Skip to main content

Non-Cobra Venom Factor Venom Components Acting on Complement Proteins

  • Living reference work entry
  • First Online:
Snake Venoms

Part of the book series: Toxinology ((TOXI))

  • 277 Accesses

Abstract

The complement system, one of the first lines of defense of the innate immunity, is an important mechanism by which the body recognizes foreign substances and pathogens. This system consists of over 35 proteins, among them regulators and membrane-bound receptors and plasma proteins that interact with multiple cells and mediators of the immune system. These interactions vary according to the pathophysiologic context and occur at different stages of the immune reaction. Snake venoms contain potent cocktails of proteolytic enzymes, and the possibilities of these enzymes to interact with the complement system by either activating it or inhibiting have been investigated in many studies. The activation of the complement system by snake venoms, by generation of the potent anaphylatoxin C5a, could help the spread of the other toxic components and thereby enhancing the immobilization of the prey. Discovery of snake components that interact with the complement system may elucidate more about how the venom of snakes is spread in their prey, as well as the role of this interaction on the pathogenesis of the envenomations. It may also lead to discovery of components that aids the studies of the roles of complement in health and disease and also may yield novel anticomplement therapeutic agents. This review summarizes the key contributions regarding the action of snake venom toxins on the complement system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ayres LR, Récio Ados R, Burin SM, Pereira JC, Martins AC, Sampaio SV, de Castro FA, Pereira-Crott LS. Bothrops snake venoms and their isolated toxins, an L-amino acid oxidase and a serine protease, modulate human complement system pathways. J Venom Anim Toxins Incl Trop Dis. 2015;21:29.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bajic G, Degn SE, Thiel S, Andersen GR. Complement activation, regulation, and molecular basis for complement-related diseases. EMBO J. 2015;34:2735–57.

    Article  CAS  PubMed  Google Scholar 

  • Ballow M, Cochrane CG. Two anticomplementary factors in cobra venom: hemolysis of guinea pig erythrocytes by one of them. J Immunol. 1969;103:944–52.

    CAS  PubMed  Google Scholar 

  • de Cordoba SR, Tortajada A, Harris CL, Morgan BP. Complement dysregulation and disease: from genes and proteins to diagnostics and drugs. Immunobiology. 2012;217:1034–46.

    Article  PubMed  Google Scholar 

  • Farsky SH, Walber J, Costa-Cruz M, Cury Y, Teixeira CF, Curry Y. Leukocyte response induced by Bothrops jararaca crude venom: in vivo and in vitro studies. Toxicon. 1997;35:185–93.

    Article  CAS  PubMed  Google Scholar 

  • Farsky SH, Gonçalves LR, Gutiérrez JM, Correa AP, Rucavado A, Gasque P, Tambourgi DV. Bothrops asper snake venom and its metalloproteinase BaP-1 activate the complement system. Role in leucocyte recruitment. Mediat Inflamm. 2000;9:213–21.

    Article  CAS  Google Scholar 

  • Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Köhl J. The role of the anaphylatoxins in health and disease. Mol Immunol. 2009;46:2753–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin X, Qi JZ, Chen MH, Qiu BT, Huang ZH, Qiu PX, Chen JS, Yan GM. A novel recombinant fibrinogenase of Agkistrodon acutus venom protects against hyperacute rejection via degradation of complements. Biochem Pharmacol. 2013;85:772–9.

    Article  CAS  PubMed  Google Scholar 

  • Menaldo DL, Bernardes CP, Pereira JC, Silveira DS, Mamede CC, Stanziola L, Oliveira F, Pereira-Crott LS, Faccioli LH, Sampaio SV. Effects of two serine proteases from Bothrops pirajai snake venom on the complement system and the inflammatory response. Int Immunopharmacol. 2013;15:764–71.

    Article  CAS  PubMed  Google Scholar 

  • Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I – molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262.

    PubMed Central  PubMed  Google Scholar 

  • Minta JO, Man DP, Wasi S, Painter RH. Interaction of Crotalus atrox venom with serum complement: kinetic analysis. Immunochemistry. 1977;14:513–9.

    Article  CAS  PubMed  Google Scholar 

  • Müller-Eberhard HJ. Molecular organization and function of the complement system. Annu Rev Biochem. 1988;57:321–47.

    Article  PubMed  Google Scholar 

  • O’Keefe MC, Caporale LH, Vogel CW. A novel cleavage product of human complement component C3 with structural and functional properties of cobra venom factor. J Biol Chem. 1988;263:12690–7.

    PubMed  Google Scholar 

  • Pidde-Queiroz G, Furtado MEF, Filgueiras CF, Pessoa LA, Spadafora-Ferreira M, van den Berg CW, Tambourgi DV. Human complement activation and anaphylatoxins generation induced by snake venom toxins from Bothrops genus. Mol Immunol. 2010;47:2537–44.

    Article  CAS  PubMed  Google Scholar 

  • Pidde-Queiroz G, Magnoli FC, Portaro FC, Serrano SM, Lopes AS, Paes Leme AF, van den Berg CW, Tambourgi DV. P-I snake venom metalloproteinase is able to activate the complement system by direct cleavage of central components of the cascade. PLoS Negl Trop Dis. 2013;7:e2519.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rael ED, Jones LP. Isolation of an anticomplement factor from the venom of the Mojave rattlesnake (Crotalus scutulatus scutulatus). Toxicon. 1983;21:57–65.

    Article  CAS  PubMed  Google Scholar 

  • Rehana S, Manjunatha Kini R. Molecular isoforms of cobra venom factor-like proteins in the venom of Austrelaps superbus. Toxicon. 2007;50:32–52.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FG, Petretski JH, Kanashiro MM, Lemos L, da Silva WD, Kipnis TL. The complement system is involved in acute inflammation but not in the hemorrhage produced by a Bothrops atrox snake venom low molecular mass proteinase. Mol Immunol. 2004;40:1149–56.

    Article  CAS  PubMed  Google Scholar 

  • Shoibonov BB, Osipov AV, Kryukova EV, Zinchenko AA, Lakhtin VM, Tsetlin VI, Utkin YN. Oxiagin from the Naja oxiana cobra venom is the first reprolysin inhibiting the classical pathway of complement. Mol Immunol. 2005;42:1141–53.

    Article  CAS  PubMed  Google Scholar 

  • Stone SF, Isbister GK, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, Ariaratnam A, Jacoby-Alner TE, Cotterell CL, Brown SG. Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation. PLoS Negl Trop Dis. 2013;7:e2326.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun QY, Bao J. Purification, cloning and characterization of a metalloproteinase from Naja atra venom. Toxicon. 2010;56(8):1459–69.

    Article  CAS  PubMed  Google Scholar 

  • Tambourgi DV, dos Santos MC, de Furtado MF, de Freitas MC, da Silva WD, Kipnis TL. Pro-inflammatory activities in elapid snake venoms. Br J Pharmacol. 1994;112:723–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka GD, Pidde-Queiroz G, de Fátima D, Furtado M, van den Berg C, Tambourgi DV. Micrurus snake venoms activate human complement system and generate anaphylatoxins. BMC Immunol. 2012;13:4.

    Article  PubMed Central  PubMed  Google Scholar 

  • van den Berg CW, Aerts PC, Van Dijk H. In vivo anti-complementary activities of the cobra venom factors from Naja naja and Naja haje. J Immunol Methods. 1991;136:287–94.

    Article  PubMed  Google Scholar 

  • Vogel CW, Fritzinger DC. Cobra venom factor: structure, function, and humanization for therapeutic complement depletion. Toxicon. 2010;56:1198–222.

    Article  CAS  PubMed  Google Scholar 

  • Vogel CW, Finnegan PW, Fritzinger DC. Humanized cobra venom factor: structure, activity, and therapeutic efficacy in preclinical disease models. Mol Immunol. 2014;61:191–203.

    Article  CAS  PubMed  Google Scholar 

  • von Zabern I, Przyklenk H, Damerau B, Zimmermann B. Isolation and properties of a complement inhibitor from Naja haje venom, distinct from known anticomplementary factors in cobra venom. Scand J Immunol. 1981;14:109–20.

    Article  Google Scholar 

  • Yamamoto C, Tsuru D, Oda-Ueda N, Ohno M, Hattori S, Kim ST. Trimeresurus flavoviridis (habu snake) venom induces human erythrocyte lysis through enzymatic lipolysis, complement activation and decreased membrane expression of CD55 and CD59. Pharmacol Toxicol. 2001;89:188–94.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto C, Tsuru D, Oda-Ueda N, Ohno M, Hattori S, Kim ST. Flavoxobin, a serine protease from Trimeresurus flavoviridis (habu snake) venom, independently cleaves Arg726-Ser727 of human C3 and acts as a novel, heterologous C3 convertase. Immunology. 2002;107:111–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng L, Sun QY, Jin Y, Zhang Y, Lee WH. Molecular cloning and characterization of a complement-depleting factor from king cobra, Ophiophagus hannah. Toxicon. 2012;60:290–301.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise V. Tambourgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Tambourgi, D.V., van den Berg, C.W. (2015). Non-Cobra Venom Factor Venom Components Acting on Complement Proteins. In: Gopalakrishnakone, P., Inagaki, H., Mukherjee, A., Rahmy, T., Vogel, CW. (eds) Snake Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6648-8_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6648-8_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6648-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics