arginine transport mediates stimulus-secretion coupling in mouse pancreatic β-cells. J Physiol 499(Pt 3):625–635

    PubMed  CAS  PubMed Central  Google Scholar 

  • Straub SG, Sharp GW (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev 18:451–463

    PubMed  CAS  Google Scholar 

  • Tarasov A, Dusonchet J, Ashcroft F (2004) Metabolic regulation of the pancreatic β-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53(Suppl 3):S113–S122

    PubMed  CAS  Google Scholar 

  • Tato I, Bartrons R, Ventura F, Rosa JL (2011) Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling. J Biol Chem 286:6128–6142

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tengholm A, Gylfe E (2009) Oscillatory control of insulin secretion. Mol Cell Endocrinol 297:58–72

    PubMed  CAS  Google Scholar 

  • Tomita T, Masuzaki H, Iwakura H, Fujikura J, Noguchi M, Tanaka T, Ebihara K, Kawamura J, Komoto I, Kawaguchi Y, Fujimoto K, Doi R, Shimada Y, Hosoda K, Imamura M, Nakao K (2006) Expression of the gene for a membrane-bound fatty acid receptor in the pancreas and islet cell tumours in humans: evidence for GPR40 expression in pancreatic β cells and implications for insulin secretion. Diabetologia 49:962–968

    PubMed  CAS  Google Scholar 

  • Tremblay F, Lavigne C, Jacques H, Marette A (2007) Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu Rev Nutr 27:293–310

    PubMed  CAS  Google Scholar 

  • Westermark PO, Lansner A (2003) A model of phosphofructokinase and glycolytic oscillations in the pancreatic β-cell. Biophys J 85:126–139

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wiederkehr A, Wollheim CB (2006) Mini-review: implication of mitochondria in insulin secretion and action. Endocrinology 147:2643–2649

    PubMed  CAS  Google Scholar 

  • Wuttke A, Idevall-Hagren O, Tengholm A (2013) P2Y1 receptor-dependent diacylglycerol signaling microdomains in β cells promote insulin secretion. Faseb J 27:1610–1620

    PubMed  CAS  Google Scholar 

  • Xu J, Han J, Long YS, Epstein PN, Liu YQ (2008) The role of pyruvate carboxylase in insulin secretion and proliferation in rat pancreatic β cells. Diabetologia 51:2022–2030

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yaney GC, Corkey BE (2003) Fatty acid metabolism and insulin secretion in pancreatic β cells. Diabetologia 46:1297–1312

    PubMed  CAS  Google Scholar 

  • Yang J, Wong RK, Park M, Wu J, Cook JR, York DA, Deng S, Markmann J, Naji A, Wolf BA, Gao Z (2006) Leucine regulation of glucokinase and ATP synthase sensitizes glucose-induced insulin secretion in pancreatic β-cells. Diabetes 55:193–201

    PubMed  CAS  Google Scholar 

  • Yu JH, Kim KH, Kim H (2006) Role of NADPH oxidase and calcium in cerulein-induced apoptosis: involvement of apoptosis-inducing factor. Ann N Y Acad Sci 1090:292–297

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Newsholme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Newsholme, P., Keane, K., Gaudel, C., McClenaghan, N. (2015). (Dys)Regulation of Insulin Secretion by Macronutrients. In: Islam, M. (eds) Islets of Langerhans. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6686-0_4

Download citation

Publish with us

Policies and ethics