Regulation of Pancreatic Islet Formation

  • Manuel Carrasco
  • Anabel Rojas
  • Irene Delgado
  • Nadia Cobo Vuilleumier
  • Juan R. Tejedo
  • Francisco J. Bedoya
  • Benoit R. Gauthier
  • Bernat Soria
  • Franz Martín
Reference work entry


Pancreatic islets are complex structures formed by five different hormone-expressing cells surrounded by endothelial cells, nerves, and fibroblasts. Dysfunction of insulin-producing cells (β-cells) causes diabetes. Generation of β-like cells that can compensate the loss of β-cell mass in type 1 diabetes or defects in β-cell insulin secretion in type 2 diabetes is a current challenge in biomedicine. The knowledge of the molecular basis governing pancreas development and islet formation will help us to generate in vitro or in vivo β-like cells to treat diabetes. Pancreas development is a highly complicated process, which is regulated by signaling pathways, transcription factors, nutrients, and other environmental factors. Collectively, these signals and factors act coordinated, in a spatial and temporal manner, throughout the embryonic pancreas. In this review we will summarize the main steps in pancreas development and will highlight the key transcription factors that have been shown to play essential roles in pancreas specification, maintenance of multipotent pancreatic progenitors, endocrine differentiation, and islet maturation. We will also discuss the role of microRNAs (miRNAs) in regulating islet cell fate.


Endocrine progenitor cells Transcription factors Signaling pathways Development Differentiation Gene regulatory networks 



We thank members of the Stem Cell and Cell Therapy and Regenerative Medicine Departments from CABIMER for stimulating discussions on diabetes cell therapy and pancreas development. A. R. is supported by a grant from ISCIII co-funded by Fondos FEDER (PI11/01125). M. C. is supported by a predoctoral fellowship from Spanish Ministry of Education. I. D. is supported by a contract from Consejería de Salud (Junta de Andalucía, PI00-0008 to A. R.). B. R. G. is supported by grants from the Consejeria de Salud, Fundacion Publica Andaluza Progreso y Salud, Junta de Andalucia (PI-0727-2010), Instituto de Salud Carlos III co-funded by Fondos FEDER (PI10/00871) and by the Juvenile Diabetes Research Foundation (17-2013-372). FM is supported by grants from Junta de Andalucía (BIO-311). We apologize to colleagues whose work could not be cited because of space constraints.


  1. Ahlgren U, Jonsson J, Edlund H (1996) The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 122:1409–1416PubMedGoogle Scholar
  2. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H (1998) β-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev 12:1763–1768PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ambros V (2004) The function of animals micro RNAs. Nature 431:350–355PubMedCrossRefGoogle Scholar
  4. Aramata S, Hang SI, Kataoka K (2007) Roles and regulation of transcription factor MafA in islet β-cell. Endocr J 54:659–666PubMedCrossRefGoogle Scholar
  5. Arda HE, Benitez CM, Kim SK (2013) Gene regulatory networks governing pancreas development. Dev Cell 25(1):5–13PubMedPubMedCentralCrossRefGoogle Scholar
  6. Artner I, Le Lay J, Hang Y, Elghazi L, Schisler JC, Henderson E, Sosa-Pineda B, Stein R (2006) MafB: an activator of the glucagon gene expressed in developing islet α- and β-cells. Diabetes 55:297–304PubMedCrossRefGoogle Scholar
  7. Artner I, Blanchi B, Raum JC, Guo M, Kaneko T, Cordes S, Sieweke M, Stein R (2007) MafB is required for islet β cell maturation. Proc Natl Acad Sci USA 104:3853–3858PubMedPubMedCentralCrossRefGoogle Scholar
  8. Artner I, Hang Y, Mazur M, Yamamoto T, Guo M, Lindner J, Magnuson MA, Stein R (2010) MafA and MafB regulate genes critical to β-cells in a unique temporal manner. Diabetes 59:2530–2539PubMedPubMedCentralCrossRefGoogle Scholar
