Advertisement

Exocytosis in Islet β-Cells

  • Haruo Kasai
  • Hiroyasu Hatakeyama
  • Mitsuyo Ohno
  • Noriko Takahashi
Reference work entry

Abstract

The development of technologies that allow for live optical imaging of exocytosis from β-cells has greatly improved our understanding of insulin secretion. Two-photon imaging, in particular, has enabled researchers to visualize the exocytosis of large dense-core vesicles (LDCVs) containing insulin from β-cells in intact islets of Langerhans. These studies have revealed that high glucose levels induce two phases of insulin secretion and that this release is dependent upon cytosolic Ca2+ and cAMP. This technology has also made it possible to examine the spatial profile of insulin exocytosis in these tissues and compare that profile with those of other secretory glands. Such studies have led to the discovery of the massive exocytosis of synaptic-like microvesicles (SLMVs) in β-cells. These imaging studies have also helped clarify facets of insulin exocytosis that cannot be properly addressed using the currently available electrophysiological techniques. This chapter provides a concise introduction to the field of optical imaging for those researchers who wish to characterize exocytosis from β-cells in the islets of Langerhans.

Keywords

Insulin secretion Pancreatic islet Sequential exocytosis Two-photon microscopy 

Notes

Acknowledgments

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan and the Global COE Program (Integrative Life Science Based on the Study of Biosignaling Mechanisms) of MEXT.

References

  1. Aizawa T, Sato Y, Ishihara F, Taguchi N, Komatsu M, Suzuki N, Hashizume K, Yamada T (1994) ATP-sensitive K+ channel-independent glucose action in rat pancreatic β-cell. Am J Physiol 266:C622–C627PubMedGoogle Scholar
  2. Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, Lindau M (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389:509–512PubMedGoogle Scholar
  3. Allersma MW, Wang L, Axelrod D, Holz RW (2004) Visualization of regulated exocytosis with a granule-membrane probe using total internal reflection microscopy. Mol Biol Cell 15:4658–4668PubMedPubMedCentralGoogle Scholar
  4. Alvarez de Toledo G, Fernandez JM (1990) Compound versus multigranular exocytosis in peritoneal mast cells. J Gen Physiol 95:397–409PubMedGoogle Scholar
  5. Alvarez de Toledo G, Fernadez-Chacon R, Fernandez JM (1993) Release of secretory products during transient vesicle fusion. Nature 363:554–558PubMedGoogle Scholar
  6. Barg S, Olofsson CS, Schriever-Abeln J, Wendt A, Gebre-Medhin S, Renstrom E, Rorsman P (2002) Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells. Neuron 33:287–299PubMedGoogle Scholar
  7. Bernard-Kargar C, Kassis N, Berthault MF, Pralong W, Ktorza A (2001) Sialylated form of the neural cell adhesion molecule (NCAM): a new tool for the identification and sorting of β-cell subpopulations with different functional activity. Diabetes 50(Suppl 1):S125–S130PubMedGoogle Scholar
  8. Bonner-Weir S (1988) Morphological evidence for pancreatic polarity of β-cell within islets of Langerhans. Diabetes 37:616–621PubMedGoogle Scholar
  9. Borgonovo B, Cocucci E, Racchetti G, Podini P, Bachi A, Meldolesi J (2002) Regulated exocytosis: a novel, widely expressed system. Nat Cell Biol 4:955–962PubMedGoogle Scholar
  10. Braun M, Wendt A, Birnir B, Broman J, Eliasson L, Galvanovskis J, Gromada J, Mulder RP (2004) Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic β-cells. J Gen Physiol 123:191–204PubMedPubMedCentralGoogle Scholar
  11. Braun M, Wendt A, Karanauskaite J, Galvanovskis J, Clark A, MacDonald PE, Rorsman P (2007) Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic β cells. J Gen Physiol 129:221–231PubMedPubMedCentralGoogle Scholar
  12. Breckenridge LJ, Almers W (1987) Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328:814–817PubMedGoogle Scholar
