Advertisement

Toxins Produced by Marine Invertebrate and Vertebrate Animals: A Short Review

  • Valentin A. Stonik
  • Inna V. Stonik
Living reference work entry

Abstract

Polypeptide and low molecular weight toxins are widely found in marine invertebrates and vertebrates. These dangerous toxins cause painful and sometimes lethal stings. Due to their properties, some are of interest for application in medicine and as excellent biochemical tools in nerve-conduction studies and the discovery of new molecular targets for pharmacology.

Keywords

Venom Gland Triterpene Glycoside Peptide Toxin Poison Gland Amino Acid Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andreev Y, Kozlov S, Koshelev S, Ivanova E, Monastyrnaya M, Kozlovskaya E, Grishin E. Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid receptor 1 (TRPV1). J Biol Chem. 2008;283(35):23914–21.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bingham J-P, Baker M, Chun J. Analysis of a cone snail’s killer cocktail – the milked venom of Conus geographus. Toxicon. 2012;60(6):1166–70.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Brinkman D, Burnell J. Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. Toxicon. 2007;50:850–60.CrossRefPubMedGoogle Scholar
  4. Brinkman D, Burnell J. Biochemical and molecular characterization of cubozoan protein toxins. Toxicon. 2009;54:1162–73.CrossRefPubMedGoogle Scholar
  5. Brinkman D, Aziz A, Loukas A, Potriquet J, Seymour J, Mulvenna J. Venom proteome of the box Jellyfish Chironex fleckeri. PLoS One. 2012;7(12):e47866.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Cariello L, Zanetti L. Suberitine, the toxic protein from the sponge Suberites domuncula. Comp Biochem Physiol. 1979;64C:15–9.Google Scholar
  7. Chung D, Guar S, Bell J, Ramachandran J, Nadasdi L. Determination of disulfide bridge pattern in omega-conopeptides. Int J Pept Protein Res. 1995;46(3–4):320–5.PubMedGoogle Scholar
  8. Diochot S, Lazdunski M. Sea anemone toxins affecting potassium channels. In: Toxins as research tools, Progress in molecular and subcellular biology, vol. 46. Berlin: Springer; 2009. p. 99–122.CrossRefGoogle Scholar
  9. Diochot S, Baron A, Rash L, Deval E, Escoubas P, Scarzello S, Salinas M, Lazdunski M. Actually, a new sea anemone peptide, APETx2 inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J. 2004;23:1516–25.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Edo K, Sakai H, Nakagawa H, Hashimoto T, Shinohara M, Ohura K. Immunomodulatory activity of a pedicellarial venom lectin from the toxopneustid sea urchin, Toxopneustes pileolus. Toxin Revs. 2012;31(3–4):54–60.CrossRefGoogle Scholar
  11. Fedorov S, Dyshlovoy S, Monastyrnaya M, Shubina L, Leychenko E, Kozlovskaya E, Jin J, Kwak J, Bode A, Dong Z, Stonik V. The anticancer effects of actinoporin RTX-A from the sea anemone Heteractis crispa (=Radianthus macrodactylus). Toxicon. 2010;55(4):811–7.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Frazao B, Vasconcelos V, Antunes A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs. 2012;10:1812–51.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Ghadessy F, Chen D, Kini R, Chung D, Jeyaseelan K, Khoo H, Yuen R. Stonustoxin is a novel lethal factor from stonefish (Synanceia horrida) venom. cDNA cloning and characterization. J Biol Chem. 1996;271(41):25575–81.CrossRefPubMedGoogle Scholar
  14. Han T, Teichert R, Olivera B, Bulaj G. Conus venoms – a rich source of peptide-based therapeutics. Curr Pharm Des. 2008;14(24):2462–79.CrossRefPubMedGoogle Scholar
  15. Hao H, Bandyopadhyay P, Olivera B, Yandell M. Elucidation of the molecular envenomation strategy of the cone snail Conus geographus through transcriptome sequencing of its venom duct. BMC Genomics. 2012;13:284.CrossRefGoogle Scholar