  9. Assan R, Biollot J (1973) Pancreatic glucagon and glucagon-like material in tissues and plasma from human fetuses 6-26 weeks old. Pathol Biol (Paris) 21:149–155Google Scholar
  10. Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD (2009) The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4:e5033PubMedPubMedCentralCrossRefGoogle Scholar
  11. Avrahami D, Kaestner KH (2012) Epigenetic regulation of pancreas development and function. Semin Cell Dev Biol 23:693–700PubMedPubMedCentralCrossRefGoogle Scholar
  12. Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA, Van Obberghen E (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines. J Biol Chem 282:19575–19588PubMedCrossRefGoogle Scholar
  13. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837PubMedCrossRefGoogle Scholar
  14. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  15. Beringue F, Blondeau B, Castellotti MC, Breant B, Czernichow P, Polak M (2002) Endocrine pancreas development in growth-retarded human fetuses. Diabetes 51:385–391PubMedCrossRefGoogle Scholar
  16. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217PubMedCrossRefGoogle Scholar
  17. Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, O’Neil JJ (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 97:7999–8004PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bonner-Weir S, Li WC, Ouziel-Yahalom L, Guo L, Weir GC, Sharma A (2010) β-cell growth and regeneration: replication is only part of the story. Diabetes 59:2340–2348PubMedPubMedCentralCrossRefGoogle Scholar
  19. Burlison JS, Long Q, Fujitani Y, Wright CV, Magnuson MA (2008) Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev Biol 316(1):74–86PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cabrera O, Berman M, Kenyon NS, Ricordi C, Berggren P, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103:2334–2339PubMedPubMedCentralCrossRefGoogle Scholar
  21. Carrasco M, Delgado I, Soria B, Martín F, Rojas A (2012) GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Invest 122:3504–3515PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chiang MK, Melton DA (2003) Single-cell transcript analysis of pancreas development. Dev Cell 4(3):383–393PubMedCrossRefGoogle Scholar
  23. Collombat P, Mansouri A, Hecksher-Sorensen J, Serup P, Krull J, Gradwohl G, Gruss P (2003) Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 17:2591–2603PubMedPubMedCentralCrossRefGoogle Scholar
  24. Collombat P, Hecksher-Sørensen J, Broccoli V, Krull J, Ponte I, Mundiger T, Smith J, Gruss P, Serup P, Mansouri A (2005) The simultaneous loss of Arx and Pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the α- and β-cell lineages in the mouse endocrine pancreas. Development 132:2969–2980PubMedCrossRefGoogle Scholar
  25. Collombat P, Hecksher-Sorensen J, Krull J, Berger J, Riedel D, Herrera PL, Serup P, Mansouri A (2007) Embryonic endocrine pancreas and mature β cells acquire α and PP cell phenotypes upon Arx misexpression. J Clin Invest 117(4):961–970PubMedPubMedCentralCrossRefGoogle Scholar
  26. Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, Madsen OD, Serup P, Heimberg H, Mansouri A (2009) The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into a and subsequently b cells. Cell 138:449–462PubMedPubMedCentralCrossRefGoogle Scholar
  27. Correa-Medina M, Bravo-Egana V, Rosero S, Ricordi C, Edlund H, Diez J, Pastori RL (2009) MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 9:193–199PubMedCrossRefGoogle Scholar
  28. Dave SD, Vanikar AV, Trivedi HL (2013) In-vitro generation of human adipose tissue derived insulin secreting cells: up-regulation of Pax-6, Ipf-1 and Isl-1. Cytotechnology 65:299–307Google Scholar
  29. Desgraz R, Herrera PL (2009) Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development 136:3567–3574PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dhawan S, Georgia S, Tschen SI, Fan G, Bhushan A (2011) Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell 20:419–429PubMedPubMedCentralCrossRefGoogle Scholar
  31. Du A, Hunter CS, Murray J, Noble D, Cai CL, Evans SM, Stein R, May CL (2009) Islet-1 is required for the maturation, proliferation, and survival of the endocrine pancreas. Diabetes 58:2059–2069PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dumortier O, Blondeau B, Duvillie B, Reusens B, Breant B, Remacle C (2007) Different mechanisms operating during different critical time-windows reduce rat fetal β-cell mass due to a maternal low-protein or low energy diet. Diabetologia 50:2495–2503PubMedCrossRefGoogle Scholar
  33. Ejarque M, Cervantes S, Pujadas G, Tutusaus A, Sanchez L, Gasa R (2013) Neurogenin3 cooperates with Foxa2 to autoactivate its own expression. J Biol Chem 26:11705–11717CrossRefGoogle Scholar
  34. Gannon M, Ables ET, Crawford L, Lowe D, Offield MF, Magnuson MA, Wright CV (2008) pdx-1 function is specifically required in embryonic β cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Dev Biol 314(2):406–417PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gasa R, Mrejen C, Leachman N, Otten M, Barnes M, Wang J, Chakrabarti S, Mirmira R, German M (2004) Proendocrine genes coordinate the pancreatic islet differentiation program in vitro. Proc Natl Acad Sci USA 101(36):13245–13250PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP, Panhuis TM, Mieczkowski P, Secchi A, Bosco D, Berney T, Montanya E, Mohlke KL, Lieb JD, Ferrer J (2010) A map of open chromatin in human pancreatic islets. Nat Genet 42:255–259PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 97:1607–1611PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gu C, Stein GH, Pan N, Goebbels S, Hörnberg H, Nave KA, Herrera P, White P, Kaestner KH, Sussel L, Lee JE (2010) Pancreatic β cells require NeuroD to achieve and maintain functional maturity. Cell Metab 11:298–310PubMedPubMedCentralCrossRefGoogle Scholar
  39. Guillemain G, Filhoulaud G, Da Silva-Xavier G, Rutter GA, Scharfmann R (2007) Glucose is necessary for embryonic pancreatic endocrine cell differentiation. J Biol Chem 282:15228–15237PubMedCrossRefGoogle Scholar
  40. Gunton JE, Kulkarni RN, Yim S, Okada T, Hawthorne WJ, Tseng YH, Roberson RS, Ricordi C, O’Connell PJ, Gonzalez FJ, Kahn CR (2005) Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122:337–349PubMedCrossRefGoogle Scholar
  41. Hald J, Sprinkel AE, Ray M, Serup P, Wright C, Madsen OD (2008) Generation and characterization of Ptf1a antiserum and localization of Ptf1a in relation to Nkx6.1 and Pdx1 during the earliest stages of mouse pancreas development. J Histochem Cytochem 56(6):587–595PubMedPubMedCentralCrossRefGoogle Scholar
  42. Heinis M, Simon MT, Ilc K, Mazure NM, Pouyssegur J, Scharfmann R, Duvillie B (2010) Oxygen tension regulates pancreatic β-cell differentiation through hypoxia-inducible factor 1α. Diabetes 59:662–669PubMedPubMedCentralCrossRefGoogle Scholar
  43. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112PubMedPubMedCentralCrossRefGoogle Scholar
  44. Henseleit KD, Nelson SB, Kuhlbrodt K, Hennings JC, Ericson J, Sander M (2005) NKX6 transcription factor activity is required for α- and β-cell development in the pancreas. Development 132:3139–3149PubMedCrossRefGoogle Scholar
  45. Herrera PL, Huarte J, Sanvito F, Meda P, Orci L, Vasalli JD (1991) Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development 113:1257–1265PubMedGoogle Scholar
  46. Holland AM, Góñez LJ, Naselli G, Macdonald RJ, Harrison LC (2005) Conditional expression demonstrates the role of the homeodomain transcription factor Pdx1 in maintenance and regeneration of β-cells in the adult pancreas. Diabetes 54:2586–2595PubMedCrossRefGoogle Scholar