  13. Brumback AC, Lieber JL, Angleson JK, Betz WJ (2004) Using FM1-43 to study neuropeptide granule dynamics and exocytosis. Methods 33:287–294PubMedGoogle Scholar
  14. Charles MA, Fanska R, Schmid FG, Forsham PH, Grodsky GM (1973) Adenosine 3′, 5′-monophosphate in pancreatic islets: glucose-induced insulin release. Science 179:569–571PubMedGoogle Scholar
  15. Chernomordik LV, Kozlov MM (2005) Membrane hemifusion: crossing a chasm in two leaps. Cell 123:375–382PubMedGoogle Scholar
  16. Cheviet S, Coppola T, Haynes LP, Burgoyne RD, Regazzi R (2004) The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic β-cell exocytosis. Mol Endocrinol 18:117–126PubMedGoogle Scholar
  17. Chheda MG, Ashery U, Thakur P, Rettig J, Sheng ZH (2001) Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat Cell Biol 3:331–338PubMedGoogle Scholar
  18. Coorssen JR, Schmitt H, Almers W (1996) Ca2+ triggered massive exocytosis in Chinese hamster ovary cells. EMBO J 15:3787–3791PubMedPubMedCentralGoogle Scholar
  19. Dan Y, Poo M (1992) Quantal transmitter secretion from myocytes loaded with acetylcholine. Nature 359:733–736PubMedGoogle Scholar
  20. Dean PM (1973) Ultrastructural morphometry of the pancreatic β-cell. Diabetologia 9:115–119PubMedGoogle Scholar
  21. Dodson G, Steiner D (1998) The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol 8:189–194PubMedGoogle Scholar
  22. Dudek RW, Boyne AF (1986) An excursion through the ultrastructural world of quick-frozen pancreatic islets. Am J Anat 175:217–243, 354PubMedGoogle Scholar
  23. Dyachok O, Idevall-Hagren O, Sagetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjarvi G, Gylfe E, Tengholm A (2008) Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8:26–37PubMedGoogle Scholar
  24. Eliasson L, Ma X, Renstrom E, Barg S, Berggren PO, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S, Rorsman P (2003) SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic β-cells. J Gen Physiol 121:181–197PubMedPubMedCentralGoogle Scholar
  25. Enserink JM, Christensen AE, De RJ, Van TM, Schwede F, Genieser HG, Doskeland SO, Blank JL, Bos JL (2002) A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 4:901–906PubMedGoogle Scholar
  26. Esni F, Taljedal IB, Perl AK, Cremer H, Christofori G, Semb H (1999) Neural cell adhesion molecule (N-CAM) is required for cell type segregation and normal ultrastructure in pancreatic islets. J Cell Biol 144:325–337PubMedPubMedCentralGoogle Scholar
  27. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1082PubMedPubMedCentralGoogle Scholar
  28. Fukui K, Yang Q, Cao Y, Takahashi N, Hatakeyama H, Wang H, Wada J, Zhang Y, Marselli L, Nammo T, Yoneda K, Onishi M, Higashiyama S, Matsuzawa Y, Gonzalez FJ, Weir GC, Kasai H, Shimomura I, Miyagawa J, Wollheim CB, Yamagata K (2005) The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab 2:373–384PubMedGoogle Scholar
  29. Gammelsaeter R, Froyland M, Aragon C, Danbolt NC, Fortin D, Storm-Mathisen J, Davanger S, Gundersen V (2004) Glycine, GABA and their transporters in pancreatic islets of Langerhans: evidence for a paracrine transmitter interplay. J Cell Sci 117:3749–3758PubMedGoogle Scholar
  30. Gao N, White P, Doliba N, Golson ML, Matschinsky FM, Kaestner KH (2007) Foxa2 controls vesicle docking and insulin secretion in mature β cells. Cell Metab 6:267–279PubMedGoogle Scholar
  31. Gauthier BR, Wollheim CB (2008) Synaptotagmins bind calcium to release insulin. Am J Physiol Endocrinol Metab 295:E1279–E1286PubMedGoogle Scholar
  32. Gembal M, Gilon P, Henquin J (1992) Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 89:1288–1295PubMedPubMedCentralGoogle Scholar
  33. Gerber SH, Sudhof TC (2002) Molecular determinants of regulated exocytosis. Diabetes 51(Suppl 1):S3–S11PubMedGoogle Scholar
