Skip to main content

Cobra Venom Factor: The Unique Component of Cobra Venom That Activates the Complement System

  • Living reference work entry
  • First Online:
Snake Venoms

Part of the book series: Toxinology ((TOXI))

  • 473 Accesses

Abstract

Cobra venom factor (CVF) is an unusual venom component in the venom of many elapid snakes. Although CVF occurs in venom, it is not a toxin but a protein component of venom that facilitates the entry of the toxic venom components into the bloodstream by inducing complement activation at the site of envenomation. This manuscript reviews the structure of CVF and how it interacts with the complement system. The high degree of structural and functional homology of CVF to complement component C3 is described. The review also describes recombinant CVF. CVF has been used for over four decades as a research tool to deplete serum complement in animals in order to delineate the biological functions of the complement system and its role in the pathogenesis of many diseases. CVF has also been used as an experimental tool to target complement activation. Lastly, CVF has served as a lead substance for the generation of human C3 derivatives with CVF-like functions as an experimental therapeutic for complement depletion in diseases with complement pathogenesis (humanized CVF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ali SA, Yang DC, Jackson TN, Undheim EA, Koludarov I, Wood K, Jones A, Hodgson WC, McCarthy S, Ruder T, Fry BG. Venom proteomic characterization and relative antivenom neutralization of two medically important Pakistani elapid snakes (Bungarus sindanus and Naja naja). J Proteomics. 2013;89:15–23.

    CAS  PubMed  Google Scholar 

  • Alper CA, Balavitch D. Cobra venom factor: evidence for its being altered cobra C3 (the third component of complement). Science. 1976;191:1275–6.

    CAS  PubMed  Google Scholar 

  • Alsenz J, Avila D, Huemer HP, Esparza I, Becherer JD, Kinoshita T, Wang Y, Oppermann S, Lambris JD. Phylogeny of the third component of complement, C3: analysis of the conservation of human CR1, CR2, H, and B binding sites, concanavalin A binding sites, and thiolester bond in the C3 from different species. Dev Comp Immunol. 1992;16:63–76.

    CAS  PubMed  Google Scholar 

  • Andrä J, Halter R, Kock MA, Niemann H, Vogel C-W, Paul D. Generation and characterization of transgenic mice expressing cobra venom factor. Mol Immunol. 2002;39:357–65.

    PubMed  Google Scholar 

  • Auerbach HS, Burger R, Dodds A, Colten HR. Molecular basis of complement C3 deficiency in guinea pigs. J Clin Invest. 1990;86:96–106.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Azar MM, Yunis EJ, Pickering PJ, Good RA. On the nature of immunological tolerance. Lancet. 1968;1:1279–81.

    CAS  PubMed  Google Scholar 

  • Ballow M, Cochrane CG. Two anticomplementary factors in cobra venom: hemolysis of guinea pig erythrocytes by one of them. J Immunol. 1969;103:944–52.

    CAS  PubMed  Google Scholar 

  • Ballow M, Day NK, Good RA. Effect of cobra venom factor on the local GVH reaction. I. Partial characterization of a cytotoxic factor from cobra venom for rat lymphocytes. J Immunol. 1973;110:354–61.

    CAS  PubMed  Google Scholar 

  • Bambai B. Purification, cloning, and expression of cobrin, a C3-cleaving metalloprotease from venom of cobra (Naja naja kaouthia). PhD thesis, University of Hamburg. 1998.

    Google Scholar 

  • Bambai B, Teppke M, Bredehorst R, Vogel C-W. cDNA cloning and expression of cobrin, the C3-cleaving metalloprotease from cobra venom. Mol Immunol. 1998;35:408.

    Google Scholar 

  • Bammert H. Die Genstrukturen von Cobra Venom Factor und homologen Komplementgenen der Kobra Naja kaouthia. PhD thesis, University of Hamburg. 2002.

    Google Scholar 

  • Bammert H, Fritzinger DC, Bredehorst R, Vogel C-W. Cobra venom factor is a member of a multi-copy gene family in cobra. Int Immunopharmacol. 2002a;2:1288.

    Google Scholar 

  • Bammert H, Kunze B, Li Y, Fritzinger DC, Bredehorst R, Vogel C-W. Structure of the cobra venom factor (CVF) gene and comparison with the human C3 gene. Int Immunopharmacol. 2002b;2:1275–6.

    Google Scholar 

  • Bammert H, Fritzinger DC, Bredehorst R, Nonaka M, Vogel C-W. A phylogenetic study of the presence of intron 31 in the complement C3 genes of vertebrates. Mol Immunol. 2004;41:206.

    Google Scholar 

  • Beukelman CJ, Aerts PC, Van Dijk H, Willers JM. A one-step isolation procedure for phospholipase A2-free cobra venom factor by fast protein liquid chromatography. J Immunol Methods. 1987;97:119–22.

    CAS  PubMed  Google Scholar 

  • Birdsey V, Lindorfer J, Gewurz H. Interaction of toxic venoms with the complement system. Immunology. 1971;21:299–310.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bitter-Suermann D, Dierich M, König W, Hadding U. Generation and function of an enzyme from a factor of guinea pig serum and cobra venom. Immunology. 1972;23:267–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bork P, Beckmann G. The CUB domain: a widespread module in developmentally regulated proteins. J Mol Biol. 1993;231:539–45.

    CAS  PubMed  Google Scholar 

  • Botto M, Kirschfink M, Macor P, Pickering MC, Würzner R, Tedesco F. Complement in human diseases: lessons from complement deficiencies. Mol Immunol. 2009;46:2774–83.

    CAS  PubMed  Google Scholar 

  • Brai M, Osler AG. Studies of the C3 shunt activation in cobra venom induced lysis of unsensitized erythrocytes. Proc Soc Exp Biol Med. 1972;140:1116–21.

    CAS  PubMed  Google Scholar 

  • Bramham J, Thai C-T, Soares DC, Uhrín D, Ogara RT. Functional insights from the structure of the multifunctional C345C domain of C5 of complement. J Biol Chem. 2005;280:10636–45.

    CAS  PubMed  Google Scholar 

  • Circolo A, Garnier G, Fukuda W, Wang X, Hidvegi T, Szalai AJ, Briles DE, Volanakis JE, Wetsel RA, Colten HR. Genetic disruption of the murine complement C3 promoter region generates deficient mice with extrahepatic expression of C3 mRNA. Immunopharmacology. 1999;42:135–49.

    CAS  PubMed  Google Scholar 

  • Cochrane CG, Müller-Eberhard HJ. The derivation of two distinct anaphylatoxic activities from the third and fifth component of human complement. J Exp Med. 1968;127:371–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cochrane CG, Müller-Eberhard HJ, Aikin BS. Depletion of plasma complement in vivo by a protein of cobra venom: its effect on various immunologic reactions. J Immunol. 1970;105:55–69.

    CAS  PubMed  Google Scholar 

  • Cooper NR. Formation and function of a complex of the C3 proactivator with a protein from cobra venom. J Exp Med. 1973;137:451–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Darke PL, Jarvis AA, Deems RA, Dennis EA. Further characterization and N-terminal sequence of cobra venom phospholipase A2. Biochim Biophys Acta. 1980;626:154–61.

    CAS  PubMed  Google Scholar 

  • Day NK, Gewurz H, Johannsen R, Finstad J, Good RA. Complement and complement-like activity in lower vertebrates and invertebrates. J Exp Med. 1970;132:941–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  • de Bruijn MH, Fey GH. Human complement component C3: cDNA coding sequence and derived primary structure. Proc Natl Acad Sci U S A. 1985;82:708–12.

