Skip to main content

Scorpion Venom Gland Transcriptomics and Proteomics: An Overview

  • 394 Accesses

Abstract

Recently, the OMIC technologies of proteomics and transcriptomics have been extensively applied to deeply understand the structure and molecular diversity of animal venoms from various species including scorpions. During the last decade, proteomics analysis of 27 different scorpion species has been conducted and revealed the complexity of scorpion venoms. Mass fingerprinting data clearly showed noticeable differences in the number of venom molecules (ranging from 60 to 665) between scorpion species. Also, as a complementary approach, the transcriptomics analysis of venom glands from 20 different scorpion species resulted in about 73,000 assigned ESTs which mainly correspond to neurotoxins, antimicrobial peptides, housekeeping proteins, hypothetical proteins, and a large number of unassigned types of scorpion venom peptides or proteins. The employment of transcriptomics in scorpion venomics is adding new insights about venom diversity and biological processes of venom gland as well as facilitating the identification of various novel biologically active peptides. In this chapter, scorpion gland transcriptomics will be mainly discussed with a brief introduction about scorpion venom and its proteomics analysis.

Keywords

  • cDNA library
  • Proteomics
  • Scorpion venomics
  • Transcriptomics
  • Venom gland

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abdel-Rahman MA, Omran MAA, Abdel-Nabi IM, Ueda H, McVean A. Intraspecific variation in the Egyptian scorpion Scorpio maurus palmatus venom collected from different biotopes. Toxicon. 2009;53:349–59.

    CAS  PubMed  CrossRef  Google Scholar 

  • Abdel-Rahman MA, Quintero-Hernandez V, Possani LD. Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae). Toxicon. 2013;74:193–207.

    CAS  PubMed  CrossRef  Google Scholar 

  • Abdel-Rahman MA, Harrison PL, Strong PN. Snapshots of scorpion venomics. J. Arid Environ. 2015;170–176.

    Google Scholar 

  • Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: a review. Peptides. 2014;51:35–45.

    CAS  PubMed  CrossRef  Google Scholar 

  • Almeida DD, Scortecci KC, Kobashi LS, Agnez-Lima LF, Medeiros SR, Silva-Junior AA, et al. Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. BMC Genomics. 2012; 13:362.

    Google Scholar 

  • Alvarenga E, Mendes T, Magalhaes B, Siqueira F, Dantas A, Barroca T, Horta C, Kalapothakis E. Transcriptome analysis of the Tityus serrulatus scorpion venom gland. Open J Genet. 2012;2:210–20.

    CAS  CrossRef  Google Scholar 

  • Barona J, Batista CV, Zamudio FZ, Gomez-Lagunas F, Wanke E, Otero R, Possani LD. Proteomic analysis of the venom and characterization of toxins specific for Na+- and K+-channels from the Colombian scorpion Tityus pachyurus. Biochim Biophys Acta. 2006;1764:76–84.

    CAS  PubMed  CrossRef  Google Scholar 

  • Batista CV, del Pozo L, Zamudio FZ, Contreras S, Becerril B, Wanke E, Possani LD. Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins. J Chromatogr B. 2004;803:55–66.

    CAS  CrossRef  Google Scholar 

  • Batista CV, D’Suze G, Gomez-Lagunas F, Zamudio FZ, Encarnacion S, Sevcik C, Possani LD. Proteomic analysis of Tityus discrepans scorpion venom and amino acid sequence of novel toxins. Proteomics. 2006;6:3718–3727.

    CAS  PubMed  CrossRef  Google Scholar 

  • Batista CV, Roman-Gonzalez SA, Salas-Castillo SP, Zamudio FZ, Gomez-Lagunas F, Possani LD. Proteomic analysis of the venom from the scorpion Tityus stigmurus: biochemical and physiological comparison with other Tityus species. Comp Biochem Physiol C Toxicol Pharmacol. 2007;146:147–157.

    CAS  PubMed  CrossRef  Google Scholar 

  • Bringans S, Eriksen S, Kendrick T, Gopalakrishnakone P, Livk A, Lock R, Lipscombe R. Proteomic analysis of the venom of Heterometrus longimanus (Asian black scorpion). Proteomics. 2008;8:1081–96.

    CAS  PubMed  CrossRef  Google Scholar 

  • Brust A, Sunagar K, Undheim EAB, et al. Differential evolution and neofunctionalization of snake venom metalloprotease domains. Mol Cell Proteomics. 2013;12:651–63.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Caliskan F, Garcia BI, Coronas FI, Batista CV, Zamudio FZ, Possani LD. Characterization of venom components from the scorpion Androctonus crassicauda of Turkey: peptides and genes. Toxicon. 2006;48:12–22.

    CAS  PubMed  CrossRef  Google Scholar 

  • Caliskan F, Quintero-Hernandez V, Restano-Cassulini R, Batista CV, Zamudio FZ, Coronas FI, Possani LD. Turkish scorpion Buthacus macrocentrus: general characterization of the venom and description of Bu1, a potent mammalian Na-channel alpha-toxin. Toxicon. 2012;59:408–15.

    CAS  PubMed  CrossRef  Google Scholar 

  • Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, Chen Z, et al. The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nat Commun. 2013;4:2602.

    PubMed Central  PubMed  Google Scholar 

  • Chai SC, Armugam A, Strong PN, Jeyaseelan K. Characterization of bumarsin, a 3-hydroxy-3-methylglutaryl-coenzyme reductase inhibitor from Mesobuthus martensii Karsch venom. Toxicon. 2012;60:272–9.

    CAS  PubMed  CrossRef  Google Scholar 

  • D’Suze G, Schwartz EF, Garcia-Gomez BI, Sevcik C, Possani LD. Molecular cloning and nucleotide sequence analysis of genes from a cDNA library of the scorpion Tityus discrepans. Biochimie. 2009;91:1010–9.

    PubMed  CrossRef  Google Scholar 

  • de la Vega RC R, Schwartz EF, Possani LD. Mining on scorpion venom biodiversity. Toxicon. 2010;56:1155–61.

    CrossRef  Google Scholar 

  • de la Vega RC R, Vidal N, Possani LD. Scorpion peptides (Chapter 59). In: Sabatier JM, editor. Scorpion venom peptides. Handbook of biologically active peptides. 2nd ed. New York: Academic Press; 2013. p. 423–9.

    CrossRef  Google Scholar 

  • DeBin JA, Maggio JE, Strichartz GR. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol. 1993;264:C361–9.

    CAS  PubMed  Google Scholar 

  • Deshane J, Garner CC, Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem. 2003;278:4135–44.

    CAS  PubMed  CrossRef  Google Scholar 

  • Diego-Garcia E, Batista CV, Garcia-Gomez BI, Lucas S, Candido DM, Gomez- Lagunas F, Possani LD. The Brazilian scorpion Tityus costatus Karsch: genes, peptides and function. Toxicon. 2005;45:273–83.

    CAS  PubMed  CrossRef  Google Scholar 

  • Diego-Garcia E, Peigneur S, Clynen E, Marien T, Czech L, Schoofs L, Tytgat J. Molecular diversity of the telson and venom components from Pandinus cavimanus (Scorpionidae Latreille 1802): transcriptome, venomics and function. Proteomics. 2012;12:313–28.

    CAS  PubMed  CrossRef  Google Scholar 

  • Diego-Garcia E, Caliskan F, Tytgat J. The Mediterranean scorpion Mesobuthus gibbosus (Scorpiones, Buthidae): transcriptome analysis and organization of the genome encoding chlorotoxin-like peptides. BMC Genomics. 2014;15:295.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Dunlop JA, Tetlie OE, Prendini L. Reinterpretation of the Silurian scorpion Proscorpius osborni (Whitfield): integrating data from Palaeozoic and recent scorpions. Palaeontology. 2008;51:303–20.

    CrossRef  Google Scholar 

  • Harrison PL, Abdel-Rahman MA, Miller K, Strong PN. Antimicrobial peptides from scorpion venoms. Toxicon. 2014;88C:115–37.

    CrossRef  Google Scholar 

  • Inceoglu B, Lango J, Jing J, Chen L, Doymaz F, Pessah I, Hammock BD. One scorpion, two venoms: prevenom of Parabuthus transvaalicus acts as an alternative type of venom with distinct mechanism of action. Proc Natl Acad Sci U S A. 2003;100:923.

    CrossRef  Google Scholar 

  • King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther. 2011;11:1469–84.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kozminsky-Atias A, Bar-Shalom A, Mishmar D, Zilberberg N. Assembling an arsenal, the scorpion way. BMC Evol Biol. 2008;8:333.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Luna-Ramírez K, Sani MA, Silva-Sanchez J, Jimenez-Vargas JM, Reyna-Flores F, Winkel KD, Wright CE, Possani LD, Separovic F. Membrane interactions and biological activity of antimicrobial peptides from Australian scorpion. Biochim Biophys Acta. 1838;2014:2140–8.

    Google Scholar 

  • Luna-Ramírez K, Quintero-Hernandez V, Vargas-Jaimes L, Batista CV, Winkel K, Possani LD. Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. Toxicon. 2013;63:44–54.

    PubMed  CrossRef  Google Scholar 

  • Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y, Cao Z, Li W. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal. BMC Genomics. 2009;10:290.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Ma Y, Zhao Y, Zhao R, Zhang W, He Y, Wu Y, Cao Z, Guo L, Li W. Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis. Proteomics. 2010;10:2471–85.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ma Y, He Y, Zhao R, Wu Y, Li W, Cao Z. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal. J Proteomics. 2012;75:1563–76.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ménez A, Stöcklin R, Mebs D. Venomics’ or: The venomous systems genome project. Toxicon. 2006;47:255–9.

    PubMed  CrossRef  Google Scholar 

  • Mille BG, Peigneur S, Diego-Garcia E, Predel R, Tytgat J. Partial transcriptomic profiling of toxins from the venom gland of the scorpion Parabuthus stridulus. Toxicon. 2014;83:75–83.

    CAS  PubMed  CrossRef  Google Scholar 

  • Morgenstern D, Rohde BH, King GF, Tal T, Sher D, Zlotkin E. The tale of a resting gland: transcriptome of a replete venom gland from the scorpion Hottentotta judaicus. Toxicon. 2011;57:695–703.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nascimento DG, Rates B, Santos DM, Verano-Braga T, Barbosa-Silva A, Dutra AA, Biondi I, Martin-Eauclaire MF, De Lima ME, Pimenta AM. Moving pieces in a taxonomic puzzle: venom 2D-LC/MS and data clustering analyses to infer phylogenetic relationships in some scorpions from the Buthidae family (Scorpiones). Toxicon. 2006;47:628–39.

    CAS  PubMed  CrossRef  Google Scholar 

  • Newton KA, Clench MR, Deshmukh R, Jeyaseelan K, Strong PN. Mass fingerprinting of toxic fractions from the venom of the Indian red scorpion, Mesobuthus tamulus: biotope-specific variation in the expression of venom peptides. Rapid Commun Mass Spectrom. 2007;21:3467–76.

    CAS  PubMed  CrossRef  Google Scholar 

  • Oliveira FN, Mortari MR, Carneiro FP, Guerrero-Vargas JA, Santos DM, Pimenta AM, Schwartz EF. Another record of significant regional variation in toxicity of Tityus serrulatus venom in Brazil: a step towards understanding the possible role of sodium channel modulators. Toxicon. 2013;73:33–46.

    CAS  PubMed  CrossRef  Google Scholar 

  • Omran MA, McVean A. Intraspecific variation in scorpion Leiurus quinquestriatus venom collected from Egypt (Sinai and Aswan deserts). J Toxicol Toxin Rev. 2000;19:247–64.

    CAS  CrossRef  Google Scholar 

  • Oukkache N, Rosso JP, Alami M, Ghalim N, Saile R, Hassar M, Bougis PE, Martin-Eauclaire MF. New analysis of the toxic compounds from the Androctonus mauretanicus mauretanicus scorpion venom. Toxicon. 2008;51:835–52.

    CAS  PubMed  CrossRef  Google Scholar 

  • Pimenta AMC, Almeida FDM, de Lima ME, Martin-Eauclaire MF, Bougis PE. Individual variability in Tityus serrulatus (Scorpiones, Buthidae) venom elicited by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:413–8.

    CAS  PubMed  CrossRef  Google Scholar 

  • Polis GA. The biology of scorpions. Stanford: Stanford University Press; 1990.

    Google Scholar 

  • Quintero-Hernández V, Ortiz E, Rendón-Anaya M, Schwartz EF, Becerril B, Corzo G, Possani LD. Scorpion and spider venom peptides: gene cloning and peptide expression. Toxicon. 2011;58:644–63.

    PubMed  CrossRef  Google Scholar 

  • Rendon-Anaya M, Delaye L, Possani LD, Herrera-Estrella A. Global transcriptome analysis of the scorpion Centruroides noxius: new toxin families and evolutionary insights from an ancestral scorpion species. PLoS One. 2012;7(8):e43331.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Rodriguez de la Vega RC, Possani LD. Current views on scorpion toxins specific for K+-channels. Toxicon 2004;43(8):865–75.

    Google Scholar 

  • Rodriguez de la Vega RC, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon. 2005;46:831–44.

    CAS  PubMed  CrossRef  Google Scholar 

  • Rodríguez-Ravelo R, Coronas F, Zamudio FZ, González-Morales L, López GE, Urquiola AR, et al. The Cuban scorpion Rhopalurus junceus (Scorpiones, Buthidae): component variations in venom samples collected in different geographical areas. J Venom Anim Toxins Incl Trop Dis. 2013;19:1–10.

    CrossRef  Google Scholar 

  • Roeding F, Borner J, Kube M, Klages S, Reinhardt R, Burmester T. A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). Mol Phylogenet Evol. 2009;53:826–34.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ruiming Z, Yibao M, Yawen H, Zhiyong D, Yingliang W, Zhijian C, Wenxin L. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC Genomics. 2010;11:452.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Schwartz EF, Diego-Garcia E, de la Vega RC R, Possani LD. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomic. 2007;16(8):119.

    CrossRef  Google Scholar 

  • Schwartz EF, Camargos TS, Zamudio FZ, Silva LP, Bloch-Jr C, Caixeta F, Schwartz CA, Possani LD. Mass spectrometry analysis, amino acid sequence and biological activity of venom components from the Brazilian scorpion Opisthacanthus cayaporum. Toxicon. 2008;51:1499–1508.

    CAS  PubMed  CrossRef  Google Scholar 

  • Shultz JW. A phylogenetic analysis of the arachnid orders based on morphological characters. Zool J Linn Soc. 2007;150:221–65.

    CrossRef  Google Scholar 

  • Silva ECN, Camargos TS, Maranhao AQ, Silva-Pereira I, Silva LP, Possani LD, Schwartz EF. Cloning and characterization of cDNA sequences encoding for new venom peptides of the Brazilian scorpion Opisthacanthus cayaporum. Toxicon. 2009;54:252–61.

    CAS  PubMed  CrossRef  Google Scholar 

  • Smith JJ, Jones A, Alewood PF. Mass landscapes of seven scorpion species: the first analyses of Australian species with 1, 5-DAN matrix. J Venom Res. 2012;3:7–14.

    PubMed Central  PubMed  Google Scholar 

  • Soleglad ME, Fet V. High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni). Euscorpius. 2003;11:1–175.

    Google Scholar 

  • Soudani N, Gharbi-Chihi J, Srairi-Abid N, Yazidi CM, Planells R, Margotat A, Torresani J, El Ayeb M. Isolation and molecular characterization of LVP1 lipolysis activating peptide from scorpion Buthus occitanus tunetanus. Biochim Biophys Acta. 2005;1747(1):47–56.

    CAS  PubMed  CrossRef  Google Scholar 

  • Stroud MR, Hansen SJ, Olson JM. In vivo bio-imaging using chlorotoxin based conjugates. Curr Pharm Des. 2011;38:4362–71.

    CrossRef  Google Scholar 

  • Valdez-Velázquez LL, Quintero-Hernandez V, Romero-Gutiérrez MT, Coronas FI, Possani LD. Mass fingerprinting of the venom and transcriptome of venom gland of scorpion Centruroides tecomanus. PLoS One. 2013;8(6):e66486.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, Lewis RJ, King GF. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids. 2011;40:15–28.

    CAS  PubMed  CrossRef  Google Scholar 

  • Xu X, Duan Z, Di Z, He Y, Li J, Li Z, Xie C, Zeng X, Cao Z, Wu Y, Liang S, Li W. Proteomic analysis of the venom from the scorpion Mesobuthus martensii. J Proteomics. 2014;106C:162–80.

    CrossRef  Google Scholar 

  • Zeng XC, Corzo G, Hahin R. Scorpion venom peptides without disulfide bridges. IUBMB Life. 2005;57:13–21.

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhao H, Wang L, Yuan J. Origin and time of qiongzhou strait. Marine Geol Quater Geol. 2007;27:33–40.

    CAS  Google Scholar 

  • Zhu S, Gao B. Molecular characterization of a new scorpion venom lipolysis activating peptide: evidence for disulfide bridge-mediated functional switch of peptides. FEBS Lett. 2006;580(30):6825–36.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Abdel-Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Abdel-Rahman, M.A., Quintero-Hernández, V., Possani, L.D. (2014). Scorpion Venom Gland Transcriptomics and Proteomics: An Overview. In: Gopalakrishnakone, P., Calvete, J. (eds) Venom Genomics and Proteomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6649-5_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6649-5_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6649-5

  • eBook Packages: Springer Reference Biomedicine & Life SciencesReference Module Biomedical and Life Sciences