  34. Gomi H, Mizutani S, Kasai K, Itohara S, Izumi T (2005) Granuphilin molecularly docks insulin granules to the fusion machinery. J Cell Biol 171:99–109PubMedPubMedCentralGoogle Scholar
  35. Grise F, Taib N, Monterrat C, Lagree V, Lang J (2007) Distinct roles of the C2A and the C2B domain of the vesicular Ca2+ sensor synaptotagmin 9 in endocrine β-cells. Biochem J 403:483–492PubMedPubMedCentralGoogle Scholar
  36. Gustavsson N, Wei SH, Hoang DN, Lao Y, Zhang Q, Radda GK, Rorsman P, Sudhof TC, Han W (2009) Synaptotagmin-7 is a principal Ca2+-sensor for Ca2+-induced glucagon exocytosis in pancreas. J Physiol 587:1169–1178PubMedPubMedCentralGoogle Scholar
  37. Hafez I, Stolpe A, Lindau M (2003) Compound exocytosis and cumulative fusion in eosinophils. J Biol Chem 278:44921–44928PubMedGoogle Scholar
  38. Haller M, Heinemann C, Chow RH, Heidelberger R, Neher E (1998) Comparison of secretory responses as measured by membrane capacitance and by amperometry. Biophys J 74:2100–2113PubMedPubMedCentralGoogle Scholar
  39. Han X, Wang CT, Bai J, Chapman ER, Jackson MB (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304:289–292PubMedGoogle Scholar
  40. Harata N, Ryan TA, Smith SJ, Buchanan J, Tsien RW (2001) Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1–43 photoconversion. Proc Natl Acad Sci USA 98:12748–12753PubMedPubMedCentralGoogle Scholar
  41. Harris TE, Persaud SJ, Jones PM (1997) Pseudosubstrate inhibition of cyclic AMP-dependent protein kinase in intact pancreatic islets: effects on cyclic AMP-dependent and glucose-dependent insulin secretion. Biochem Biophys Res Com 232:648–651PubMedGoogle Scholar
  42. Hatakeyama H, Kishimoto T, Nemoto T, Kasai H, Takahashi N (2006) Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets. J Physiol 570:271–282PubMedPubMedCentralGoogle Scholar
  43. Hatakeyama H, Takahashi N, Kishimoto T, Nemoto T, Kasai H (2007) Two cAMP-dependent pathways differentially regulate exocytosis of large dense-core and small vesicles in mouse β-cells. J Physiol 582:1087–1098PubMedPubMedCentralGoogle Scholar
  44. Hellman B, Idahl LA, Lernmark A, Taljedal IB (1974) The pancreatic β-cell recognition of insulin secretagogues: does cyclic AMP mediate the effect of glucose? Proc Natl Acad Sci USA 71:3405–3409PubMedPubMedCentralGoogle Scholar
  45. Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760PubMedGoogle Scholar
  46. Henquin JC, Nenquin M, Szollosi A, Kubosaki A, Louis NA (2008) Insulin secretion in islets from mice with a double knockout for the dense core vesicle proteins islet antigen-2 (IA-2) and IA-2β. J Endocrinol 196:573–581PubMedGoogle Scholar
  47. Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344PubMedPubMedCentralGoogle Scholar
  48. Hollins B, Ikeda SR (1997) Heterologous expression of a P2x-purinoceptor in rat chromaffin cells detects vesicular ATP release. J Neurophysiol 78:3069–3076PubMedGoogle Scholar
  49. Hutton JC (1989) The insulin secretory granule. Diabetologia 32:271–281PubMedGoogle Scholar
  50. Hutton JC, Peshavaria M, Tooke NE (1983) 5-Hydroxytryptamine transport in cells and secretory granules from a transplantable rat insulinoma. Biochem J 210:803–810PubMedPubMedCentralGoogle Scholar
  51. Illies C, Gromada J, Fiume R, Leibiger B, Yu J, Juhl K, Yang SN, Barma DK, Falck JR, Saiardi A, Barker CJ, Berggren PO (2007) Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic β cells. Science 318:1299–1302PubMedGoogle Scholar
  52. In’t VP, Pipeleers DG, Gepts W (1984) Evidence against the presence of tight junctions in normal endocrine pancreas. Diabetes 33:101–104Google Scholar
  53. Islam MS (2002) The ryanodine receptor calcium channel of β-cells: molecular regulation and physiological significance. Diabetes 51:1299–1309PubMedGoogle Scholar
  54. Ito K, Miyashita Y, Kasai H (1997) Micromolar and submicromolar Ca2+ spikes regulating distinct cellular functions in pancreatic acinar cells. EMBO J 16:242–251PubMedPubMedCentralGoogle Scholar
  55. Itzen A, Rak A, Goody RS (2007) Sec2 is a highly efficient exchange factor for the Rab protein Sec4. J Mol Biol 365:1359–1367PubMedGoogle Scholar
  56. Ivarsson R, Jing X, Waselle L, Regazzi R, Renstrom E (2005) Myosin 5a controls insulin granule recruitment during late-phase secretion. Traffic 6:1027–1035PubMedGoogle Scholar
  57. Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519–533PubMedGoogle Scholar
  58. Jing X, Li DQ, Olofsson CS, Salehi A, Surve VV, Caballero J, Ivarsson R, Lundquist I, Pereverzev A, Schneider T, Rorsman P, Renstrom E (2005) Cav2.3 calcium channels control second-phase insulin release. J Clin Invest 115:146–154PubMedPubMedCentralGoogle Scholar
  59. John J, Sohmen R, Feuerstein J, Linke R, Wittinghofer A, Goody RS (1990) Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry 29:6058–6065PubMedGoogle Scholar
  60. Kahn CR (2004) Joslin’s diabetes mellitus. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  61. Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, Li WH, Harbeck M, Roe MW, Holz GG (2005) A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic β cells. J Physiol 566:173–188PubMedPubMedCentralGoogle Scholar
  62. Karanauskaite J, Hoppa MB, Braun M, Galvanovskis J, Rorsman P (2009) Quantal ATP release in rat β-cells by exocytosis of insulin-containing LDCVs. Pflugers Arch 458:389–401PubMedGoogle Scholar
  63. Kasai H (1999) Comparative biology of exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci 22:88–93PubMedGoogle Scholar
  64. Kasai H, Takagi H, Ninomiya Y, Kishimoto T, Ito K, Yoshida A, Yoshioka T, Miyashita Y (1996) Two components of exocytosis and endocytosis in PC12 cells studied using caged-Ca2+ compounds. J Physiol (Lond) 494:53–65Google Scholar
  65. Kasai H, Suzuki T, Liu T, Kishimoto T, Takahashi T (2001) Fast and cAMP-sensitive mode of Ca2+-dependent insulin exocytosis in pancreatic β-cells. Diabetes 51:S19–S24Google Scholar
  66. Kasai H, Hatakeyama H, Kishimoto T, Liu T-T, Nemoto T, Takahashi N (2005a) A new quantitative (two-photon extracellular polar-tracer imaging-based quantification (TEPIQ)) analysis for diameters of exocytic vesicles and its application to mouse pancreatic islets. J Physiol 568:891–903PubMedPubMedCentralGoogle Scholar
  67. Kasai K, Ohara-Imaizumi M, Takahashi N, Mizutani S, Zhao S, Kikuta T, Kasai H, Nagamatsu S, Gomi H, Izumi T (2005b) Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation. J Clin Invest 115:388–396PubMedPubMedCentralGoogle Scholar
  68. Kasai H, Kishimoto T, Nemoto T, Hatakeyama H, Liu TT, Takahashi N (2006) Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization. Adv Drug Deliv Rev 58:850–877PubMedGoogle Scholar
  69. Kasai K, Fujita T, Gomi H, Izumi T (2008) Docking is not a prerequisite but a temporal constraint for fusion of secretory granules. Traffic 9:1191–1203PubMedGoogle Scholar
  70. Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S (2001) Critical role of cAMP-GEFII-Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 276:46046–46053PubMedGoogle Scholar
  71. Kirillova J, Thomas P, Almers W (1993) Two independently regulated secretory pathways in mast cells. J Physiol Paris 87:203–208PubMedGoogle Scholar
  72. Kishimoto T, Liu TT, Hatakeyama H, Nemoto T, Takahashi N, Kasai H (2005) Sequential compound exocytosis of large dense-core vesicles in PC12 cells studied with TEPIQ analysis. J Physiol 568:905–915PubMedPubMedCentralGoogle Scholar
  73. Kishimoto T, Kimura R, Liu T-T, Nemoto T, Takahashi N, Kasai H (2006) Vacuolar sequential exocytosis of large dense-core vesicles in adrenal medulla. EMBO J 25:673–682PubMedPubMedCentralGoogle Scholar
  74. Klenchin VA, Martin TF (2000) Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie 82:399–407PubMedGoogle Scholar
  75. Klyachko VA, Jackson MB (2002) Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418:89–92PubMedGoogle Scholar