    PubMed Central  PubMed  Google Scholar 

  • Dias da Silva W, Lepow IH. Complement as a mediator of inflammation. II. Biological properties of anaphylatoxin prepared with purified components of human complement. J Exp Med. 1967;125:921–46.

    CAS  PubMed  Google Scholar 

  • Dias da Silva WD, Eisele JW, Lepow IH. Complement as a mediator of inflammation. III. Purification of the activity with anaphylatoxin properties generated by interaction of the first four components of complement and its identification as a cleavage product of C'3. J Exp Med. 1967;126:1027–48.

    CAS  Google Scholar 

  • Dias da Silva W, Calich VL, Kipnis TL, Rosen FS, Alper CA. Complement in the serum and venom of Brazilian snakes (Crotalidae). Acta Pathol Microbiol Immunol Scand Suppl. 1984;284:97–103.

    CAS  PubMed  Google Scholar 

  • DiScipio RG, Smith CA, Müller-Eberhard HJ, Hugli TE. The activation of human complement component C5 by a fluid phase C5 convertase. J Biol Chem. 1983;258:10629–36.

    CAS  PubMed  Google Scholar 

  • Dolmer K, Sottrup-Jensen L. Disulfide bridges in human complement component C3b. FEBS Lett. 1993;315:85–90.

    CAS  PubMed  Google Scholar 

  • Eggertsen G, Fohlman J, Sjöquist J. In vitro studies on complement inactivation by snake venoms. Toxicon. 1980;18:87–96.

    CAS  PubMed  Google Scholar 

  • Eggertsen G, Lind P, Sjöquist J. Molecular characterization of the complement activating protein in the venom of the Indian cobra (Naja n. siamensis). Mol Immunol. 1981;18:125–33.

    CAS  PubMed  Google Scholar 

  • Eggertsen G, Lundwall Ã…, Hellman U, Sjöquist J. Antigenic relationships between human and cobra complement factors C3 and cobra venom factor (CVF) from the Indian cobra (Naja naja). J Immunol. 1983;131:1920–3.

    CAS  PubMed  Google Scholar 

  • Farsky SH, Goncalves LR, Gutierrez JM, Correa AP, Rucavado A, Gasque P, Tambourgi DV. Bothrops asper snake venom and its metalloproteinase BaP-1 activate the complement system. Role in leucocyte recruitment. Mediators Inflamm. 2000;9:213–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feinberg H, Uitdehaag JCM, Davies JM, Wallis R, Drickamer K, Weis WI. Crystal structure of the CUB-1-EGF-CUB-2 region of mannose-binding protein associated with serine protease-2. EMBO J. 2003;22:2348–59.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Flexner S, Noguchi H. Snake venom in relation to haemolysis, bacteriolysis, and toxicity. J Exp Med. 1903;6:277–301.

    Google Scholar 

  • Fong KY, Botto M, Walport MJ, So AK. Genomic organization of human complement component C3. Genomics. 1990;7:579–86.

    CAS  PubMed  Google Scholar 

  • Forneris F, Ricklin D, Wu J, Tzekou A, Wallace RS, Lambris JD, Gros P. Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science. 2010;330:1816–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Friedberger E, Mita S, Kumagai T. Die Bildung eines akut wirkenden Giftes (Anaphylatoxin) aus Toxinen (Tetanus, Diphtherie, Schlangengift). Z Immunitätsforsch. 1913;17:506–38.

    CAS  Google Scholar 

  • Fritzinger DC, Bredehorst R, Vogel C-W. Sequence analysis of cobra venom factor mRNA reveals the existence of two different mRNA species. Complement Inflamm. 1991;8:152.

    Google Scholar 

  • Fritzinger DC, Bredehorst R, Vogel C-W. Complete sequence of two different cobra venom factor cDNAs. FASEB J. 1992a;4:A1453.

    Google Scholar 

  • Fritzinger DC, Petrella EC, Connelly MB, Bredehorst R, Vogel C-W. Primary structure of cobra complement component C3. J Immunol. 1992b;149:3554–62.

    CAS  PubMed  Google Scholar 

  • Fritzinger DC, Bredehorst R, Vogel C-W. Molecular cloning and derived primary structure of cobra venom factor. Proc Natl Acad Sci U S A. 1994;91:12775–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fritzinger DC, Bredehorst R, Vogel CW. Molecular cloning and derived primary structure of cobra venom factor. Proc Natl Acad Sci U S A. 1995;92:7605.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fritzinger DC, Hew BE, Thorne M, Vogel C-W. Functional characterization of cobra venom factor/cobra C3 hybrid proteins. Mol Immunol. 2004;41:230.

    Google Scholar 

  • Fritzinger DC, Hew BE, Janssen BJC, Gros P, Vogel C-W. Location of amino acid residues important for cobra venom factor function mapped on the three-dimensional structure of complement components C3 and C3c. Mol Immunol. 2007a;44:172.

    Google Scholar 

  • Fritzinger DC, Hew BE, Lee JQ, Vogel C-W. Human C3/cobra venom factor hybrid proteins for therapeutic complement depletion: in vivo activity and fine mapping of important domains. Mol Immunol. 2007b;44:3945.

    Google Scholar 

  • Fritzinger DC, Ferreira VP, Hew BE, St. John W, Pangburn MK, Vogel C-W. A novel concept for the treatment of paroxysmal nocturnal hemoglobinuria (PNH): complement depletion with a human C3 derivative with cobra venom factor-like activity prevents lysis of PNH erythrocytes. Mol Immunol. 2008a;45:4177.

    Google Scholar 

  • Fritzinger DC, Hew BE, Lee JQ, Newhouse J, Alam M, Gorsuch WB, Guikema BJ, Stahl GL, Ciallella JR, Bowers M, Vogel C-W. Derivatives of human complement component C3 for therapeutic complement depletion: a novel class of therapeutic agents. Adv Exp Med Biol. 2008b;632:293–307.

    CAS  PubMed  Google Scholar 

  • Fritzinger DC, Hew BE, Lee JQ, St. John W, Scaife MC, Wilson S, Vogel C-W. Human C3/cobra venom factor hybrid proteins for therapeutic complement depletion: in vivo activity and lack of toxicity in primates. Mol Immunol. 2008c;45:4112.

    Google Scholar 

  • Fritzinger DC, Hew BE, Thorne M, Pangburn MK, Janssen BJ, Gros P, Vogel C-W. Functional characterization of human C3/cobra venom factor hybrid proteins for therapeutic complement depletion. Dev Comp Immunol. 2009;33:105–16.

    CAS  PubMed  Google Scholar 

  • Fritzinger DC, Dean R, Meschter C, Wong K, Halter R, Borlak J, St. John WD, Vogel C-W. Complement depletion with humanized cobra venom factor in a mouse model of age-related macular degeneration. Adv Exp Med Biol. 2010;703:151–62.

    CAS  PubMed  Google Scholar 

  • Fu Q, Gowda DC. Carbohydrate-directed conjugation of cobra venom factor to antibody by selective derivatization of the terminal galactose residues. Bioconjug Chem. 2001;12:271–9.

    CAS  PubMed  Google Scholar 

  • Fu Q, Satyaswaroop PG, Gowda DC. Tissue targeting and plasma clearance of cobra venom factor in mice. Biochem Biophys Res Commun. 1997;231:316–20.