  47. Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ (2000) Regulation of the pancreatic islet-specific gene β2 (neuroD) by neurogenin 3. Mol Cell Biol 20:3292–3307PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jeon J, Correa-Medina M, Ricordi C, Edlund H, Diez JA (2009) Endocrine cell clustering during human pancreas development. J Histochem Cytochem 57:383–393CrossRefGoogle Scholar
  50. Jogeklar MV, Parek VS, Hardikar AA (2007) New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab 18:393–400CrossRefGoogle Scholar
  51. Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9:109–113PubMedCrossRefGoogle Scholar
  52. Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, Gradwohl G, Grapin-Botton A (2007) Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 12:457–465PubMedCrossRefGoogle Scholar
  53. Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development. Nature 371:606–609PubMedCrossRefGoogle Scholar
  54. Kalis M, Bolmeson C, Esguerra JL, Gupta S, Edlund A, Tormo-Badia N, Speidel D, Holmberg D, Mayans S, Khoo NK, Wendt A, Eliasson L, Cilio CM (2011) β cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One 6:e29166PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32(1):128–134PubMedCrossRefGoogle Scholar
  56. Keller DM, McWeeney S, Arsenlis A, Drouin J, Wright CV, Wang H, Wollheim CB, White P, Kaestner KH, Goodman RH (2007) Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J Biol Chem 282:32084–32092PubMedCrossRefGoogle Scholar
  57. Kimura H, Kawasaki H, Taira K (2004) Mouse microRNA-23b regulates expression of Hes1 in P19 cells. Nucleic Acids Symp Ser 48:213–214CrossRefGoogle Scholar
  58. Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5:e203PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kopinke D, Murtaugh LC (2010) Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas. BMC Dev Biol 10:38PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kopinke D, Brailsford M, Shea JE, Leavitt R, Scaife CL, Murtaugh LC (2011) Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas. Development 138(3):431–441PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, Ma J, Sander M (2011) Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 138(4):653–665PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452PubMedCrossRefGoogle Scholar
  63. Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F, Mobarra N (2013) Pancreatic islet differentiation of human embryonic stem cells by microRNA overexpression. J Tissue Eng Regen Med. doi: 10.1002/term.1787Google Scholar
  64. Lee JC, Smith SB, Watada H, Lin J, Scheel D, Wang J, Mirmira RG, German MS (2001) Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes 50(5):928–936PubMedCrossRefGoogle Scholar
  65. Liao X, Xue H, Wang YC, Nazor KL, Guo S, Trivedi N, Peterson SE, Liu Y, Loring JF, Laurent LC (2013) Matched miRNA and mRNA signatures from an hESC-based in vitro model of pancreatic differentiation reveal novel regulatory interactions. J Cell Sci 126:3848–3861PubMedPubMedCentralCrossRefGoogle Scholar
  66. Like AA, Orci L (1972) Embryogenesis of the human pancreatic islets: a light and electron microscopic study. Diabetes 21:511–534PubMedGoogle Scholar
  67. Lottmann H, Vanselow J, Hessabi B, Walther R (2001) The Tet-On system in transgenic mice: inhibition of the mouse pdx-1 gene activity by antisense RNA expression in pancreatic β-cells. J Mol Med (Berl) 79:321–328CrossRefGoogle Scholar
  68. Lynn FC, Skewes-Cox P, Kosaka Y, Mcmanus MT, Harfe BD, German MS (2007a) Micro RNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56:2938–2945PubMedCrossRefGoogle Scholar
  69. Lynn FC, Smith SB, Wilson ME, Yang KY, Nekrep N, German MS (2007b) Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci USA 104(25):10500–10505. 0704054104 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mastracci TL, Anderson KR, Papizan JB, Sussel L (2013) Regulation of Neurod1 contributes to the lineage potential of Neurogenin3+ endocrine precursor cells in the pancreas. PLoS Genet 9(2):e1003278PubMedPubMedCentralCrossRefGoogle Scholar