  76. Knoch KP, Meisterfeld R, Kersting S, Bergert H, Altkruger A, Wegbrod C, Jager M, Saeger HD, Solimena M (2006) CAMP-dependent phosphorylation of PTB1 promotes the expression of insulin secretory granule proteins in β cells. Cell Metab 3:123–134PubMedGoogle Scholar
  77. Kwan EP, Gaisano HY (2005) Glucagon-like peptide 1 regulates sequential and compound exocytosis in pancreatic islet β-cells. Diabetes 54:2734–2743PubMedGoogle Scholar
  78. Kwan EP, Xie L, Sheu L, Ohtsuka T, Gaisano HY (2007) Interaction between Munc13-1 and RIM is critical for glucagon-like peptide-1 mediated rescue of exocytotic defects in Munc13-1 deficient pancreatic β-cells. Diabetes 56:2579–2588PubMedGoogle Scholar
  79. Lang J (1999) Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem 259:3–17PubMedGoogle Scholar
  80. Langley OK, Etsee-Ufrecht MC, Grant NJ, Gratzl M (1989) Expression of the neural cell adhesion molecule NCAM in endocrine cells. J Histochem Cytochem 37:781–791PubMedGoogle Scholar
  81. Larsson S, Wierup N, Sundler F, Eliasson L, Holm C (2008) Lack of cholesterol mobilization in islets of hormone-sensitive lipase deficient mice impairs insulin secretion. Biochem Biophys Res Commun 376:558–562PubMedGoogle Scholar
  82. Lester LB, Langeberg LK, Scott JD (1997) Anchoring of protein kinase A facilitates hormone-mediated insulin secretion. Proc Natl Acad Sci USA 94:14942–14947PubMedPubMedCentralGoogle Scholar
  83. Liu TT, Kishimoto T, Hatakeyama H, Nemoto T, Takahashi N, Kasai H (2005) Exocytosis and endocytosis of small vesicles in PC12 cells studied with TEPIQ analysis. J Physiol 568:917–929PubMedPubMedCentralGoogle Scholar
  84. Lonart G, Schoch S, Kaeser PS, Larkin CJ, Sudhof TC, Linden DJ (2003) Phosphorylation of RIM1α by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses. Cell 115:49–60PubMedGoogle Scholar
  85. Lopez JA, Kwan EP, Xie L, He Y, James DE, Gaisano HY (2008) The RalA GTPase is a central regulator of insulin exocytosis from pancreatic islet β cells. J Biol Chem 283:17939–17945PubMedGoogle Scholar
  86. Lovis P, Gattesco S, Regazzi R (2008a) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389:305–312PubMedGoogle Scholar
  87. Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R (2008b) Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes 57:2728–2736PubMedPubMedCentralGoogle Scholar
  88. Ma L, Bindokas VP, Kuznetsov A, Rhodes C, Hays L, Edwardson JM, Ueda K, Steiner DF, Philipson LH (2004) Direct imaging shows that insulin granule exocytosis occurs by complete vesicle fusion. Proc Natl Acad Sci USA 101:9266–9271PubMedPubMedCentralGoogle Scholar
  89. MacDonald PE, Obermuller S, Vikman J, Galvanovskis J, Rorsman P, Eliasson L (2005) Regulated exocytosis and kiss-and-run of synaptic-like microvesicles in INS-1 and primary rat β-cells. Diabetes 54:736–743PubMedGoogle Scholar
  90. MacDonald PE, Braun M, Galvanovskis J, Rorsman P (2006) Release of small transmitters through kiss-and-run fusion pores in rat pancreatic β cells. Cell Metab 4:283–290PubMedGoogle Scholar
  91. Maritzen T, Keating DJ, Neagoe I, Zdebik AA, Jentsch TJ (2008) Role of the vesicular chloride transporter ClC-3 in neuroendocrine tissue. J Neurosci 28:10587–10598PubMedGoogle Scholar
  92. Matsumoto M, Miki T, Shibasaki T, Kawaguchi M, Shinozaki H, Nio J, Saraya A, Koseki H, Miyazaki M, Iwanaga T, Seino S (2004) Noc2 is essential in normal regulation of exocytosis in endocrine and exocrine cells. Proc Natl Acad Sci USA 101:8313–8318PubMedPubMedCentralGoogle Scholar
  93. McNeil PL, Steinhardt RA (1997) Loss, restoration, and maintenance of plasma membrane integrity. J Cell Biol 137:1–4PubMedPubMedCentralGoogle Scholar
  94. McNeil PL, Steinhardt RA (2003) Plasma membrane disruption: repair, prevention, adaptation. Annu Rev Cell Dev Biol 19:697–731PubMedGoogle Scholar