    CAS  PubMed  Google Scholar 

  • Fu Q, McPhie P, Gowda DC. Methionine modification impairs the C5-cleavage function of cobra venom factor-dependent C3/C5 convertase. Biochem Mol Biol Int. 1998;45:133–44.

    CAS  PubMed  Google Scholar 

  • Fujita T. Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol. 2002;2:346–53.

    CAS  PubMed  Google Scholar 

  • Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA. Man, apes, and old world monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells. J Biol Chem. 1988;263:17755–62.

    CAS  PubMed  Google Scholar 

  • Ganu V, Fernandez-Cruz E, Müller-Eberhard HJ. Synthesis and properties of a monoclonal antibody-cobra venom factor complex which is stable in vivo. Fed Proc. 1984;43:1772.

    Google Scholar 

  • Gorsuch WB, Guikema BJ, Fritzinger DC, Vogel C-W, Stahl GL. Humanized cobra venom factor decreases myocardial ischemia-reperfusion injury. Mol Immunol. 2009;47:506–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Götze O, Müller-Eberhard HJ. The C3-activator system: an alternate pathway of complement activation. J Exp Med. 1971;134:90s–108.

    PubMed  Google Scholar 

  • Götze O, Müller-Eberhard HJ. The alternative pathway of complement activation. Adv Immunol. 1976;24:1–35.

    PubMed  Google Scholar 

  • Gowda DC. Modification at C6 of the terminal galactosyl residues of cobra venom factor abolishes anti-α-gal antibody immunoreactivity without affecting functional activity. Biochem Biophys Res Commun. 1998;245:28–32.

    CAS  PubMed  Google Scholar 

  • Gowda DC, Schultz M, Bredehorst R, Vogel C-W. Structure of the major oligosaccharide of cobra venom factor. Mol Immunol. 1992;29:335–42.

    CAS  PubMed  Google Scholar 

  • Gowda DC, Petrella EC, Raj TT, Bredehorst R, Vogel C-W. Immunoreactivity and function of oligosaccharides in cobra venom factor. J Immunol. 1994;152:2977–86.

    CAS  PubMed  Google Scholar 

  • Gowda DC, Glushka J, Halbeek H, Thotakura RN, Bredehorst R, Vogel C-W. N-linked oligosaccharides of cobra venom factor contain novel α(1-3)galactosylated LeX structures. Glycobiology. 2001;11:195–208.

    CAS  PubMed  Google Scholar 

  • Grier AH, Schultz M, Vogel C-W. Cobra venom factor and human C3 share carbohydrate antigenic determinants. J Immunol. 1987;139:1245–52.

    CAS  PubMed  Google Scholar 

  • Gros P, Milder FJ, Janssen BJ. Complement driven by conformational changes. Nat Rev Immunol. 2008;8:48–58.

    CAS  PubMed  Google Scholar 

  • Grunwald T, Ziegelmüller P, Ollert MW, Bredehorst R, Vogel C-W. Cobra venom factor: an intact β-Chain is not required for activity. Mol Immunol. 1993;30 Suppl 1:13.

    Google Scholar 

  • Grunwald T, Bredehorst R, Vogel C-W. Cobra complement factor B: evidence for additional function as CVF-inhibitor. Mol Immunol. 1996;33:14.

    Google Scholar 

  • Hall JL, Rowlands Jr DT, Nilsson UR. Complement-unlike hemolytic activity in lobster hemolymph. J Immunol. 1972;109:816–23.

    CAS  PubMed  Google Scholar 

  • Hase S, Kikuchi N, Ikenaka T, Inoue K. Structures of sugar chains of the third component of human complement. J Biochem. 1985;98:863–74.

    CAS  PubMed  Google Scholar 

  • Hensley P, O’Keefe MC, Spangler CJ, Osborne Jr JC, Vogel C-W. The effects of metal ions and temperature on the interaction of cobra venom factor and human complement factor B. J Biol Chem. 1986;261:11038–44.

    CAS  PubMed  Google Scholar 

  • Hew BE. Human C3/cobra venom factor hybrid proteins: tools for a structure-function study of complement component C3. PhD thesis. University of Hawaii. 2010.

    Google Scholar 

  • Hew BE, Thorne M, Fritzinger DC, Vogel C-W. Humanized cobra venom factor (CVF): generation of human C3 derivatives with CVF-like function. Mol Immunol. 2004;41:244–5.

    Google Scholar 

  • Hew BE, Lee JQ, Awakuni J, Fritzinger DC, Vogel C-W. Human C3/cobra venom factor hybrid proteins for therapeutic complement depletion: fine mapping of structure/function relationship. Mol Immunol. 2008;45:4120.

    Google Scholar 

  • Hew BE, Wong K, Lee JQ, Pangburn MK, Vogel C-W, Fritzinger DC. Understanding the structural basis of convertase stability: fine mapping of residues required for CVF-like activity in human C3/CVF hybrid proteins. Mol Immunol. 2010;47:2257.

    Google Scholar 

  • Hew BE, Wehrhahn D, Fritzinger DC, Vogel C-W. Hybrid proteins of cobra venom factor and cobra C3: tools to identify functionally important regions in cobra venom factor. Toxicon. 2012;60:632–47.

    CAS  PubMed  Google Scholar 

  • Hillmen P, Hall C, Marsh JC, Elebute M, Bombara MP, Petro BE, Cullen MJ, Richards SJ, Rollins SA, Mojcik CF, Rother RP. Effect of eculizumab on hemolysis and transfusion requirements in patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2004;350:552–9.

    CAS  PubMed  Google Scholar 

  • Hirani S, Lambris JD, Müller-Eberhard HJ. Structural analysis of the asparagine-linked oligosaccharides of human complement component C3. Biochem J. 1986;233:613–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huber R, Scholze H, Paques EP, Deisenhofer J. Crystal structure analysis and molecular model of human C3a anaphylatoxin. Hoppe-Seyler’s Z Physiol Chem. 1980;361:1389–99.

    CAS  PubMed  Google Scholar 

  • Huda R, Fritzinger DC, Finnegan PF, Christadoss P, Vogel C-W. Complement depletion with humanized cobra venom factor (CVF) improves the severity of experimental autoimmune myasthenia gravis (EAMG). Mol Immunol. 2011;48:1712.

    Google Scholar 

  • Huey R, Bloor CM, Kawahara MS, Hugli TE. Potentiation of the anaphylatoxins in vivo using an inhibitor of serum carboxypeptidase N (SCPN). I. Lethality and pathologic effects on pulmonary tissue. Am J Pathol. 1983;112:48–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Isaac L, Isenman DE. Structural requirements for thioester bond formation in human complement component C3. Reassessment of the role of thioester bond integrity on the conformation of C3. J Biol Chem. 1992;267:10062–9.

    CAS  PubMed  Google Scholar 

  • Iwanaga S, Suzuki T. Enzymes in snake venom. In: Lee C-Y, editor. Snake venoms. Berlin/New York: Springer; 1979. p. 101–58.

    Google Scholar 

  • Janssen BJ, Huizinga EG, Raaijmakers HC, Roos A, Daha MR, Nilsson-Ekdahl K, Nilsson B, Gros P. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature. 2005;437:505–11.

    CAS  PubMed  Google Scholar 

  • Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P. Structure of C3b reveals conformational changes that underlie complement activity. Nature. 2006;444:213–6.