  16. Honma T, Shiomi K. Peptide toxins in sea anemones: structural and functional aspects. Marine Biotechnol. 2006;8:1–10.CrossRefGoogle Scholar
  17. Ivanchina N, Kicha A, Stonik V. Steroid glycosides from marine organisms. Steroids. 2011;76(5):425–54.CrossRefPubMedGoogle Scholar
  18. Kaas Q, Yu R, Jin A-H, Dutertre S, Craik D. Conotoxins that confer therapeutic possibilities. Mar Drugs. 2012a;10(6):1244–65.Google Scholar
  19. Kaas Q, Yu R, Jin A, Dutertre S, Craik D. ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res. 2012b;40(D1):D325–30.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Kalinin V, Silchenko A, Avilov S, Stonik V, Smirnov A. Sea cucumber triterpene glycosides, the recent progress in structural elucidation and chemotaxonomy. Phytochem Rev. 2005;4:221–36.CrossRefGoogle Scholar
  21. Kalinin V, Aminin D, Avilov S, Silchenko A, Stonik V. Triterpene glycosides from sea cucumbers (Holothurioidea, Echinodermata) Biological activities and function. In: Atta-ur-Rahman, editor. Studies in natural products chemistry, vol. 35. Amsterdam: Elsevier; 2008. p. 135–96.Google Scholar
  22. Kicha A, Ivanchina N, Gorshkova I, Ponomarenko L, Likhatskaya G, Stonik V. The distribution of free sterols, polyhydroxysteroids in steroid glycosides from the starfish Marthasterias glycialis. Comp Biochem Physiol B. 2001;128(1):43–52.CrossRefPubMedGoogle Scholar
  23. Klotz U. Ziconotide – a novel neuron-specific calcium channel blocker for the intrathecal treatment of severe chronic pain – a short review. Int J Clin Pharmacol Ther. 2006;44(10):478–83.CrossRefPubMedGoogle Scholar
  24. Komori Y, Nagamizu M, Uchiya K, Nikai T, Tu A. Comparison of sea snake (Hydrophiidae) neurotoxins with cobra (naja) neurotoxin. Toxins. 2009;1(2):151–61.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Kristan K, Viego G, Dalla SM, Macek P, Anderluh G. Molecular mechanism of pore formation by actinoporins. Toxicon. 2009;54(8):1125–34.CrossRefPubMedGoogle Scholar
  26. Lazdunski M, Schweitz H, Diochot S, Beress L. Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4. J Biol Chem. 1998;273(12):6744–9.CrossRefPubMedGoogle Scholar
  27. Monostyrnaya M, Likhatskaya G, Zelepuga E, Kostina E, Trifonov E, Nurminski E, Kozlovska E. Actinoporins from the sea anemones, tropical Radianthus macrodactylus and northern Oulactis orientalis: Comparative analysis of structure–function relationships. Toxicon. 2010;56(8):1299–314.CrossRefGoogle Scholar
  28. Nagai H, Takuwa K, Nakao M, Sakamoto B, Crow G, et al. Isolation and characterization of a novel protein toxin from the Hawaiian box jellyfish (sea wasp) Carybdea alata. Biochem Biophys Res Commun. 2000;275:589–94.CrossRefPubMedGoogle Scholar
  29. Nakagawa H, Yamaguchi C, Sakai H, Kanemaru K, Hayashi H, Araki Y, Tomihara Y, Shinohara M, Ohura K, Kitagawa H. Biochemical and physiological properties of pedicellarial lectins from the toxopneustid sea urchins. J Nat Prod. 1999;8(3):297–308.Google Scholar
  30. Nakagawa H, Tanigawa T, Tomita K, Tomihara Y, Araki Y, Tachikawa E. Recent studies on the pathological effects of purified sea urchin toxins. J Toxicol Toxin Revs. 2003;22(4):633–49.CrossRefGoogle Scholar
  31. Norton RS. Structures of sea anemone toxins. Toxicon. 2009;54(8):1075–88.CrossRefPubMedGoogle Scholar
  32. Olivera B, Rivier J, Clark C, Ramilo C, Corpuz G, Abogadie F, Mena E, Woodward S, Hillyard D, Cruz L. Diversity of Conus neuropeptides. Science. 1990;249(4966):257–63.CrossRefPubMedGoogle Scholar
  33. Peigneur S, Billen B, Derua R, Waelkens E, Debaveye S, Béress L, Tytgat J. A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties. Biochem Pharmacol. 2011;82(1):81–90.CrossRefPubMedGoogle Scholar
  34. Ramilo C, Zafaralla G, Nadasdi L, Hammerland L, Yoshikami D, Gray W, Kristipati R, Ramachandran J. Miljanich. Novel.alpha.- and.omega.-conotoxins and Conus striatus venom. Biochemistry. 1992;31(41):9919–26.CrossRefPubMedGoogle Scholar
  35. Rodriguez A, Cassoli J, Sa F, Dong Z, de Freitas J, Pimenta A, de Lima M, Konno K, Lee S, Garateix A, Zaharenko J. Peptide fingerprinting of the neurotoxic fractions isolated from the secretions of sea anemones Stichodactyla helianthus and Bunodosoma granulifera. New members of the APETx-like family identified by a 454 pyrosequencing approach. Peptides. 2012;34:26–38.CrossRefPubMedGoogle Scholar
  36. Ruwabara S. Purification and properties of peditoxin and the structure of its prosthetic group, pedoxin, from the sea urchin Toxopneustes pileolus (Lamark). J Biol Chem. 1984;269(43):26734–8.Google Scholar
  37. Shiomi K, Midorikawa S, Ishida M, Nagashima Y, Nagai H. Plancitoxins, lethal factors from the crown-of-thorns starfish Acanthaster planci, are deoxyribonucleases. Toxicon. 2004;44(5):499–506.CrossRefPubMedGoogle Scholar
  38. Spencer V, Garsky A, Liang M, Leitl M, Cato S, Cook S, Kane S, Urban M. Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2 Br. J Pharmacol. 2010;161(4):950–60.Google Scholar
  39. Stonik V. Marine polar steroids. Russ Chem Rev. 2001;70(8):774–817.CrossRefGoogle Scholar
  40. Stonik V, Kalinin V, Avilov S. Toxins from sea cucumbers (holothuroids):chemical structures, taxonomic distribution, biosynthesis and evolution. J Nat Toxins. 1999;8:235–48.PubMedGoogle Scholar
  41. Terlau H, Olivera B. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev. 2004;84:41–68.CrossRefPubMedGoogle Scholar
  42. Thompson M, Gallimore W, Townsend M, Chambers N, Williams L. Bioactivity of amphitoxin, the major constituent of the Jamaican sponge Amphimedon compressa. Chem Biodivers. 2010;7(8):1904–10.CrossRefPubMedGoogle Scholar
  43. Tibballs J, Li R, Tibballs H, Gershwin L, Winkel K. Australian carybdeid jellyfish causing “Irukandji syndrom”. Toxicon. 2012;59(6):617–25.CrossRefPubMedGoogle Scholar
  44. Tkacheva E, Leychenko E, Monastyrnaya M, Issaeva M, Zelepuga E, Anastuk S, Dmitrenok P, Kozlovskaya E. New actinoporins from sea anemone Heteractis crispa: cloning and functional expression. Biochemistry. 2011;76(10):1131–9.PubMedGoogle Scholar
  45. Tu, A.T. Sea snakes and their venoms. Alaken Inc., Fort Collins, Colorado, USA, 2011, pp. 189.Google Scholar
  46. Tucker S, McClelland D, Jaspars M, Sepcic K, MacEwan D, Scott R. The influence of alkyl pyridinium sponge toxins on membrane properties, cytotoxicity, transfection and protein expression in mammalian cells. Biochim Biophys Acta. 2003;1614(2):171–81.CrossRefPubMedGoogle Scholar
  47. Wanke E, Zaharenko A, Redaekki E, Schiavon E. Action of sea anemone type 1 neurotoxins on voltage-gated sodium channel isoforms. Toxicon. 2009;54(8):1102–11.CrossRefPubMedGoogle Scholar
  48. Williams J, Jason A, Day M, Heavner J. Ziconotide: an update and review. Expert Opin Pharmacother. 2008;9(9):1575–83.CrossRefPubMedGoogle Scholar
  49. Yasunobu KT, Norton TR, Reimer NS, Yasunobu CL. Amino acid sequence of the Anthopleura xanthogrammica heart stimulant, anthopleurin-B. J Biol Chem. 1985;260(15):8690–3.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.G.B. Elyakov Pacific Institute of Bioorganic ChemistryFar Eastern Brunch, Russian Academy of SciencesVladivostokRussia
  2. 2.AV Zhirmunsky Institute of Marine BiologyFar Eastern Brunch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations