Structure-Function Relationship of Modular Domains of P-III Class Snake Venom Metalloproteinases

  • Soichi Takeda
Living reference work entry


Snake venom metalloproteinases (SVMPs) are among the most abundant toxins in many venoms of the Viperidae. SVMPs are primarily responsible for the hemorrhagic activity of venoms and may also interfere with the hemostatic system. Phylogenetically, SVMPs are most closely related to the mammalian ADAM (a disintegrin and metalloproteinase) protein family, a major class of membrane-bound sheddases. Together with ADAMs and the related ADAMTS (ADAM with thrombospondin type-1 motif) family of proteins, SVMPs constitute the M12B clan of zinc metalloproteinases. SVMPs are zinc-dependent proteinase ranging in size from 20 to 110 kDa, and they are categorized into classes P-I, P-II, and P-III according to their domain organization. Although all SVMPs share a catalytic metalloproteinase (M)-domain structure that is topologically similar to those of matrix metalloproteinases (MMPs), large P-III SVMPs have a modular structure with multiple non-catalytic ancillary domains that are not found in MMPs. P-III SVMPs generally have higher hemorrhagic activity and more diverse functions than P-I SVMPs, which only contain the metalloproteinase domain, suggesting that the non-catalytic domains are functionally important. Recent crystallographic studies of various subclasses of P-III SVMPs and mammalian ADAM/ADAMTS proteins have shed new light on the structure-function relationships of these modular proteinases. This chapter will focus on the three-dimensional structures of P-III SVMPs, particularly their non-catalytic domains, which may participate in directing these proteinases to specific substrates.


Disulfide Bond Snake Venom Active Site Cleft ADAMTS Protein Hemorrhagic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akiyama M, Takeda S, Kokame K, Takagi J, Miyata T. Crystal structures of the non-catalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor. Proc Natl Acad Sci U S A. 2009;106(46):19274–9.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Apte SS. A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily-functions and mechanisms. J Biol Chem. 2009;284(46):31493–7.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bjarnason JB, Fox JW. Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther. 1994;62(3):325–72.PubMedCrossRefGoogle Scholar
  4. Bjarnason JB, Fox JW. Snake venom metalloendopeptidases: reprolysins. Methods Enzymol. 1995;248:345–68.PubMedCrossRefGoogle Scholar
  5. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997;385(6618):729–33.PubMedCrossRefGoogle Scholar
  6. Blobel CP, Wolfsberg TG, Turck CW, Myles DG, Primakoff P, White JM. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature. 1992;356(6366):248–52.PubMedCrossRefGoogle Scholar
  7. Calvete JJ. Brief history and molecular determinants of snake venom disintegrin evolution. In: Kini R, Clemetson KJ, Markland FS, McLane MA, Morita T, editors. Toxins and hemostasis: from bench to bedside. Dordrecht: Springer Science+Business Media; 2010a. p. 285–300.CrossRefGoogle Scholar
  8. Calvete JJ. Snake venomics, antivenomics, and venom phenotyping: the menage a trois of proteomic tools aimed at understanding the biodiversity of venoms. In: Kini R, Clemetson KJ, Markland FS, McLane MA, Morita T, editors. Toxins and hemostasis: from bench to bedside. Dordrecht: Springer Science+Business Media; 2010b. p. 45–72.CrossRefGoogle Scholar
  9. Calvete JJ, Juarez P, Sanz L. Snake venomics. Strategy and applications. J Mass Spectrom. 2007;42(11):1405–14.PubMedCrossRefGoogle Scholar
  10. Clemetson KJ. Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon. 2010;56(7):1236–46.PubMedCrossRefGoogle Scholar
  11. de Groot R, Bardhan A, Ramroop N, Lane DA, Crawley JT. Essential role of the disintegrin-like domain in ADAMTS13 function. Blood. 2009;113(22):5609–16.PubMedGoogle Scholar
  12. Doley R, Kini RM. Protein complexes in snake venom. Cell Mol Life Sci. 2009;66(17):2851–71.PubMedCrossRefGoogle Scholar
  13. Düsterhöft S, Jung S, Hung C, Tholey A, Sönnichsen F, Grötzinger J, et al. Membrane-proximal domain of a disintegrin and metalloprotease-17 represents the putative molecular switch of its shedding activity operated by protein-disulfide isomerase. J Am Chem Soc. 2013;135(15):5776–81.PubMedCrossRefGoogle Scholar