    CAS  PubMed  Google Scholar 

  • Janssen BJ, Gomes L, Koning RI, Svergun DI, Koster AJ, Fritzinger DC, Vogel C-W, Gros P. Insights into complement convertase formation based on the structure of the factor B-cobra venom factor complex. EMBO J. 2009;28:2469–78.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson BJ, Kucich UN. Interrelation between two anticomplement cobra venom factors isolated from crude Naja naja cobra venom. J Pharm Sci. 1977;66:947–9.

    CAS  PubMed  Google Scholar 

  • Juhl H, Petrella EC, Cheung N-KV, Bredehorst R, Vogel C-W. Complement killing of human neuroblastoma cells: a cytotoxic monoclonal antibody and its F(ab’)2-cobra venom factor conjugate are equally cytotoxic. Mol Immunol. 1990;27:957–64.

    CAS  PubMed  Google Scholar 

  • Juhl H, Sievers M, Baltzer K, Helmig F, Wolf H, Brenner W, Kalthoff H. A monoclonal antibody-cobra venom factor conjugate increases the tumor-specific uptake of a 99mTc-labeled anti-carcinoembryonic antigen antibody by a two-step approach. Cancer Res. 1995;55 Suppl 23:5749s–55.

    CAS  PubMed  Google Scholar 

  • Juhl H, Petrella EC, Cheung N-KV, Bredehorst R, Vogel C-W. Additive cytotoxicity of different monoclonal antibody cobra venom factor conjugates for human neuroblastoma cells. Immunobiology. 1997;197:444–59.

    CAS  PubMed  Google Scholar 

  • Kock MA. Expression and characterization of recombinant cobra venom factor. PhD thesis. University of Hamburg. 1996.

    Google Scholar 

  • Kock MA, Hew BE, Bammert H, Fritzinger DC, Vogel C-W. Structure and function of recombinant cobra venom factor. J Biol Chem. 2004;279:30836–43.

    CAS  PubMed  Google Scholar 

  • Kölln J, Spillner E, Andrä J, Klensang K, Bredehorst R. Complement inactivation by recombinant human C3 derivatives. J Immunol. 2004;173:5540–5.

    PubMed  Google Scholar 

  • Kölln J, Braren I, Bredehorst R, Spillner E. Purification of native and recombinant cobra venom factor using thiophilic adsorption chromatography. Protein Pept Lett. 2007;14:475–80.

    PubMed  Google Scholar 

  • Krishnan V, Ponnuraj K, Xu Y, Macon K, Volanakis JE, Narayana SV. The crystal structure of cobra venom factor, a cofactor for C3- and C5-convertase CVF,Bb. Structure. 2009;17:611–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kulkeaw K, Chaicumpa W, Sakolvaree Y, Tongtawe P, Tapchaisri P. Proteome and immunome of the venom of the thai cobra, Naja kaouthia. Toxicon. 2007;49:1026–41.

    CAS  PubMed  Google Scholar 

  • Kusano M, Choi NH, Tomita M, Mamamoto K-I, Migita S, Sekiya T, Nishimura S. Nucleotide sequence of cDNA and derived amino acid sequence of rabbit complement component C3 α-chain. Immunol Invest. 1986;15:365–78.

    CAS  PubMed  Google Scholar 

  • Lachmann PJ, Halbwachs L. The influence of C3b inactivator (KAF) concentration on the ability of serum to support complement activation. Clin Exp Immunol. 1975;21:109–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lachmann PJ, Smith RA. Taking complement to the clinic – has the time finally come? Scand J Immunol. 2009;69:471–8.

    CAS  PubMed  Google Scholar 

  • Lachmann PJ, Halbwachs L, Gewurz A, Gewurz H. Purification of cobra venom factor from phospholipase A contaminant. Immunology. 1976;31:961–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lambris JD, Pappas J, Mavroidis M, Wang Y, Manzone H, Schwager J, Du Pasquier L, Silibovsky R. The third component of Xenopus complement: cDNA cloning, structural and functional analysis, and evidence for an alternate C3 transcript. Eur J Immunol. 1995;25:572–8.

    CAS  PubMed  Google Scholar 

  • Laursen NS, Andersen KR, Braren I, Spillner E, Sottrup-Jensen L, Andersen GR. Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex. EMBO J. 2011;30:606–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lesavre PH, Hugli TE, Esser AF, Müller-Eberhard HJ. The alternative pathway C3/C5 convertase: chemical basis of factor B activation. J Immunol. 1979;123:529–34.

    CAS  PubMed  Google Scholar 

  • Lundwall Ã…, Wetsel RA, Domdey H, Tack BF, Fey GH. Structure of murine complement component C3. I. Nucleotide sequence of cloned complementary and genomic DNA coding for the β-chain. J Biol Chem. 1984;259:13851–6.

    CAS  PubMed  Google Scholar 

  • Maillard JL, Zarco RM. Décomplémentation par un facteur entrail du venin de cobra. Effet sur plusieurs réactions immunes de cobaye et du rat. Ann Inst Pasteur. 1968;114:756–74.

    CAS  Google Scholar 

  • Malih I, Ahmad Rusmili MR, Tee TY, Saile R, Ghalim N, Othman I. Proteomic analysis of Moroccan cobra Naja haje legionis venom using tandem mass spectrometry. J Proteomics. 2014;96:240–52.

    CAS  PubMed  Google Scholar 

  • Man DP, Minta JO. Purification, characterization and analysis of the mechanism of action of four anti-complementary factors in Crotalus atrox venom. Immunochemistry. 1977;14:521–7.

    CAS  PubMed  Google Scholar 

  • Markland Jr FS, Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3–18.

    CAS  PubMed  Google Scholar 

  • Marks RM, Todd 3rd RF, Ward PA. Rapid induction of neutrophil-endothelial adhesion by endothelial complement fixation. Nature. 1989;339:314–7.

    CAS  PubMed  Google Scholar 

  • Mavroidis M, Sunyer JO, Lambris JD. Isolation, primary structure, and evolution of the third component of chicken complement and evidence for a new member of the alpha 2-macroglobulin family. J Immunol. 1995;154:2164–74.

    CAS  PubMed  Google Scholar 

  • McCleary RJ, Kini RM. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon. 2013;62:56–74.

    CAS  PubMed  Google Scholar 

  • Medicus RG, Götze O, Müller-Eberhard HJ. Alternative pathway of complement: recruitment of precursor properdin by the labile C3/C5 convertase and the potentiation of the pathway. J Exp Med. 1976;144:1076–93.

    CAS  PubMed  Google Scholar 

  • Mehrtens JM. Living snakes of the world in color. New York: Sterling Publishing; 1987.

    Google Scholar 

  • Miki K, Ogata S, Misumi Y, Ikehara Y. Carbohydrate structures of the third component of rat complement. Presence of both high-mannose and complex type oligosaccharide chains. Biochem J. 1986;240:691–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Milder FJ, Gomes L, Schouten A, Janssen BJ, Huizinga EG, Romijn RA, Hemrika W, Roos A, Daha MR, Gros P. Factor B structure provides insights into activation of the central protease of the complement system. Nat Struct Mol Biol. 2007;14:224–8.