  71. Matsuoka TA, Artner I, Henderson E, Means A, Sander M, Stein R (2004) The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc Natl Acad Sci USA 101:2930–2933PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mellitzer G, Bonné S, Luco RF, Van De Casteele M, Lenne-Samuel N, Collombat P, Mansouri A, Lee J, Lan M, Pipeleers D, Nielsen FC, Ferrer J, Gradwohl G, Heimberg H (2006) IA1 is NGN3-dependent and essential for differentiation of the endocrine pancreas. EMBO J 25:1344–1352PubMedPubMedCentralCrossRefGoogle Scholar
  73. Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I (2007) One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 89:687–696PubMedCrossRefGoogle Scholar
  74. Nicolini U, Hubinont C, Santolaya J, Fisk NM, Rodeck CH (1990) Effects of fetal intravenous glucose challenge in normal and growth retarded fetuses. Horm Metab Res 22:426–430PubMedCrossRefGoogle Scholar
  75. Nishimura W, Kondo T, Salameh T, El Khattabi I, Dodge R, Bonner-Weir S, Sharma A (2006) A switch from MafB to MafA expression accompanies differentiation to pancreatic β-cells. Dev Biol 293:526–539PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nishimura W, Rowan S, Salameh T, Mass RL, Bonner-Weir S, Sell SM, Sharma A (2008) Preferential reduction of β cells derived form Pax6-MafB pathway MafB deficient mice. Dev Biol 314:443–456PubMedPubMedCentralCrossRefGoogle Scholar
  77. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV (1996) Pdx1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122:983–995PubMedGoogle Scholar
  78. Oliver-Krasinski JM, Kasner MT, Yang J, Crutchlow MF, Rustgi AK, Kaestner KH, Stoffers DA (2009) The diabetes gene Pdx1 regulates the transcriptional network of pancreatic endocrine progenitor cells in mice. J Clin Invest 119(7):1888–1898. 37028 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  79. Papizan JB, Singer RA, Tschen SI, Dhawan S, Friel JM, Hipkens SB, Magnuson MA, Bhushan A, Sussel L (2011) Nkx2.2 repressor complex regulates islet β-cell specification and prevents β-to-α-cell reprogramming. Genes Dev 25:2291–2305PubMedPubMedCentralCrossRefGoogle Scholar
  80. Pictet R, Rutter WJ (1972) Development of the embryonic endocrine pancreas. In: Greep RO, Astwood EB, Steiner DF, Freinkel N, Geiger SR (eds) Handbook of physiology, vol I. American Physiological Society, Washington, DC, pp 25–76Google Scholar
  81. Pictet RL, Clark WR, Williams RH, Rutter WJ (1972) An ultrastructural analysis of the developing embryonic pancreas. Dev Biol 29:436–467PubMedCrossRefGoogle Scholar
  82. Piper K, Ball SG, Turnpenny LW, Brickwood S, Wilson DI, Hanley NA (2002) β-cell differentiation during human development does not rely on nestin-positive precursors: implications for stem cell-derived replacement therapy. Diabetologia 45:1045–1047PubMedCrossRefGoogle Scholar
  83. Polak M, Bouchareb-Banaei L, Scharfmann R, Czernichow P (2000) Early pattern of differentiation in the human pancreas. Diabetes 49:225–232PubMedCrossRefGoogle Scholar
  84. Prado CL, Pugh-Bernard AE, Elghazi L, Sosa-Pîneda B, Sussel L (2004) Ghrelin cells replace insulin-producing β cells in two mouse models of páncreas development. Proc Natl Acad Sci USA 101:2924–2929PubMedPubMedCentralCrossRefGoogle Scholar
  85. Puri S, Hebrok M (2010) Cellular plasticity within the pancreas: lessons learned from development. Dev Cell 18:342–356PubMedPubMedCentralCrossRefGoogle Scholar
  86. Raum JC, Gerrish K, Artner I, Henderson E, Guo M, Sussel L, Schisler JC, Newgard CB, Stein R (2006) FoxA2, Nkx2.2, and PDX-1 regulate islet β-cell-specific MafA expression through conserved sequences located between base pairs -8118 and -7750 upstream from the transcription start site. Mol Cell Biol 26:5735–5743PubMedPubMedCentralCrossRefGoogle Scholar