  14. Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med. 2009;29(5):258–89.Google Scholar
  15. Fox JW, Serrano SM. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005;45(8):969–85.PubMedCrossRefGoogle Scholar
  16. Fox JW, Serrano SM. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures. Proteomics. 2008a;8(4):909–20.PubMedCrossRefGoogle Scholar
  17. Fox JW, Serrano SM. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008b;275(12):3016–30.PubMedCrossRefGoogle Scholar
  18. Fox JW, Serrano SM. Timeline of key events in snake venom metalloproteinase research. J Proteomics. 2009;72(2):200–9.PubMedCrossRefGoogle Scholar
  19. Fujii Y, Okuda D, Fujimoto Z, Horii K, Morita T, Mizuno H. Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD. J Mol Biol. 2003;332(5):1115–22.PubMedCrossRefGoogle Scholar
  20. Gerhardt S, Hassall G, Hawtin P, McCall E, Flavell L, Minshull C, et al. Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains. J Mol Biol. 2007;373(4):891–902.PubMedCrossRefGoogle Scholar
  21. Gomis-Ruth FX. Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol. 2003;24(2):157–202.PubMedCrossRefGoogle Scholar
  22. Gomis-Ruth FX. Catalytic domain architecture of metzincin metalloproteases. J Biol Chem. 2009;284(23):15353–7.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Gomis-Ruth FX, Kress LF, Bode W. First structure of a snake venom metalloproteinase: a prototype for matrix metalloproteinases/collagenases. EMBO J. 1993;12(11):4151–7.PubMedCentralPubMedGoogle Scholar
  24. Gomis-Ruth FX, Kress LF, Kellermann J, Mayr I, Lee X, Huber R, et al. Refined 2.0 A X-ray crystal structure of the snake venom zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin. J Mol Biol. 1994;239(4):513–44.PubMedCrossRefGoogle Scholar
  25. Gomis-Ruth FX, Botelho TO, Bode W. A standard orientation for metallopeptidases. Biochim Biophys Acta. 2012;1824(1):157–63.PubMedCrossRefGoogle Scholar
  26. Grams F, Huber R, Kress LF, Moroder L, Bode W. Activation of snake venom metalloproteinases by a cysteine switch-like mechanism. FEBS Lett. 1993;335(1):76–80.PubMedCrossRefGoogle Scholar
  27. Guan HH, Goh KS, Davamani F, Wu PL, Huang YW, Jeyakanthan J, et al. Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of adamalysin family proteins. J Struct Biol. 2009;169(3):294–303.PubMedGoogle Scholar
  28. Gutierrez JM, Rucavado A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie. 2000;82(9–10):841–50.PubMedCrossRefGoogle Scholar
  29. Gutierrez JM, Rucavado A, Escalante T, Diaz C. Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon. 2005;45(8):997–1011.PubMedCrossRefGoogle Scholar
  30. Igarashi T, Araki S, Mori H, Takeda S. Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins. FEBS Lett. 2007;581(13):2416–22.PubMedCrossRefGoogle Scholar
  31. Junqueira-de-Azevedo Ide L, Ho PL. A survey of gene expression and diversity in the venom glands of the pitviper snake Bothrops insularis through the generation of expressed sequence tags (ESTs). Gene. 2002;299(1–2):279–91.PubMedCrossRefGoogle Scholar
  32. Kang TS, Georgieva D, Genov N, Murakami MT, Sinha M, Kumar RP, et al. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 2011;278:4544–76.PubMedCrossRefGoogle Scholar
  33. Liu H, Shim AH, He X. Structural characterization of the ectodomain of a disintegrin and metalloproteinase-22 (ADAM22), a neural adhesion receptor instead of metalloproteinase: insights on ADAM function. J Biol Chem. 2009;284(42):29077–86.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Markland Jr FS, Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3–18.PubMedCrossRefGoogle Scholar
  35. Mochizuki S, Okada Y. ADAMs in cancer cell proliferation and progression. Cancer Sci. 2007;98(5):621–8.PubMedCrossRefGoogle Scholar
  36. Morita T. Proteases which activate factor X. In: Bailey GS, editor. Enzymes from snake venom. Fort Collins: Alaken; 1998. p. 179–208.Google Scholar
  37. Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, Carter HL, et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997;385(6618):733–6.PubMedCrossRefGoogle Scholar
  38. Moura-da-Silva AM, Della-Casa MS, David AS, Assakura MT, Butera D, Lebrun I, et al. Evidence for heterogeneous forms of the snake venom metalloproteinase jararhagin: a factor contributing to snake venom variability. Arch Biochem Biophys. 2003;409(2):395–401.PubMedCrossRefGoogle Scholar
  39. Moura-da-Silva AM, Butera D, Tanjoni I. Importance of snake venom metalloproteinases in cell biology: effects on platelets, inflammatory and endothelial cells. Curr Pharm Des. 2007;13(28):2893–905.PubMedCrossRefGoogle Scholar
  40. Muniz JR, Ambrosio AL, Selistre-de-Araujo HS, Cominetti MR, Moura-da-Silva AM, Oliva G, et al. The three-dimensional structure of bothropasin, the main hemorrhagic factor from Bothrops jararaca venom: insights for a new classification of snake venom metalloprotease subgroups. Toxicon. 2008;52(7):807–16.PubMedCrossRefGoogle Scholar
  41. Murphy G. The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer. 2008;8(12):929–41.PubMedCrossRefGoogle Scholar
  42. Shimokawa K, Shannon JD, Jia LG, Fox JW. Sequence and biological activity of catrocollastatin-C: a disintegrin-like/cysteine-rich two-domain protein from Crotalus atrox venom. Arch Biochem Biophys. 1997;343(1):35–43.PubMedCrossRefGoogle Scholar
  43. Siigur J, Siigur E. Activation of factor X by snake venom proteases. In: Kini R, Clemetson KJ, Markland FS, McLane MA, Morita T, editors. Toxins and hemostasis: from bench to bedside. New York: Springer; 2010. p. 447–64.CrossRefGoogle Scholar
  44. Takeda S. Three-dimensional domain architecture of the ADAM family proteinases. Semin Cell Dev Biol. 2009;20:146–52.PubMedCrossRefGoogle Scholar
  45. Takeda S. Structural aspects of the factor X activator RVV-X from Russell’s viper venom. In: Kini R, Clemetson KJ, Markland FS, McLane MA, Morita T, editors. Toxins and hemostasis: from bench to bedside. Dordrecht: Springer Science+Business Media; 2010. p. 465–84.CrossRefGoogle Scholar
  46. Takeda S. VAP1: snake venom homolog of mammalian ADAMs. In: Messerschmidt A, editor. Handbook of metalloproteins. Chichester: Wiley; 2011. p. 699–713.Google Scholar
  47. Takeda S, Igarashi T, Mori H, Araki S. Crystal structures of VAP1 reveal ADAMs’ MDC domain architecture and its unique C-shaped scaffold. EMBO J. 2006;25(11):2388–96.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Takeda S, Igarashi T, Mori H. Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases. FEBS Lett. 2007;581(30):5859–64.PubMedCrossRefGoogle Scholar
  49. Takeda S, Takeya H, Iwanaga S. Snake venom metalloproteinases: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochim Biophys Acta. 2012;1824(1):164–76.PubMedCrossRefGoogle Scholar
  50. Takeya H, Nishida S, Miyata T, Kawada S, Saisaka Y, Morita T, et al. Coagulation factor X activating enzyme from Russell’s viper venom (RVV-X). A novel metalloproteinase with disintegrin (platelet aggregation inhibitor)-like and C-type lectin-like domains. J Biol Chem. 1992;267(20):14109–17.PubMedGoogle Scholar
  51. Takeya H, Nishida S, Nishino N, Makinose Y, Omori-Satoh T, Nikai T, et al. Primary structures of platelet aggregation inhibitors (disintegrins) autoproteolytically released from snake venom hemorrhagic metalloproteinases and new fluorogenic peptide substrates for these enzymes. J Biochem (Tokyo). 1993;113(4):473–83.Google Scholar
  52. Tans G, Rosing J. Snake venom activators of factor X: an overview. Haemostasis. 2001;31(3–6):225–33.PubMedGoogle Scholar
  53. Usami Y, Fujimura Y, Miura S, Shima H, Yoshida E, Yoshioka A, et al. A 28 kDa-protein with disintegrin-like structure (jararhagin-C) purified from Bothrops jararaca venom inhibits collagen- and ADP-induced platelet aggregation. Biochem Biophys Res Commun. 1994;201(1):331–9.PubMedCrossRefGoogle Scholar
  54. Yagami-Hiromasa T, Sato T, Kurisaki T, Kamijo K, Nabeshima Y, Fujisawa-Sehara A. A metalloprotease-disintegrin participating in myoblast fusion. Nature. 1995;377(6550):652–6.PubMedCrossRefGoogle Scholar
  55. Yamada D, Morita T. Purification and characterization of a Ca2+ -dependent prothrombin activator, multactivase, from the venom of Echis multisquamatus. J Biochem (Tokyo). 1997;122(5):991–7.CrossRefGoogle Scholar
  56. Yamada D, Sekiya F, Morita T. Isolation and characterization of carinactivase, a novel prothrombin activator in Echis carinatus venom with a unique catalytic mechanism. J Biol Chem. 1996;271(9):5200–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Cardiac PhysiologyNational Cerebral and Cardiovascular Center Research InstituteSuita, OsakaJapan

Personalised recommendations