    CAS  PubMed  Google Scholar 

  • Misumi Y, Sohda M, Ikehara Y. Nucleotide and deduced amino acid sequence of rat complement C3. Nucleic Acids Res. 1990;18:2178.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miyama A, Kato T, Yokoo J, Kashiba S. Trypsin-activated complex of human factor B with cobra venom factor (CVF), cleaving C3 and C5 and generating a lytic factor for unsensitized guinea pig erythrocytes. II. Physico-chemical characterization of the activated complex. Biken J. 1975;18:205–14.

    CAS  PubMed  Google Scholar 

  • Miyama A, Kato T, Minoda I, Ueda T, Kashiba S. Activation of the terminal components of human complement by a trypsin-activated complex of human factor B and cobra venom factor. Jpn J Microbiol. 1976;20:507–16.

    CAS  PubMed  Google Scholar 

  • Morrison DC, Louis JA, Weigle WO. Dissociation of anticomplementary and adjuvant properties of proteins derived from cobra venom. Immunology. 1976;30:317–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Müller B, Müller-Ruchholtz W. In vitro killing of target cells by antibody/ricin or antibody/cobra venom factor conjugates: comparison of selectivity and potency. Immunology. 1986;173:195–6.

    Google Scholar 

  • Müller B, Müller-Ruchholtz W. Covalent conjugates of monoclonal antibody and cobra venom factor mediate specific cytotoxicity via alternative pathway of human complement activation. Leukemia Res. 1987;11:461–8.

    Google Scholar 

  • Müller B, Harpprecht H, Anderson MJD, Müller-Ruchholtz W. Activation of human complement by covalent conjugates of mouse monoclonal antibodies and cobra venom factors. Br J Cancer. 1986;54:537.

    Google Scholar 

  • Müller-Eberhard HJ. Molecular organization and function of the complement system. Annu Rev Biochem. 1988;57:321–47.

    PubMed  Google Scholar 

  • Müller-Eberhard HJ, Fjellström KE. Isolation of the anticomplementary protein from cobra venom and its mode of action on C3. J Immunol. 1971;107:1666–72.

    PubMed  Google Scholar 

  • Müller-Eberhard HJ, Nilsson UR, Dalmasso AP, Polley MJ, Calcott MA. A molecular concept of immune cytolysis. Arch Pathol. 1966;82:205–17.

    PubMed  Google Scholar 

  • Mulligan MS, Schmid E, Beck-Schimmer B, Till GO, Friedl HP, Brauer RB, Hugli TE, Miyasaka M, Warner RL, Johnson KJ, Ward PA. Requirement and role of C5a in acute lung inflammatory injury in rats. J Clin Invest. 1996;98:503–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagaki K, Iida K, Okubo M, Inai S. Reaction mechanisms of β1H globulin. Int Arch Allergy Appl Immunol. 1978;57:221–32.

    CAS  PubMed  Google Scholar 

  • Nagar B, Jones RG, Diefenbach RJ, Isenman DE, Rini JM. X-ray crystal structure of C3d: A C3 fragment and ligand for complement receptor 2. Science. 1998;280:1277–81.

    CAS  PubMed  Google Scholar 

  • Nakao M, Mutsuro J, Obo R, Nonaka M, Yano T. Molecular cloning and protein analysis of divergent forms of the complement component C3 from a bony fish, the common carp (Cyprinus carpio): presence of variants lacking the catalytic histidine. Eur J Immunol. 2000;30:858–66.

    CAS  PubMed  Google Scholar 

  • Nelson Jr RA. A new concept of immunosuppression in hypersensitivity reactions and in transplantation immunity. Surv Ophthalmol. 1966;11:498–505.

    PubMed  Google Scholar 

  • Neumann D, Barchan D, Horowitz M, Kochva E, Fuchs S. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit. Proc Natl Acad Sci U S A. 1989;86:7255–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • O’Keefe MC, Vogel C-W, Caporale LH. Characterization of a protease from cobra venom that cleaves the human complement component C3. Fed Proc. 1984;43:1956.

    Google Scholar 

  • O’Keefe MC, Caporale LH, Vogel C-W. Comparison of the alpha chain fragments of C3o, C3c, and CVF: implications for C3 convertase formation. Complement. 1987;4:204.

    Google Scholar 

  • O’Keefe MC, Caporale LH, Vogel C-W. A novel cleavage product of human complement component C3 with structural and functional properties of cobra venom factor. J Biol Chem. 1988;263:12690–7.

    PubMed  Google Scholar 

  • O’Keefe MC, Hammer CH, Vogel C-W. A C3-cleaving protease from cobra venom induces complement-dependent hemolysis. Complement Inflamm. 1989;6:381.

    Google Scholar 

  • Osipov AV, Mordvintsev DY, Starkov VG, Galebskaya LV, Ryumina EV, Bel’tyukov PP, Kozlov LV, Romanov SV, Doljansky Y, Tsetlin VI, Utkin YN. Naja melanoleuca cobra venom contains two forms of complement-depleting factor (CVF). Toxicon. 2005;46:394–403.

    CAS  PubMed  Google Scholar 

  • Pangburn MK. Spontaneous reformation of the intramolecular thioester in complement protein C3 and low temperature capture of a conformational intermediate capable of reformation. J Biol Chem. 1992a;267:8584–90.

    CAS  PubMed  Google Scholar 

  • Pangburn MK. Spontaneous thioester bond formation in alpha 2-macroglobulin, C3, and C4. FEBS Lett. 1992b;308:280–2.

    CAS  PubMed  Google Scholar 

  • Pangburn MK, Müller-Eberhard HJ. Relation of a putative thioester bond in C3 to activation of the alternative pathway and the binding of C3b to biological targets of complement. J Exp Med. 1980;152:1102–14.

    CAS  PubMed  Google Scholar 

  • Pangburn MK, Müller-Eberhard HJ. The C3 convertase of the alternative pathway of human complement. Enzymic properties of the bimolecular proteinase. Biochem J. 1986;235:723–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pangburn MK, Schreiber RD, Müller-Eberhard HJ. Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein β1H for cleavage of C3b and C4b in solution. J Exp Med. 1977;146:257–70.

    CAS  PubMed  Google Scholar 

  • Parker CJ, White VF, Falk RJ. Site-specific activation of the alternative pathway of complement. Complement. 1986;3:223–35.

    CAS  PubMed  Google Scholar 

  • Pepys MB, Tompkins C, Smith AD. An improved method for the isolation from Naja naja venom of cobra factor (CoF) free of phospholipase A. J Immunol Methods. 1979;30:105–17.

    CAS  PubMed  Google Scholar 

  • Petrella EC, Wilkie SD, Smith CA, Morgan Jr AC, Vogel C-W. Antibody conjugates with cobra venom factor. Synthesis and biochemical characterization. J Immunol Methods. 1987;104:159–72.

    CAS  PubMed  Google Scholar 

  • Petrella EC, O’Keefe MC, Bredehorst R, Vogel C-W. Purification and characterization of two C3-cleaving proteases from cobra venom. Complement Inflamm. 1991;9:210.

    Google Scholar 

  • Phelps T. Poisonous snakes. Poole/New York: Blandford Press/Distributed by Sterling Pub. Co.; 1981.

    Google Scholar 

  • Pickering RJ, Wolfson MR, Good RA, Gewurz H. Passive hemolysis by serum and cobra venom factor: a new mechanism inducing membrane damage by complement. Proc Natl Acad Sci U S A. 1969;62:521–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pidde-Queiroz G, Furtado Mde F, Filgueiras CF, Pessoa LA, Spadafora-Ferreira M, Van den Berg CW, Tambourgi DV. Human complement activation and anaphylatoxins generation induced by snake venom toxins from bothrops genus. Mol Immunol. 2010;47:2537–44.