  87. Runhke M, Ungefroren H, Nussler A, Martin F, Brulport M, Schormann W, Hengstler JG, Klapper W, Ulrichs K, Hutchinson JA, Soria B, Parwaresch RM, Heeckt P, Kremer B, Fändrich F (2005) Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. Gastroenterology 128:1774–1786CrossRefGoogle Scholar
  88. Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Dela Cruz F, Schwitzgebel V, Hayes-Jordan A, German M (2000) Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of β-cell formation in the pancreas. Development 127:5533–5540PubMedGoogle Scholar
  89. Sarkar SA, Kobberup S, Wong R, Lopez AD, Quayum N, Still T, Kutchma A, Jensen JN, Gianani R, Beattie GM, Jensen J, Hayek A, Hutton JC (2008) Global gene expression profiling and histochemical analysis of the developing human fetal pancreas. Diabetologia 51:285–297PubMedCrossRefGoogle Scholar
  90. Schaffer AE, Freude KK, Nelson SB, Sander M (2010) Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Dev Cell 18(6):1022–1029PubMedPubMedCentralCrossRefGoogle Scholar
  91. Schaffer AE, Taylor BL, Benthuysen JR, Liu J, Thorel F, Yuan W, Jiao Y, Kaestner KH, Herrera PL, Magnuson MA, May CL, Sander M (2013) Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic β cell identity. PLoS Genet 9(1):e1003274PubMedPubMedCentralCrossRefGoogle Scholar
  92. Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, Sussel L, Johnson JD, German MS (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127(16):3533–3542PubMedGoogle Scholar
  93. Slack JM (1995) Developmental biology of the pancreas. Science 26:1203–1205CrossRefGoogle Scholar
  94. Smith SB, Gasa R, Watada H, Wang J, Griffen SC, German MS (2003) Neurogenin3 and hepatic nuclear factor 1 cooperate in activating pancreatic expression of Pax4. J Biol Chem 278:38254–38259PubMedCrossRefGoogle Scholar
  95. Smith SB, Qu HQ, Taleb N, Kishimoto NY, Scheel DW, Lu Y, Patch AM, Grabs R, Wang J, Lynn FC, Miyatsuka T, Mitchell J, Seerke R, Désir J, Vanden Eijnden S, Abramowicz M, Kacet N, Weill J, Renard ME, Gentile M, Hansen I, Dewar K, Hattersley AT, Wang R, Wilson ME, Johnson JD, Polychronakos C, German MS (2010) Rfx6 directs islet formation and insulin production in mice and human. Nature 463:775–780PubMedPubMedCentralCrossRefGoogle Scholar
  96. Solar M, Cardalda C, Houbracken I, Martin M, Maestro MA, De Medts N, Xu X, Grau V, Heimberg H, Bouwens L, Ferrer J (2009) Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth. Dev Cell 17:849–860PubMedCrossRefGoogle Scholar
  97. Soria B, Roche E, Berná G, León-Quinto T, Reig JA, Martin F (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49:157–162PubMedCrossRefGoogle Scholar
  98. Soria B, Bedoya FJ, Tejedo JR, Hmadcha A, Ruiz-Salmerón R, Lim S, Martin F (2008) Cell therapy for diabetes mellitus: an opportunity for stem cells? Cells Tissues Organs 188:70–77PubMedCrossRefGoogle Scholar
  99. Soria B, Tudurí E, González A, Hmadcha A, Martin F, Nadal A, Quesada I (2010) Pancreatic islet cells: a model for calcium-dependent peptide release. HSFP J 4:52–60Google Scholar
  100. Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P (1997) The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature 386:399–402PubMedCrossRefGoogle Scholar
  101. Soyer J, Flasse L, Raffelsberger W, Beucher A, Orvain C, Peers B, Ravassard P, Vermot J, Voz ML, Mellitzer G, Gradwohl G (2010) Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development. Development 137:203–212PubMedPubMedCentralCrossRefGoogle Scholar
  102. Stefan Y, Grasso S, Perrelet A, Orci L (1983) A quantitative immunofluorescence study of the endocrine cell populations in the developing human pancreas. Diabetes 32:293–301PubMedCrossRefGoogle Scholar
  103. Steiner DJ, Kim A, Miller K, Hara M (2010) Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2:135–145PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sugiyama T, Rodriguez RT, McLean GW, Kim SK (2007) Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci USA 104:175–180PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sussel L, Kalamaras J, Hartigan-O’Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, German MS (1998) Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic β cells. Development 125:2213–2221PubMedGoogle Scholar
  106. Tang F, Kaneda M, O’Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA (2007) Maternal microRNAs are essential for mouse zygote development. Genes Dev 21:644–648PubMedPubMedCentralCrossRefGoogle Scholar
  107. Thomas MK, Devon ON, Lee JH, Peter A, Schlosser DA, Tenser MS, Habener JF (2001) Development of diabetes mellitus in aging transgenic mice following suppression of pancreatic homeoprotein IDX-1. J Clin Invest 108:319–329PubMedPubMedCentralCrossRefGoogle Scholar
  108. Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL (2010) Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464:1149–1154PubMedPubMedCentralCrossRefGoogle Scholar
  109. Van de Bunt M, Gaulton KJ, Parts L, Moran I, Johnson PR, Lindgren CM, Ferrer J, Gloyn AL, McCarthy MI (2013) The miRNA profile of human pancreatic islets and β-cells and relationship to type 2 diabetes pathogenesis. PLoS One 8(1):e55272PubMedPubMedCentralCrossRefGoogle Scholar
  110. Villaseñor A, Chong DC, Cleaver O (2008) Biphasic Ngn3 expression in the developing pancreas. Dev Dyn 237:3270–3279PubMedPubMedCentralCrossRefGoogle Scholar
  111. Villaseñor A, Chong DC, Henkemeyer M, Cleaver O (2010) Epithelial dynamics of pancreatic branching morphogenesis. Development 137:4295–4305PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wang H, Brun T, Kataoka K, Sharma AJ, Wollheim CB (2007) MafA controls genes implicated in biosynthesis and secretion. Diabetologia 50:348–358PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wang S, Hecksher-Sorensen J, Xu Y, Zhao A, Dor Y, Rosenberg L, Serup P, Gu G (2008) Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation. Dev Biol 317:531–540PubMedPubMedCentralCrossRefGoogle Scholar
  114. Watada H, Scheel DW, Leung J, German MS (2003) Distinct gene expression programs function in progenitor and mature islet cells. J Biol Chem 278:17130–17140PubMedCrossRefGoogle Scholar
  115. Wei R, Yang J, Liu GQ, Gao MJ, Hou WF, Zhang L, Gao HW, Liu Y, Chen GA, Hong TP (2013) Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 518:246–255PubMedCrossRefGoogle Scholar
  116. Xu X, D’Hoker J, Stangé G, Bonné S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H (2008) β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132:197–207PubMedCrossRefGoogle Scholar
  117. Xuan S, Borok MJ, Decker KJ, Battle MA, Duncan SA, Hale MA, Macdonald RJ, Sussel L (2012) Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J Clin Invest 122:3516–3528PubMedPubMedCentralCrossRefGoogle Scholar
  118. Yang YP, Thorel F, Boyer DF, Herrera PL, Wright CV (2011) Context-specific α- to-β-cell reprogramming by forced Pdx1 expression. Genes Dev 25(16):1680–1685PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zhang C, Moriguchi T, Kajihara M, Esaki R, Harada A, Shimohata H, Oishi H, Hamada M, Morito N, Hasegawa K, Kudo T, Engel JD, Yamamoto M, Takahashi S (2005) MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol 25:4969–4976PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H (2009) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 19:429–438PubMedCrossRefGoogle Scholar
  121. Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA (2007) A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell 13:103–114PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Manuel Carrasco
    • 1
    • 2
  • Anabel Rojas
    • 1
    • 2
  • Irene Delgado
    • 1
    • 2
  • Nadia Cobo Vuilleumier
    • 2
  • Juan R. Tejedo
    • 1
    • 2
  • Francisco J. Bedoya
    • 1
    • 2
  • Benoit R. Gauthier
    • 2
  • Bernat Soria
    • 1
    • 2
  • Franz Martín
    • 1
    • 2
  1. 1.CIBERDEMBarcelonaSpain
  2. 2.Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain

Personalised recommendations