Snake Venom Peptidomics

  • Alexandre Keiji Tashima
  • André Zelanis
Living reference work entry


Even though the beginning of the studies of snake venom peptides is strongly correlated to the first discoveries of bradykinin-potentiating peptides, in the mid-twentieth century, snake venom peptidomics is still in its infancy. Over the last decade, the development of mass spectrometry, transcriptomics, and bioinformatics and the application of these tools to the study of snake venoms have unveiled the proteomes of several species and produced considerable knowledge of diverse aspects of snake biology. Though the studies of snake venomics are growing rapidly, snake venom peptidomics is still an emerging research field due to specificities of snake venoms and of peptidomic analysis. In this chapter, the main findings of snake venom peptidomics research are highlighted, and the strategies of venom preparation and mass spectrometry (MS) analysis, de novo sequencing of MS spectra, and the integration of “omics” strategies for exploring peptidomes are presented and discussed. The understanding of snake venom peptidomes could help to design specific protocols to avoid undesirable proteolysis of venom components, hence, improving the preparation of immunization mixtures used for antivenom production. As more sophisticated methods of analysis and high-throughput approaches are used, a number of new peptides will be discovered, and more importantly, the biological meaning of snake venom peptidomes will be revealed.


Snake Venom Venom Gland Mass Spectrometry Spectrum Pyroglutamic Acid Venom Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Borges D, Perez-Riverol Y, Nogueira FCS, Domont GB, Noda J, Da Veiga LF, et al. Effectively addressing complex proteomic search spaces with peptide spectrum matching. Bioinformatics. 2013;29(10):1343–4.PubMedCrossRefGoogle Scholar
  2. Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon. 2013;75:44–62.PubMedCrossRefGoogle Scholar
  3. Ching AT, Rocha MM, Paes Leme AF, Pimenta DC, de Fátima D, Furtado M, Serrano SM, et al. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy’s (venom) gland transcriptome. FEBS Lett. 2006;580(18):4417–22.PubMedCrossRefGoogle Scholar
  4. Cidade D, Simão T, Dávila A, Wagner G, Junqueira-de-Azevedo I, Ho P, et al. Bothrops jararaca venom gland transcriptome: analysis of the gene expression pattern. Toxicon. 2006;48(4):437–61.PubMedCrossRefGoogle Scholar
  5. Corrêa-Netto C, Junqueira-de-Azevedo IDLM, Silva DA, Ho PL, Leitão-de-Araújo M, Alves MLM, et al. Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes. Micrurus altirostris and M. corallinus. J Proteomics. 2011;74(9):1795–809.PubMedCrossRefGoogle Scholar
  6. Dias GS, Kitano ES, Pagotto AH, Sant’anna SS, Rocha MM, Zelanis A, et al. Individual variability in the venom proteome of juvenile Bothrops jararaca specimens. J Proteome Res. 2013;12(10):4585–98.PubMedCrossRefGoogle Scholar
  7. Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, et al. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake. Crotalus simus simus. BMC Genomics. 2013;14:234.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Edman P, Begg G. A protein sequenator. Eur J Biochem. 1967;1(1):80–91.PubMedCrossRefGoogle Scholar
  9. Elias J, Gygi S. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods. 2007;4(3):207–14.PubMedCrossRefGoogle Scholar
  10. Favreau P, Cheneval O, Menin L, Michalet S, Gaertner H, Principaud F, et al. The venom of the snake genus Atheris contains a new class of peptides with clusters of histidine and glycine residues. Rapid Commun Mass Spectrom. 2007;21(3):406–12.PubMedCrossRefGoogle Scholar
  11. Fernandez Ocaña M, Jarvis J, Parker R, Bramley PM, Halket JM, Patel RK, et al. C-terminal sequencing by mass spectrometry: application to gelatine-derived proline-rich peptides. Proteomics. 2005;5(5):1209–16.PubMedCrossRefGoogle Scholar
  12. Ferreira SH. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. Br J Pharmacol Chemother. 1965;24:163–9.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Ferreira SH, Rocha e Silva M. Potentiation of bradykinin and eledoisin by BPF (bradykinin potentiating factor) from Bothrops jararaca venom. Experientia. 1965;21(6):347–9.PubMedCrossRefGoogle Scholar
  14. Ferreira S, Bartelt D, Greene L. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry. 1970a;9(13):2583–93.PubMedCrossRefGoogle Scholar
  15. Ferreira SH, Greene LH, Alabaster VA, Bakhle YS, Vane JR. Activity of various fractions of bradykinin potentiating factor against angiotensin I converting enzyme. Nature. 1970b;225(5230):379–80.PubMedCrossRefGoogle Scholar
  16. Hayashi M, Murbach A, Ianzer D, Portaro F, Prezoto B, Fernandes B, et al. The C-type natriuretic peptide precursor of snake brain contains highly specific inhibitors of the angiotensin-converting enzyme. J Neurochem. 2003;85(4):969–77.PubMedCrossRefGoogle Scholar
  17. Higuchi S, Murayama N, Saguchi K, Ohi H, Fujita Y, Camargo ACM, et al. Bradykinin-potentiating peptides and C-type natriuretic peptides from snake venom. Immunopharmacology. 1999;44(1–2):129–35.PubMedCrossRefGoogle Scholar
  18. Ianzer D, Konno K, Marques-Porto R, Vieira Portaro F, Stöcklin R, Martins de Camargo A, et al. Identification of five new bradykinin potentiating peptides (BPPs) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two-step liquid chromatography. Peptides. 2004;25(7):1085–92.PubMedCrossRefGoogle Scholar
  19. Juárez P, Sanz L, Calvete J. Snake venomics: characterization of protein families in Sistrurus barbouri venom by cysteine mapping, N-terminal sequencing, and tandem mass spectrometry analysis. Proteomics. 2004;4(2):327–38.PubMedCrossRefGoogle Scholar
  20. Kinter M, Sherman NE. Collisionally induced dissociation of protonated peptide ions and the interpretation of product ion spectra. Protein sequencing and identification using tandem mass spectrometry. New York: Wiley; 2000. p. 301.Google Scholar
  21. Kloog Y, Ambar I, Sokolovsky M, Kochva E, Wollberg Z, Bdolah A. Sarafotoxin, a novel vasoconstrictor peptide: phosphoinositide hydrolysis in rat heart and brain. Science. 1988;242(4876):268–70.PubMedCrossRefGoogle Scholar
  22. Konno K, Picolo G, Gutierrez VP, Brigatte P, Zambelli VO, Camargo ACM, et al. Crotalphine, a novel potent analgesic peptide from the venom of the South American rattlesnake Crotalus durissus terrificus. Peptides. 2008;29(8):1293–304.PubMedCrossRefGoogle Scholar
  23. Lipkind G, Gong Q, Steiner DF. Molecular modeling of the substrate specificity of prohormone convertases SPC2 and SPC3. J Biol Chem. 1995;270(22):13277–84.PubMedCrossRefGoogle Scholar
  24. Lomonte B, Fernández J, Sanz L, Angulo Y, Sasa M, Gutiérrez JM, et al. Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics. J Proteomics. 2014;105C:323–39.CrossRefGoogle Scholar
  25. Marques-Porto R, Lebrun I, Pimenta D. Self-proteolysis regulation in the Bothrops jararaca venom: the metallopeptidases and their intrinsic peptidic inhibitor. Comp Biochem Physiol C Toxicol Pharmacol. 2008;147(4):424–33.PubMedCrossRefGoogle Scholar
  26. McCleary RJ, Kini RM. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon. 2013;62:56–74.PubMedCrossRefGoogle Scholar
  27. Menin L, Perchuć A, Favreau P, Perret F, Michalet S, Schöni R, et al. High throughput screening of bradykinin-potentiating peptides in Bothrops moojeni snake venom using precursor ion mass spectrometry. Toxicon. 2008;51(7):1288–302.PubMedCrossRefGoogle Scholar
  28. Murayama N, Hayashi M, Ohi H, Ferreira L, Hermann V, Saito H, et al. Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin-potentiating peptides and a C-type natriuretic peptide. Proc Natl Acad Sci U S A. 1997;94(4):1189–93.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Odell G, Ferry P, Vick L, Fenton A, Decker L, Cowell R, et al. Citrate inhibition of snake venom proteases. Toxicon. 1998;36(12):1801–6.PubMedCrossRefGoogle Scholar
  30. Ohno M, Ménez R, Ogawa T, Danse JM, Shimohigashi Y, Fromen C, et al. Molecular evolution of snake toxins: is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? Prog Nucleic Acid Res Mol Biol. 1998;59:307–64.PubMedCrossRefGoogle Scholar
  31. Ondetti MA, Williams NJ, Sabo EF, Pluscec J, Weaver ER, Kocy O. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry. 1971;10(22):4033–9.PubMedCrossRefGoogle Scholar
  32. Pimenta DC, Lebrun I. Cryptides: buried secrets in proteins. Peptides. 2007;28(12):2403–10.PubMedCrossRefGoogle Scholar
  33. Pimenta D, Prezoto B, Konno K, Melo R, Furtado M, Camargo A, et al. Mass spectrometric analysis of the individual variability of Bothrops jararaca venom peptide fraction. Evidence for sex-based variation among the bradykinin-potentiating peptides. Rapid Commun Mass Spectrom. 2007;21(6):1034–42.PubMedCrossRefGoogle Scholar
  34. Raffin-Sanson ML, de Keyzer Y, Bertagna X. Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur J Endocrinol. 2003;149(2):79–90.PubMedCrossRefGoogle Scholar
  35. Robeva A, Politi V, Shannon J, Bjarnason J, Fox J. Synthetic and endogenous inhibitors of snake venom metalloproteinases. Biomed Biochim Acta. 1991;50(4–6):769–73.PubMedGoogle Scholar
  36. Samir P, Link AJ. Analyzing the cryptome: uncovering secret sequences. AAPS J. 2011;13(2):152–8.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Seidler J, Zinn N, Boehm ME, Lehmann WD. De novo sequencing of peptides by MS/MS. Proteomics. 2010;10(4):634–49.PubMedCrossRefGoogle Scholar
  38. Sousa J, Monteiro R, Castro H, Zingali R. Proteolytic action of Bothrops jararaca venom upon its own constituents. Toxicon. 2001;39(6):787–92.PubMedCrossRefGoogle Scholar
  39. Standing KG. Peptide and protein de novo sequencing by mass spectrometry. Curr Opin Struct Biol. 2003;13(5):595–601.PubMedCrossRefGoogle Scholar
  40. Tashima AK, Sanz L, Camargo AC, Serrano SM, Calvete JJ. Snake venomics of the Brazilian pitvipers Bothrops cotiara and Bothrops fonsecai. Identification of taxonomy markers. J Proteomics. 2008;71(4):473–85.PubMedCrossRefGoogle Scholar
  41. Tashima AK, Zelanis A, Kitano ES, Ianzer D, Melo RL, Rioli V, et al. Peptidomics of three Bothrops snake venoms: insights into the molecular diversification of proteomes and peptidomes. Mol Cell Proteomics. 2012;11(11):1245–62.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Valente R, Guimarães P, Junqueira M, Neves-Ferreira A, Soares M, Chapeaurouge A, et al. Bothrops insularis venomics: a proteomic analysis supported by transcriptomic-generated sequence data. J Proteomics. 2009;72(2):241–55.PubMedCrossRefGoogle Scholar
  43. Wattenberg A, Organ AJ, Schneider K, Tyldesley R, Bordoli R, Bateman RH. Sequence dependent fragmentation of peptides generated by MALDI quadrupole time-of-flight (MALDI Q-TOF) mass spectrometry and its implications for protein identification. J Am Soc Mass Spectrom. 2002;13(7):772–83.PubMedCrossRefGoogle Scholar
  44. Wermelinger L, Dutra D, Oliveira-Carvalho A, Soares M, Bloch CJ, Zingali R. Fast analysis of low molecular mass compounds present in snake venom: identification of ten new pyroglutamate-containing peptides. Rapid Commun Mass Spectrom. 2005;19(12):1703–8.PubMedCrossRefGoogle Scholar
  45. WHO. Preparation and storage of snake venom. In: WHO, editor. WHO guidelines for the production, control and regulation of snake antivenom immunoglobulins. Geneva: WHO Press; 2010. p. 134.Google Scholar
  46. Wu C, Wu F, Pan J, Morser J, Wu Q. Furin-mediated processing of Pro-C-type natriuretic peptide. J Biol Chem. 2003;278(28):25847–52.PubMedCrossRefGoogle Scholar
  47. Yen C-Y, Russell S, Mendoza AM, Meyer-Arendt K, Sun S, Cios KJ, et al. Improving sensitivity in shotgun proteomics using a peptide-centric database with reduced complexity: protease cleavage and SCX elution rules from data mining of MS/MS spectra. Anal Chem. 2006;78(4):1071–84.PubMedCrossRefGoogle Scholar
  48. Zelanis A, Tashima AK. Unraveling snake venom complexity with ‘omics’ approaches: challenges and perspectives. Toxicon. 2014;87:131–4.PubMedCrossRefGoogle Scholar
  49. Zelanis A, Tashima AK, Rocha MM, Furtado MF, Camargo AC, Ho PL, et al. Analysis of the ontogenetic variation in the venom proteome/peptidome of Bothrops jararaca reveals different strategies to deal with prey. J Proteome Res. 2010;9(5):2278–91.PubMedCrossRefGoogle Scholar
  50. Zelanis A, Andrade-Silva D, Rocha MM, Furtado MF, Serrano SM, Junqueira-de-Azevedo IL, et al. A transcriptomic view of the proteome variability of newborn and adult Bothrops jararaca snake venoms. PLoS Negl Trop Dis. 2012;6(3):e1554.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Departamento de Bioquímica, Escola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo-SPBrazil
  2. 2.Instituto de Ciência e TecnologiaUniversidade Federal de São Paulo (ICT-UNIFESP)São José dos Campos-SPBrazil

Personalised recommendations