    CAS  PubMed  Google Scholar 

  • Pidde-Queiroz G, Magnoli FC, Portaro FC, Serrano SM, Lopes AS, Paes Leme AF, Van den Berg CW, Tambourgi DV. P-I snake venom metalloproteinase is able to activate the complement system by direct cleavage of central components of the cascade. PLoS Negl Trop Dis. 2013;7:e2519. doi:10.1371/journal.pntd.0002519.

    PubMed Central  PubMed  Google Scholar 

  • Ponnuraj K, Xu Y, Macon K, Moore D, Volanakis JE, Narayana SV. Structural analysis of engineered Bb fragment of complement factor B: insights into the activation mechanism of the alternative pathway C3-convertase. Mol Cell. 2004;14:17–28.

    CAS  PubMed  Google Scholar 

  • Pryjma J, Humphrey JH. Prolonged C3 depletion by cobra venom factor in thymus-deprived mice and its implication for the role of C3 as an essential second signal for B-cell triggering. Immunology. 1975;28:569–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rawal N, Pangburn MK. C5 convertase of the alternative pathway of complement. Kinetic analysis of the free and surface-bound forms of the enzyme. J Biol Chem. 1998;273:16828–35.

    CAS  PubMed  Google Scholar 

  • Rawal N, Pangburn MK. Functional role of the noncatalytic subunit of complement C5 convertase. J Immunol. 2000;164:1379–85.

    CAS  PubMed  Google Scholar 

  • Rawal N, Pangburn MK. Structure/function of C5 convertases of complement. Int Immunopharmacol. 2001;1:415–22.

    CAS  PubMed  Google Scholar 

  • Rayes J, Ing M, Peyron I, Dimitrov JD, Delignat S, Fritzinger DC, Vogel C-W, Fremeaux-Bacchi V, Kaveri SV, Roumenina L, Lacroix-Desmazes S. Complement depletion with humanized cobra venom factor reduces the immune response against therapeutic factor VIII in hemophilia A. Mol Immunol. 2014a;61:217.

    Google Scholar 

  • Rayes J, Ing M, Peyron I, Fritzinger D, Vogel C-W, Kaveri S, Lacroix-Desmazes S. Humanized cobra venom factor exhibits virtual absence of immunogenicity in mice compared to natural CVF. Mol Immunol. 2014b;61:255–6.

    Google Scholar 

  • Rehana S, Kini MR. Molecular isoforms of cobra venom factor-like proteins in the venom of Austrelaps superbus. Toxicon. 2007;50:32–52.

    CAS  PubMed  Google Scholar 

  • Rehana S, Kini MR. Complement C3 isoforms in Austrelaps superbus. Toxicon. 2008;51:864–81.

    CAS  PubMed  Google Scholar 

  • Ricklin D, Lambris JD. Progress and trends in complement therapeutics. Adv Exp Med Biol. 2013a;735:1–22.

    CAS  Google Scholar 

  • Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: therapeutic interventions. J Immunol. 2013b;190:3839–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rooijakkers SH, Wu J, Ruyken M, van Domselaar R, Planken KL, Tzekou A, Ricklin D, Lambris JD, Janssen BJ, van Strijp JA, Gros P. Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat Immunol. 2009;10:721–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roth A, Hock C, Konik A, Christoph S, Duhrsen U. Chronic treatment of paroxysmal nocturnal hemoglobinuria patients with eculizumab: safety, efficacy, and unexpected laboratory phenomena. Int J Hematol. 2011;93:704–14.

    PubMed  Google Scholar 

  • Rother K, Till GO, Hänsch GM, editors. The complement system. 2nd ed. Berlin/New York: Springer; 1998.

    Google Scholar 

  • Schneider PM, Rittner C. Complement genetics. In: Dodds AW, Sim RB, editors. Complement, a practical approach. Oxford/New York/Tokyo: Oxford University Press; 1997.

    Google Scholar 

  • Selby MJ, Edwards RH, Rutter WJ. Cobra nerve growth factor: structure and evolutionary comparison. J Neurosci Res. 1987;18:293–8.

    CAS  PubMed  Google Scholar 

  • Sharma S, Jabeen T, Singh RK, Bredhorst R, Vogel C-W, Betzel C, Singh TP. Structural studies on the cobra venom factor: isolation, purification, crystallization and preliminary crystallographic analysis. Acta Crystallogr D Biol Crystallogr. 2001;57:596–8.

    CAS  PubMed  Google Scholar 

  • Shaw JO, Roberts MF, Ulevitch RJ, Henson P, Dennis EA. Phospholipase A2 contamination of cobra venom factor preparations. Biologic role in complement-dependent in vivo reactions and inactivation with p-bromophenacyl bromide. Am J Pathol. 1978;91:517–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slowinski JB, Wüster W. A new cobra (Elapidae: Naja) from Myanmar (Burma). Herpetologica. 2000;56:257–70.

    Google Scholar 

  • Smith CA, Vogel C-W, Müller-Eberhard HJ. Ultrastructure of cobra venom factor-dependent C3/C5 convertase and its zymogen, factor B of human complement. J Biol Chem. 1982;257:9879–82.

    CAS  PubMed  Google Scholar 

  • Smith CA, Vogel C-W, Müller-Eberhard HJ. MHC class III products: an electron microscopic study of the C3 convertases of human complement. J Exp Med. 1984;159:324–9.

    CAS  PubMed  Google Scholar 

  • Sylvestre D, Clynes R, Ma M, Warren H, Carroll MC, Ravetch JV. Immunoglobulin G-mediated inflammatory responses develop normally in complement-deficient mice. J Exp Med. 1996;184:2385–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tack BF, Harrison RA, Janatova J, Thomas ML, Prahl JW. Evidence for presence of an internal thiolester bond in third component of human complement. Proc Natl Acad Sci U S A. 1980;77:5764–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi H, Hayashi K. Purification and characterization of anticomplement factor (cobra venom factor) from the Naja naja atra venom. Biochim Biophys Acta. 1982;701:102–10.

    CAS  PubMed  Google Scholar 

  • Takahashi K, Saha D, Shattino I, Pavlov VI, Stahl GL, Finnegan P, Vidal Melo MF. Complement 3 is involved with ventilator-induced lung injury. Int Immunopharmacol. 2011;11:2138–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takeda S, Takeya H, Iwanaga S. Snake venom metalloproteinases: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochim Biophys Acta. 2012;1824:164–76.

    CAS  PubMed  Google Scholar 

  • Tambourgi DV, Van den Berg CW. Animal venoms/toxins and the complement system. Mol Immunol. 2014;61:153–62.

    CAS  PubMed  Google Scholar 

  • Tambourgi DV, dos Santos MC, Furtado Mde F, de Freitas MC, Dias da Silva W, Kipnis TL. Pro-inflammatory activities in elapid snake venoms. Br J Pharmacol. 1994;112:723–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka GD, Pidde-Queiroz G, de Fatima DFM, Van den Berg C, Tambourgi DV. Micrurus snake venoms activate human complement system and generate anaphylatoxins. BMC Immunol. 2012;13:4.