  95. Michael DJ, Geng X, Cawley NX, Loh YP, Rhodes CJ, Drain P, Chow RH (2004) Fluorescent cargo proteins in pancreatic β-cells: design determines secretion kinetics at exocytosis. Biophys J 87:L03–L05PubMedPubMedCentralGoogle Scholar
  96. Michael DJ, Ritzel RA, Haataja L, Chow RH (2006) Pancreatic β-cells secrete insulin in fast- and slow-release forms. Diabetes 55:600–607PubMedGoogle Scholar
  97. Miura A, Yamagata K, Kakei M, Hatakeyama H, Takahashi N, Fukui K, Nammo T, Yoneda K, Inoue Y, Sladek FM, Magnuson MA, Kasai H, Miyagawa J, Gonzalez FJ, Shimomura I (2006) Hepatocyte nuclear factor-4α is essential for glucose-stimulated insulin secretion by pancreatic β-cells. J Biol Chem 281:5246–5257PubMedGoogle Scholar
  98. Mochida S (2000) Protein-protein interactions in neurotransmitter release. Neurosci Res 36:175–182PubMedGoogle Scholar
  99. Monterrat C, Grise F, Benassy MN, Hemar A, Lang J (2007) The calcium-sensing protein synaptotagmin 7 is expressed on different endosomal compartments in endocrine, neuroendocrine cells or neurons but not on large dense core vesicles. Histochem Cell Biol 127:625–632PubMedGoogle Scholar
  100. Nagy G, Reim K, Matti U, Brose N, Binz T, Rettig J, Neher E, Sorensen JB (2004) Regulation of releasable vesicle pool sizes by protein kinase A-dependent phosphorylation of SNAβ-25. Neuron 41:417–429PubMedGoogle Scholar
  101. Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79:6712–6716PubMedPubMedCentralGoogle Scholar
  102. Nemoto T, Kimura R, Ito K, Tachikawa A, Miyashita Y, Iino M, Kasai H (2001) Sequential-replenishment mechanism of exocytosis in pancreatic acini. Nat Cell Biol 3:253–258PubMedGoogle Scholar
  103. Nemoto T, Kojima T, Oshima A, Bito H, Kasai H (2004) Stabilization of exocytosis by dynamic F-actin coating of zymogen granules in pancreatic acini. J Biol Chem 279:37544–37550PubMedGoogle Scholar
  104. Nevins AK, Thurmond DC (2005) A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis. J Biol Chem 280:1944–1952PubMedGoogle Scholar
  105. Ninomiya Y, Kishimoto T, Miyashita Y, Kasai H (1996) Ca2+-dependent exocytotic pathways in CHO fibroblasts revealed by capacitance measurement and a caged-Ca2+ compound. J Biol Chem 271:17751–17754PubMedGoogle Scholar
  106. Ninomiya Y, Kishimoto T, Yamazawa T, Ikeda H, Miyashita Y, Kasai H (1997) Kinetic diversity in the fusion of exocytotic vesicles. EMBO J 16:929–934PubMedPubMedCentralGoogle Scholar
  107. Oberhauser AF, Robinson I, Fernandez JM (1996) Simultaneous capacitance and amperometric measurements of exocytosis: a comparison. Biophys J 71:1131–1139PubMedPubMedCentralGoogle Scholar
  108. Obermuller S, Lindqvist A, Karanauskaite J, Galvanovskis J, Rorsman P, Barg S (2005) Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 118:4271–4282PubMedGoogle Scholar
  109. Ohara-Imaizumi M, Fujiwara T, Nakamichi Y, Okamura T, Akimoto Y, Kawai J, Matsushima S, Kawakami H, Watanabe T, Akagawa K, Nagamatsu S (2007) Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 177:695–705PubMedPubMedCentralGoogle Scholar
  110. Oheim M, Loerke D, Stuhmer W, Chow RH (1998) The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J 27:83–98PubMedGoogle Scholar
  111. Orci L, Malaisse-Lagae F, Ravazzola M, Amherdt M, Renold AE (1973) Exocytosis-endocytosis coupling in the pancreatic β cell. Science 181:561–562PubMedGoogle Scholar
  112. Oshima A, Kojima T, Dejima K, Hisa I, Kasai H, Nemoto T (2005) Two-photon microscopic analysis of acetylcholine-induced mucus secretion in guinea pig nasal glands. Cell Calcium 37:349–357PubMedGoogle Scholar
  113. Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S (2000) CAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2:805–811PubMedGoogle Scholar
  114. Persaud SJ, Jones PM, Howell SL (1990) Glucose-stimulated insulin secretion is not dependent on activation of protein kinase A. Biochem Biophys Res Com 173:833–839PubMedGoogle Scholar
  115. Pickett JA, Thorn P, Edwardson JM (2005) The plasma membrane Q-SNARE syntaxin 2 enters the zymogen granule membrane during exocytosis in the pancreatic acinar cell. J Biol Chem 280:1506–1511PubMedGoogle Scholar
  116. Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R (2006) MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281:26932–26942PubMedGoogle Scholar
  117. Plattner H, Artalejo AR, Neher E (1997) Ultrastructural organization of bovine chromaffin cell cortex-analysis by cryofixation and morphometry of aspects pertinent to exocytosis. J Cell Biol 139:1709–1717PubMedPubMedCentralGoogle Scholar
  118. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230PubMedGoogle Scholar
  119. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M (2009) miR-375 maintains normal pancreatic α- and β-cell mass. Proc Natl Acad Sci USA 106:5813–5818PubMedPubMedCentralGoogle Scholar
  120. Ravier MA, Nenquin M, Miki T, Seino S, Henquin JC (2009) Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 150:33–45PubMedGoogle Scholar
  121. Rebois RV, Reynolds EE, Toll L, Howard BD (1980) Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line. Biochemistry 19:1240–1248PubMedGoogle Scholar
  122. Reese C, Heise F, Mayer A (2005) Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 436:410–414PubMedGoogle Scholar
  123. Renstrom E, Eliasson L, Rorsman P (1997) Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic β-cells. J Physiol 502:105–118PubMedPubMedCentralGoogle Scholar
  124. Rizzoli SO, Betz WJ (2004) The structural organization of the readily releasable pool of synaptic vesicles. Science 303:2037–2039PubMedGoogle Scholar
  125. Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372:55–63PubMedGoogle Scholar
  126. Scepek S, Lindau M (1993) Focal exocytosis by eosinophils - compound exocytosis and cumulative fusion. EMBO J 12:1811–1817PubMedPubMedCentralGoogle Scholar
  127. Sedej S, Rose T, Rupnik M (2005) CAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. J Physiol 567:799–813PubMedPubMedCentralGoogle Scholar
  128. Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, Zhang C, Tamamoto A, Satoh T, Miyazaki J, Seino S (2007) Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci USA 104:19333–19338PubMedPubMedCentralGoogle Scholar
  129. Smith CB, Betz WJ (1996) Simultaneous independent measurement of endocytosis and exocytosis. Nature 380:531–534PubMedGoogle Scholar
  130. Speidel D, Salehi A, Obermueller S, Lundquist I, Brose N, Renstrom E, Rorsman P (2008) CAPS1 and CAPS2 regulate stability and recruitment of insulin granules in mouse pancreatic β cells. Cell Metab 7:57–67PubMedGoogle Scholar
  131. Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263:390–393PubMedGoogle Scholar
  132. Steyer JA, Horstmann H, Almers W (1997) Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388:474–478PubMedGoogle Scholar
  133. Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653PubMedGoogle Scholar
  134. Sumara G, Formentini I, Collins S, Sumara I, Windak R, Bodenmiller B, Ramracheya R, Caille D, Jiang H, Platt KA, Meda P, Aebersold R, Rorsman P, Ricci R (2009) Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. Cell 136:235–248PubMedPubMedCentralGoogle Scholar
  135. Takahashi N, Kadowaki T, Yazaki Y, Miyashita Y, Kasai H (1997) Multiple exocytotic pathways in pancreatic β cells. J Cell Biol 138:55–64PubMedPubMedCentralGoogle Scholar
  136. Takahashi N, Kadowaki T, Yazaki Y, Elis-Davies GCR, Miyashita Y, Kasai H (1999) Post-priming actions of ATP in the Ca2+ dependent exocytosis in pancreatic β-cells. Proc Natl Acad Sci USA 96:760–765PubMedPubMedCentralGoogle Scholar
  137. Takahashi N, Kishimoto T, Nemoto T, Kadowaki T, Kasai H (2002a) Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science 297:1349–1352PubMedGoogle Scholar
  138. Takahashi N, Nemoto T, Kiumra R, Tachikawa A, Miwa A, Okado H, Miyashita Y, Iino M, Kadowaki T, Kasai H (2002b) Two-photon excitation imaging of pancreatic islets with various fluorescent probes. Diabetes 51(Suppl 1):S25–S28PubMedGoogle Scholar
  139. Takahashi N, Hatakeyama H, Okado H, Miwa A, Kishimoto T, Kojima T, Abe T, Kasai H (2004) Sequential exocytosis of insulin granules is associated with redistribution of SNAP25. J Cell Biol 165:255–262PubMedPubMedCentralGoogle Scholar
  140. Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci USA 100:2070–2075PubMedPubMedCentralGoogle Scholar
  141. Tengholm A, Gylfe E (2009) Oscillatory control of insulin secretion. Mol Cell Endocrinol 297:58–72PubMedGoogle Scholar
  142. Thomas-Reetz AC, De Camilli P (1994) A role for synaptic vesicles in non-neuronal cells: clues from pancreatic β cells and from chromaffin cells. FASEB J 8:209–216PubMedGoogle Scholar
  143. Thorn P, Fogarty KE, Parker I (2004) Zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity. Proc Natl Acad Sci USA 101:6774–6779PubMedPubMedCentralGoogle Scholar
  144. Tomas A, Meda P, Regazzi R, Pessin JE, Halban PA (2008) Munc 18–1 and granuphilin collaborate during insulin granule exocytosis. Traffic 9:813–832PubMedGoogle Scholar
  145. Toonen RF, Kochubey O, De WH, Gulyas-Kovacs A, Konijnenburg B, Sorensen JB, Klingauf J, Verhage M (2006) Dissecting docking and tethering of secretory vesicles at the target membrane. EMBO J 25:3725–3737PubMedPubMedCentralGoogle Scholar
  146. Tsuboi T, Terakawa S, Scalettar BA, Fantus C, Roder J, Jeromin A (2002) Sweeping model of dynamin activity. Visualization of coupling between exocytosis and endocytosis under an evanescent wave microscope with green fluorescent proteins. J Biol Chem 277:15957–15961PubMedGoogle Scholar
  147. Tsuboi T, McMahon HT, Rutter GA (2004) Mechanisms of dense core vesicle recapture following “kiss and run” (“cavicapture”) exocytosis in insulin-secreting cells. J Biol Chem 279:47115–47124PubMedGoogle Scholar
  148. Vaag A, Henriksen JE, Madsbad S, Holm N, Beck-Nielsen H (1995) Insulin secretion, insulin action, and hepatic glucose production in identical twins discordant for non-insulin-dependent diabetes mellitus. J Clin Invest 95:690–698PubMedPubMedCentralGoogle Scholar
  149. Valverde I, Vandermeers A, Anjaneyulu R, Malaisse WJ (1979) Calmodulin activation of adenylate cyclase in pancreatic islets. Science 206:225–227PubMedGoogle Scholar
  150. Varadi A, Tsuboi T, Rutter GA (2005) Myosin Va transports dense core secretory vesicles in pancreatic MIN6 β-cells. Mol Biol Cell 16:2670–2680PubMedPubMedCentralGoogle Scholar
  151. Verhage M, Sorensen JB (2008) Vesicle docking in regulated exocytosis. Traffic 9:1414–1424PubMedGoogle Scholar
  152. Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388:593–598PubMedGoogle Scholar
  153. Wang Z, Oh E, Thurmond DC (2007) Glucose-stimulated Cdc42 signaling is essential for the second phase of insulin secretion. J Biol Chem 282:9536–9546PubMedPubMedCentralGoogle Scholar
  154. Yaekura K, Kakei M, Yada T (1996) CAMP-signaling pathway acts in selective synergism with glucose or tolbutamide to increase cytosolic Ca2+ in rat pancreatic β-cells. Diabetes 45:295–301PubMedGoogle Scholar
  155. Zhou Z, Misler S (1996) Amperometric detection of quantal secretion from patch-clamped rat pancreatic β-cells. J Biol Chem 270:270–277Google Scholar
  156. Zhou Z, Misler S, Chow RH (1996) Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys J 70:1543–1552PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Haruo Kasai
    • 1
  • Hiroyasu Hatakeyama
    • 1
  • Mitsuyo Ohno
    • 1
  • Noriko Takahashi
    • 1
  1. 1.Faculty of Medicine, Laboratory of Structural Physiology, Center for Disease Biology and IntegrativeThe University of TokyoHongo, TokyoJapan

Personalised recommendations