    PubMed Central  PubMed  Google Scholar 

  • Till GO, Johnson KJ, Kunkel R, Ward PA. Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites. J Clin Invest. 1982;69:1126–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Till GO, Morganroth ML, Kunkel R, Ward PA. Activation of C5 by cobra venom factor is required in neutrophil-mediated lung injury in the rat. Am J Pathol. 1987;129:44–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tomana M, Niemann M, Garner C, Volanakis JE. Carbohydrate composition of the second, third and fifth components and factors B and D of human complement. Mol Immunol. 1985;22:107–11.

    CAS  PubMed  Google Scholar 

  • Torreira E, Tortajada A, Montes T, Rodríguez de Córdoba S, Llorca O. 3D structure of the C3bB complex provides insights into the activation and regulation of the complement alternative pathway convertase. Proc Natl Acad Sci U S A. 2009a;106:882–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Torreira E, Tortajada A, Montes T, Rodríguez de Córdoba S, Llorca O. Coexistence of closed and open conformations of complement factor B in the alternative pathway C3bB(Mg2+) proconvertase. J Immunol. 2009b;183:7347–51.

    CAS  PubMed  Google Scholar 

  • Ulevitch RJ, Cochrane CG. Complement-dependent hemodynamic and hematologic changes in the rabbit. Inflammation. 1977;2:199–216.

    CAS  PubMed  Google Scholar 

  • Van den Berg CW, Aerts PC, Van Dijk H. In vivo anti-complementary activities of the cobra venom factors from Naja naja and Naja haje. J Immunol Methods. 1991;136:287–94.

    PubMed  Google Scholar 

  • Vik DP, Amiguet P, Moffat GJ, Fey M, Amiguet-Barras F, Wetsel RA, Tack BF. Structural features of the human C3 gene: intron/exon organization, transcriptional start site, and promoter region sequence. Biochemistry. 1991;30:1080–5.

    CAS  PubMed  Google Scholar 

  • Vogel C-W. Antibody conjugates without inherent toxicity: the targeting of cobra venom factor and other biological response modifiers. In: Vogel C-W, editor. Immunoconjugates. Antibody conjugates in radioimaging and therapy of cancer. New York: Oxford University Press; 1987. p. 170–88.

    Google Scholar 

  • Vogel C-W. Synthesis of antibody conjugates with cobra venom factor using heterobifunctional cross-linking reagents. Targeted Diagn Ther. 1988;1:191–224.

    CAS  PubMed  Google Scholar 

  • Vogel C-W. Cobra venom factor, the complement-activating protein of cobra venom. In: Tu AT, editor. Handbook of natural toxins: reptile and amphibian venoms. New York: Marcel Dekker; 1991. p. 147–88.

    Google Scholar 

  • Vogel C-W. Preparation of immunoconjugates using antibody oligosaccharide moieties. Methods Mol Biol. 2004;283:87–108.

    CAS  PubMed  Google Scholar 

  • Vogel C-W, Fritzinger D. Humanized cobra venom factor: experimental therapeutics for targeted complement activation and complement depletion. Curr Pharm Des. 2007;13:2916–26.

    CAS  PubMed  Google Scholar 

  • Vogel C-W, Fritzinger DC. Cobra venom factor: structure, function, and humanization for therapeutic complement depletion. Toxicon. 2010;56:1198–222.

    CAS  PubMed  Google Scholar 

  • Vogel C-W, Müller-Eberhard HJ. Induction of immune cytolysis: tumor-cell killing by complement is initiated by covalent complex of monoclonal antibody and stable C3/C5 convertase. Proc Natl Acad Sci U S A. 1981;78:7707–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vogel C-W, Müller-Eberhard HJ. The cobra venom factor-dependent C3 convertase of human complement. A kinetic and thermodynamic analysis of a protease acting on its natural high molecular weight substrate. J Biol Chem. 1982;257:8292–9.

    CAS  PubMed  Google Scholar 

  • Vogel C-W, Müller-Eberhard HJ. Cobra venom factor: improved method for purification and biochemical characterization. J Immunol Methods. 1984;73:203–20.

    CAS  PubMed  Google Scholar 

  • Vogel C-W, Müller-Eberhard HJ. The cobra complement system: I. The alternative pathway of activation. Dev Comp Immunol. 1985a;9:311–25.

    CAS  PubMed  Google Scholar 

  • Vogel C-W, Müller-Eberhard HJ. The cobra complement system: II. The membrane attack complex. Dev Comp Immunol. 1985b;9:327–33.

    CAS  PubMed  Google Scholar 

  • Vogel C-W, Smith CA, Müller-Eberhard HJ. Cobra venom factor: structural homology with the third component of human complement. J Immunol. 1984;133:3235–41.

    CAS  PubMed  Google Scholar 

  • Vogel C-W, Wilkie SD, Morgan AC. In vivo studies with covalent conjugates of cobra venom factor and monoclonal antibodies to human tumors. Hematol Blood Transfus. 1985;29:514–7.

    CAS  Google Scholar 

  • Vogel C-W, Bredehorst R, Fritzinger DC, Grunwald T, Ziegelmüller P, Kock MA. Structure and function of cobra venom factor, the complement-activating protein in cobra venom. Adv Exp Med Biol. 1996;391:97–114.

    CAS  PubMed  Google Scholar 

  • Vogel C-W, Fritzinger DC, Hew BE, Thorne M, Bammert H. Recombinant cobra venom factor. Mol Immunol. 2004;41:191–9.

    CAS  PubMed  Google Scholar 

  • Vogel C-W, Finnegan PW, Fritzinger DC. Humanized cobra venom factor: structure, activity, and therapeutic efficacy in preclinical disease models. Mol Immunol. 2014;61:191–203.

    CAS  PubMed  Google Scholar 

  • Vogel C-W, Fritzinger DC, Gorsuch WB, Stahl GL. Complement depletion with humanised cobra venom factor: efficacy in preclinical models of vascular diseases. Thromb Haemost. 2015;113:548–52.

    Google Scholar 

  • Vogt W, Schmidt G. Abtrenung des anaphylatoxinbildenden Prinzips aus Cobragift von anderen Giftkomponenten. Experimentia. 1964;20:207–8.

    CAS  Google Scholar 

  • Vogt W, Schmidt G. Hydrolytic activation of the fifth component of complement (C5) by C3 convertases depends on its binding to surface-fixed C3b: specific interference with binding, by properdin, factor B, or propamidine, leads to inhibition of C5 cleavage and utilization. J Immunol. 1978;120:1801.

    Google Scholar 

  • Vogt W, Dieminger L, Lynen R, Schmidt G. Alternative pathway for the activation of complement in human serum. Formation and composition of the complex with cobra venom factor that cleaves the third component of complement. Hoppe-Seyler’s Z Physiol Chem. 1974;355:171–83.

    CAS  PubMed  Google Scholar 

  • Vogt W, Schmidt G, von Buttlar B. Factors and conditions essential for the activation of the fifth component of complement and release of anaphylatoxin. Monogr Allergy. 1977;12:86–9.

    CAS  PubMed  Google Scholar 

  • Vogt W, Schmidt G, von Buttlar B, Dieminger L. A new function of the activated third component of complement: binding to C5, an essential step for C5 activation. Immunology. 1978;34:29–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  • von Zabern I, Hinsch B, Przyklenk H, Schmidt G, Vogt W. Comparison of Naja n. naja and Naja h. haje cobra venom factors: correlation between binding affinity for the fifth component of complement and mediation of its cleavage. Immunobiology. 1980;157:499–514.

    Google Scholar 

  • von Zabern I, Przyklenk H, Damerau B, Zimmermann B. Isolation and properties of a complement inhibitor from Naja haje venom, distinct from known anticomplementary factors in cobra venom. Scand J Immunol. 1981;14:109–20.

    Google Scholar 

  • von Zabern I, Przyklenk H, Vogt W. Chain structure of cobra venom factor from Naja naja and Naja haje venom. Scand J Immunol. 1982;15:357–62.

    Google Scholar 

  • Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, Kerkkamp HM, Vos RA, Guerreiro I, Calvete JJ, Wuster W, Woods AE, Logan JM, Harrison RA, Castoe TA, de Koning AP, Pollock DD, Yandell M, Calderon D, Renjifo C, Currier RB, Salgado D, Pla D, Sanz L, Hyder AS, Ribeiro JM, Arntzen JW, van den Thillart GE, Boetzer M, Pirovano W, Dirks RP, Spaink HP, Duboule D, McGlinn E, Kini RM, Richardson MK. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110:20651–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waldmann H, Lachmann PJ. The failure to show a necessary role for C3 in the in vitro antibody response. Eur J Immunol. 1975;5:185–93.

    Google Scholar 

  • Walport MJ. Complement. First of two parts. N Engl J Med. 2001a;344:1058–66.

    CAS  PubMed  Google Scholar 

  • Walport MJ. Complement. Second of two parts. N Engl J Med. 2001b;344:1140–4.

    CAS  PubMed  Google Scholar 

  • Wang S-Y, Veeramani S, Racila A, Cagley J, Fritzinger DC, Vogel C-W, St. John W, Weiner GJ. Depletion of the C3 component of complement enhances the ability of rituximab-coated target cells to activate human NK cells and improves the efficacy of monoclonal antibody therapy in an in vivo model. Blood. 2009;114:5322–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Warrell DA, Greenwood BM, Davidson NM, Ormerod LD, Prentice CR. Necrosis, haemorrhage and complement depletion following bites by the spitting cobra (Naja nigricollis). Q J Med. 1976;45:1–22.

    CAS  PubMed  Google Scholar 

  • Wehrhahn D, Meiling K, Fritzinger DC, Bredehorst R, Andrä J, Vogel C-W. Analysis of the structure/function relationship of cobra venom factor (CVF) and C3: generation of CVF/cobra-C3 hybrid proteins. Immunopharmacology. 2000;49:94.

    Google Scholar 

  • Wetsel RA, Lundwall Ã…, Davidson F, Gibson T, Tack BF, Fey GH. Structure of murine complement component C3. II. Nucleotide sequence of cloned complementary DNA coding for the α-chain. J Biol Chem. 1984;259:13857–62.

    CAS  PubMed  Google Scholar 

  • Whaley K, Ruddy S. Modulation of the alternative complement pathways by β1H globulin. J Exp Med. 1976;144:1147–63.

    CAS  PubMed  Google Scholar 

  • Wiesmann C, Katschke KJ, Yin J, Helmy KY, Steffek M, Fairbrother WJ, McCallum SA, Embuscado L, DeForge L, Hass PE, van Lookeren Campagne M. Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature. 2006;444:217–20.

    CAS  PubMed  Google Scholar 

  • Wüster W. Taxonomic changes and toxinology: systematic revisions of the Asiatic cobras (Naja naja species complex). Toxicon. 1996;34:399–406.

    PubMed  Google Scholar 

  • Wüster W, Harvey AL. Reviews of venomous snake systematics in Toxicon. Toxicon. 1996;34:397–8.

    PubMed  Google Scholar 

  • Wüster W, Warrell DA, Cox MJ, Jintakune P, Nabhitabhata J. Redescription of Naja siamensis (serpentes: Elapidae), a widely overlooked spitting cobra from S.E. Asia: geographic variation, medical importance, and designation of a neotype. J Zool Lond. 1997;243:771–88.

    Google Scholar 

  • Yap MKK, Fung SY, Tan KY, Tan NH. Proteomic characterization of venom of the medically important southeast Asian Naja sumatrana (equatorial spitting cobra). Acta Trop. 2014;133:15–25.

    CAS  PubMed  Google Scholar 

  • Zara JJ, Wood RD, Pomato N, Boon P, Bredehorst R, Vogel C-W. A carbohydrate-directed heterobifunctional crosslinking reagent for the synthesis of immunoconjugates. Analyt Biochem. 1991;104:156–62.

    Google Scholar 

  • Zara J, Pomato N, McCabe RP, Bredehorst R, Vogel C-W. Cobra venom factor immunoconjugates: effects of carbohydrate-directed versus amino group-directed conjugation. Bioconjugate Chem. 1995;6:367–72.

    CAS  Google Scholar 

  • Zeng L, Sun Q-Y, Jin Y, Zhang Y, Lee W-H, Zhang Y. Molecular cloning and characterization of a complement-depleting factor from king cobra, Ophiophagus hannah. Toxicon. 2012;60:290–301.

    CAS  PubMed  Google Scholar 

  • Ziegelmüller P, Bredehorst R, Vogel C-W. Recombinant expression of the three individual chains of cobra venom factor. J Invest Med. 1999;47:216A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Wilhelm Vogel .

Editor information

Editors and Affiliations

Appendix

Appendix

The taxonomy of the Asiatic cobras is complex and has undergone changes. There currently are eleven recognized species within the Asiatic cobra complex (Wüster 1996), six of which occur on the Asian mainland (N. naja (Indian or spectacled cobra), N. kaouthia (monocellate or monocled cobra), N. atra (Chinese cobra), N. oxiana (Central Asian cobra), N. siamensis (Indochinese spitting cobra), N. mandalayensis (Burmese spitting cobra)), including two species that were only rather recently described or redescribed (N. siamensis, N. mandalayensis) (Slowinski and Wüster 2000; Wüster et al. 1997), and five that occur only on Southeast Asian archipelagos of Indonesia, the Philippines, and the Andaman Islands (N. sputatrix (Southern Indonesian or Javan spitting cobra), N. philippinensis (northern Philippine cobra), N. sagittifera (Andaman cobra), N. samarensis (southern Philippine cobra), N. sumatrana (Equatorial spitting cobra)). Formerly, there was only one recognized Asiatic cobra species (N. naja) with multiple subspecies (e.g., N. n. naja, N. n. kaouthia, etc.) (Mehrtens 1987; Phelps 1981; Wüster 1996). Accordingly, many earlier reports in the toxinological literature, including reports on CVF, identify N. naja as the venom source (Cochrane et al. 1970; Müller-Eberhard and Fjellström 1971). Many studies denote the origin of the venom from N. n. siamensis (Eggertsen et al. 1981; Vogel and Müller-Eberhard 1984). However, N. n. siamensis was not a recognized species or subspecies until recently, and the older designation by venom suppliers of N. n. siamensis refers to the fact that the venom originated from Thailand. Most likely, the venom was derived from N. kaouthia, although the precise origin will remain obscure, and it may even represent a mixture of more than one species (Vogel 1991; Wüster and Harvey 1996; Wüster et al. 1997).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Vogel, CW., Fritzinger, D.C. (2015). Cobra Venom Factor: The Unique Component of Cobra Venom That Activates the Complement System. In: Gopalakrishnakone, P., Inagaki, H., Mukherjee, A., Rahmy, T., Vogel, CW. (eds) Snake Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6648-8_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6648-8_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6648-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics