Advertisement

Toxinology of Snake Venoms: The Malaysian Context

Living reference work entry
Part of the Toxinology book series (TOXI)

Abstract

Venomous snakes native in Malaysia include the elapids (cobras, king cobra, kraits, coral snakes, sea snakes) and crotalids (Malayan pit viper, Asian lance-headed pit vipers). The elapid venoms are typically neurotoxic, while the crotalid venoms are usually hemorrhagic, coagulopathic, and necrotizing. Among the elapids, cobra and king cobra venoms produce pain and tissue-necrotizing effect, whereas sea snake venoms can cause rhabdomyolysis and acute kidney injury. Venom compositions greatly vary from species to species, resulting in differences in the clinical presentation of envenomation by different species and the varied effectiveness of antivenoms on different venoms. In Malaysia, research activities on snakes have been carried out since the 1960s; through these years venoms have been subjected to multifaceted characterizations where knowledge on toxin variants and compositions, envenoming pathophysiology, venom pharmacokinetics-pharmacodynamics, as well as antivenom neutralization had been greatly advanced. The knowledge is indispensable for improving clinical protocol on snakebite assessment and to guide on the appropriate type of antivenoms to stock in local hospitals for clinical use. This is especially important for Malaysia, where antivenoms are supplied by manufacturers from overseas without a clear standardization for the selection of antivenom source. Until today, there are research gaps and repertoires for scientists to further explore. These include proteomic profiling of venoms and venom gland transcriptomics for local species, antivenomics, antivenom formulation optimization, and so on.

Keywords

Venom Toxin Antivenom Malaysian snakes 

References

  1. Afifiyan F, Armugam A, Gopalakrishnakone P, Tan NH, Tan CH, Jeyaseelan K. Four new postsynaptic neurotoxins from NajaNaja sputatrix venom: cDNA cloning, protein expression, and phylogenetic analysis. Toxicon. 1998;36(12):1871–85.PubMedGoogle Scholar
  2. Ahn MY, Lee BM, Kim YS. Characterization and cytotoxicity of L-amino acid oxidase from the venom of king cobra (Ophiophagus hannah). Int J Biochem Cell Biol. 1997;29(6):911–9.PubMedGoogle Scholar
  3. Ali SA, Baumann K, Jackson TN, Wood K, Mason S, Undheim EA, Nouwens A, Koludarov I, Hendrikx I, Jones A, Fry BG. Proteomic comparison of Hypnale hypnale (hump-nosed pit-viper) and Calloselasma rhodostoma (Malayan pit-viper) venoms. J Proteomics. 2013;91:338–43.PubMedGoogle Scholar
  4. Armugam A, Earnest L, Chung MC, Gopalakrishnakone P, Tan CH, Tan NH, Jeyaseelan K. Cloning and characterization of cDNAs encoding three isoforms of phospholipase A2 in Malayan spitting cobra (NajaNaja sputatrix) venom. Toxicon. 1997;35(1):27–37.PubMedGoogle Scholar
  5. Au LC, Huang YB, Huang TF, The GW, Lin HH, Choo KB. A common precursor for a putative hemorrhagic protein and rhodostomin, a platelet aggregation inhibitor of the venom of Calloselasma rhodostoma: molecular cloning and sequence analysis. Biochem Biophys Res Commun. 1991;181:585.PubMedGoogle Scholar
  6. Bergmeier W, Bouvard D, Eble JA, Mokhtari-Nejad R, Schulte V, Zirngibl H, Brakebusch C, Fässler R, Nieswandt B. Rhodocytin (aggretin) activates platelets lacking alpha(2)beta(1) integrin, glycoprotein VI, and the ligand-binding domain of glycoprotein Ibα. J Biol Chem. 2001;276(27):25121–6.PubMedGoogle Scholar
  7. Bon C, Saliou B. Ceruleotoxin: identification in the venom of Bungarus fasciatus, molecular properties and importance of phospholipase A2 activity for neurotoxicity. Toxicon. 1983;21(5):681–98.PubMedGoogle Scholar
  8. Bonfim VL, Ponce-Soto LA, Novello JC, Marangoni S. Structural and functional properties of Cr 5, a new Lys49 phospholipase A2 homologue isolated from the venom of the snake Calloselasma rhodostoma. Protein J. 2006;25(7–8):492–502.PubMedGoogle Scholar
  9. Bonfim VL, Ponce-Soto LA, Martins de Souza D, Souza GH, Baldasso PA, Eberlin MN, Marangoni S. Structural and functional characterization of myotoxin, Cr-IV 1, a phospholipase A2 D49 from the venom of the snake Calloselasma rhodostoma. Biologicals. 2008;36(3):168–76.PubMedGoogle Scholar
  10. Brook GA, Torres LF, Gopalakrishnakone P, Duchen LW. Effects of phospholipase of Enhydrina schistosa venom on nerve, motor end-plate and muscle of the mouse. Q J Exp Physiol. 1987;72(4):571–91.PubMedGoogle Scholar
  11. Bruserud Ø. The snake venom rhodocytin from Calloselasma rhodostoma- a clinically important toxin and a useful experimental tool for studies of C-type lectin-like receptor 2 (CLEC-2). Toxins (Basel). 2013;5(4):665–74.Google Scholar
  12. Burkhart W, Smith GFH, Su JL, Parikh I, And LeVine III H. Amino acid sequence determination of Ancrod, the thrombin-like α-fibrinogenase from the venom of Agkistrodon rhodostoma. FEBS Lett. 1992;297:297.PubMedGoogle Scholar
  13. Cham G, Pan JC, Lim F, Earnest A, Gopalakrishnakone P. Effects of topical heparin, antivenom, tetracycline and dexamethasone treatment in corneal injury resulting from the venom of the black spitting cobra (Naja sumatrana), in a rabbit model. Clin Toxicol (Phila). 2006;44(3):287–92.Google Scholar
  14. Chang WC, Lee ML, Lo TB. Phospholipase A2 activity of long-chaincardiotoxins in the venom of the banded krait (Bungarus fasciatus). Toxicon. 1983;21(1):163–5.PubMedGoogle Scholar
  15. Chang HH, Chang CP, Chang JC, Dung SZ, Lo SJ. Application of recombinant Rhodostomin in studying cell adhesion. J Biomed Sci. 1997;4(5):235–43.PubMedGoogle Scholar
  16. Chang CH, Chung CH, Kuo HL, Hsu CC, Huang TF. The highly specific platelet glycoprotein (GP) VI agonist trowaglerix impaired collagen-induced platelet aggregation ex vivo through matrix metalloproteinase-dependent GPVI shedding. J Thromb Haemost. 2008;6(4):669–76.PubMedGoogle Scholar
  17. Chang HC, Tsai TS, Tsai IH. Functional proteomic approach to discover geographic variations of king cobra venoms from Southeast Asia and China. J Proteomics. 2013;89C:141–53.Google Scholar
  18. Chanhome L, Sitprija V, Chaiyabutr N. Effects of Bungarus candidus (Malayan krait) venom on general circulation and hemodynamics in experimental animals. Asian Biomed. 2010;4(3):421–8.Google Scholar
  19. Chew KS, Khor HW, Ahmad R, Rahman NH. A five-year retrospective review of snakebite patients admitted to a tertiary university hospital in Malaysia. Int J Emerg Med. 2011;4:41.PubMedCentralPubMedGoogle Scholar
  20. Chiappinelli VA, Wolf KM, DeBin JA, Holt IL. Kappa-flavitoxin: isolation of a new neuronal nicotinic receptor antagonist that is structurally related to kappa-bungarotoxin. Brain Res. 1987;402(1):21–9.PubMedGoogle Scholar
  21. Chippaux JP. Snake venoms and envenomations. (trans: Huchzermeyer FW). Malabar: Krieger. 2006. (Original work published 2002).Google Scholar
  22. Chung MC, Tan NH, Armugam A. The amino acid sequences of two postsynaptic neurotoxins isolated from Malayan cobra (NajaNaja sputatrix) venom. Toxicon. 1994;32(11):1471–4.PubMedGoogle Scholar
  23. Chung MCM, Ponnudurai G, Kataoka M, Shimizu S, Tan NH. Structural studies of a major hemorrhagin (rhodostoxin) from the venom of Calloselasma rhodostoma (Malayan pit viper). Arch Biochem Biophys. 1996;325:199–208.PubMedGoogle Scholar
  24. Chung CH, Au LC, Huang TF. Molecular cloning and sequence analysis of aggretin, a collagen-like platelet aggregation inducer. Biochem Biophys Res Commun. 1999;263(3):723–7.PubMedGoogle Scholar
  25. Daltry JC, Ponnudurai G, Shin CK, Tan NH, Thorpe RS, Wüster W. Electrophoretic profiles and biological activities: intraspecific variation in the venom of the Malayan pit viper (Calloselasma rhodostoma). Toxicon. 1996a;34(1):67–79.PubMedGoogle Scholar
  26. Daltry JC, Wüster W, Thorpe RS. Diet and snake venom evolution. Nature. 1996b;379(6565):537–40.PubMedGoogle Scholar
  27. Debnath A, Saha A, Gomes A, Biswas S, Chakrabarti P, Giri B, Biswas AK, Gupta SD, Gomes A. A lethal cardiotoxic-cytotoxic protein from the Indian monocellate cobra (Naja kaouthia) venom. Toxicon. 2010;56(4):569–79.PubMedGoogle Scholar
  28. Dennis MS, Henzel WJ, Pitti RM, Lipari MT, Napier MA, Deisher TA, Bunting S, Lazarus RA. Platelet glycoprotein IIb-IIIa protein antagonists from snake venoms: evidence for a family of platelet-aggregation inhibitors. Proc Natl Acad Sci U S A. 1990;87(7):2471–5.PubMedCentralPubMedGoogle Scholar
  29. Eble JA, Beermann B, Hinz HJ, Schmidt-Hederich A. α2β1integrin is not recognized by rhodocytin but is the specific, high affinity target of rhodocetin, an RGD-independent disintegrin and potent inhibitor of cell adhesion to collagen. J Biol Chem. 2001;276(15):12274–84.PubMedGoogle Scholar
  30. Eble JA, Niland S, Dennes A, Schmidt-Hederich A, Bruckner P, Brunner G. Rhodocetin antagonizes stromal tumor invasion in vitro and other α2β1integrin-mediated cell functions. Matrix Biol. 2002;21(7):547–58.PubMedGoogle Scholar
  31. Endo T, Tamiya N. Structure-function relationships of postsynaptic neurotoxins from snake venoms. In: Harvey AL, editor. Snake toxins. Oxford: Pergamon Press; 1991. p. 165–222.Google Scholar
  32. Esnouf MP, Tunnah GW. The isolation and properties of the thrombin-like activity rom Ancistrodon rhodostoma venom. Br J Haematol. 1967;13:581–90.PubMedGoogle Scholar
  33. Fletcher JE, Jiang MS. Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittin. Toxicon. 1993;31(6):669–95.PubMedGoogle Scholar
  34. Fletcher JE, Jiang MS, Gong QH, Smith LA. Snake venom cardiotoxins and bee venom melittin activate phospholipase C activity in primary cultures of skeletal muscle. Biochem Cell Biol. 1991;69(4):274–81.PubMedGoogle Scholar
  35. Fohlman J, Eaker D. Isolation and characterization of a lethal myotoxic phospholipase A from the venom of the common sea snake Enhydrina schistosa causing myoglobinuria in mice. Toxicon. 1977;15(5):385–93.PubMedGoogle Scholar
  36. Fry BG. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005;15(3):403–20.PubMedCentralPubMedGoogle Scholar
  37. Fryklund L, Eaker D, Karlsson E. Amino acid sequences of the two principal neurotoxins of Enhydrina schistosa venom. Biochemistry. 1972;11(24):4633–40.PubMedGoogle Scholar
  38. Ganthavorn S. A case of king cobra bite. Toxicon. 1971;9(3):293–4.PubMedGoogle Scholar
  39. Geh SL, Lin-Shiau SY. The neuromuscular blocking properties of an acidic and a basic phospholipase A2 purified from the common sea snake, Enhydrina schistosa venom. Asian Pac J Pharmacol. 1987;2:161–7.Google Scholar
  40. Geh SL, Toh HT. Ultrastructural changes in skeletal muscle caused by a phospholipase A2 fraction isolated from the venom of a sea snake, Enhydrina schistosa. Toxicon. 1978;16(6):633–43.PubMedGoogle Scholar
  41. Geyer A, Fitzpatrick TB, Pawelek PD, Kitzing K, Vrielink A, Ghisla S, Macheroux P. Structure and characterization of the glycan moiety of L-amino acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Eur J Biochem. 2001;268:4044–53.PubMedGoogle Scholar
  42. Gold BS, Pyle P. Successful treatment of neurotoxicking cobra envenomation in Myrtle Beach, South Carolina. Ann Emerg Med. 1998;32(6):736–8.PubMedGoogle Scholar
  43. Gong QH, Wieland SJ, Fletcher JE, Conner GE, Jiang MS. Effect of a phospholipase A2 with cardiotoxin-like properties, from Bungarus fasciatus snake venom, on calcium-modulated potassium currents. Toxicon. 1989;27(12):1339–49.PubMedGoogle Scholar
  44. Gopalakrishnakone P. Histopathological changes induced by the sea snake Enhydrina schistosa venom on murine muscle and neuromuscular junction. In: Meier J, Stocker K, Freyvogal TA, editors. Proceedings of 6th European symposium on animal, plant and microbial toxins. International Society on Toxinology; Basel Switzerland, 1984. p. 89.Google Scholar
  45. Gopalakrishnakone P, Kochva E. Unusual aspects of the venom apparatus of the blue coral snake, Maticora bivirgata. Arch Histol Cytol. 1990;53(2):199–210.PubMedGoogle Scholar
  46. Gopalakrishnakone P, Ponraj D, Thwinn MM. Myotoxic phospholipases from snake venoms: general myoglobinuric and local myonecrotic toxins. In: Kini RN, editor. Venom phospholipases A2 enzymes: structure, function and mechanism. New York: Wiley; 1997. p. 287–320.Google Scholar
  47. Guo XX, Zeng L, Lee WH, Zhang Y, Jin Y. Isolation and cloning of a metalloproteinase from king cobra snake venom. Toxicon. 2007;49(7):954–65.PubMedGoogle Scholar
  48. Gutiérrez JM, Theakston RDG, Warrell DA. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med. 2006;3(6):e150.PubMedCentralPubMedGoogle Scholar
  49. Hawgood BJ. Hugh Alistair Reid OBE MD: investigation and treatment of snake bite. Toxicon. 1998;36(3):431–46.PubMedGoogle Scholar
  50. He YY, Lee WH, Zhang Y. Cloning and purification of alpha-neurotoxins from king cobra (Ophiophagus hannah). Toxicon. 2004;44(3):295–303.PubMedGoogle Scholar
  51. He YY, Liu SB, Lee WH, Qian JQ, Zhang Y. Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom. Peptides. 2008;29(10):1692–9.PubMedGoogle Scholar
  52. Heatwole H, Poran NS Resistances of sympatric and allopatric eels to sea snake venoms. Copeia. 1995;136–147.Google Scholar
  53. Hegde RP, Rajagopalan N, Doley R, Kini RM. Snake venom three-finger toxins. In: Mackessy SP, edtior. Handbook of venoms and toxins of reptiles. Boca Raton, Taylor & Fracis Group/CRC Press. 2009; pp 287–301.Google Scholar
  54. Hennerici MG, Kay R, Bogousslavsky J, Lenzi GL, Verstraete M, Orgogozo JM, ESTAT investigators. Intravenous ancrod for acute ischaemic stroke in the European Stroke Treatment with Ancrod Trial: a randomised controlled trial. Lancet. 2006;368(9550):1871–8.PubMedGoogle Scholar
  55. Hodgson WC, Wickramaratna JC. In vitro neuromuscular activity of snake venoms. Clin Exp Pharmacol Physiol. 2002;29(9):807–14.PubMedGoogle Scholar
  56. Hsu CC, Wu WB, Chang YH, Kuo HL, Huang TF. Antithrombotic effect of a protein-type I class snake venom metalloproteinase, kistomin, is mediated by affecting glycoprotein Ib-von Willebrand factor interaction. Mol Pharmacol. 2007;72(4):984–92.PubMedGoogle Scholar
  57. Huang MZ, Gopalakrishnakone P. Pathological changes induced by an acidic phospholipase A2 from Ophiophagus hannah venom on heart and skeletal muscle of mice after systemic injection. Toxicon. 1996;34(2):201–11.PubMedGoogle Scholar
  58. Huang TF, Wu YJ, Ouyang C. Characterization of a platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochim Biophys Acta. 1987;925:248–57.PubMedGoogle Scholar
  59. Huang TF, Chang MC, Teng CM. Anti-platelet protease, kistomin, selectively cleaves human platelet glycoprotein Ib. Biochim Biophys Acta. 1993;1158:293.PubMedGoogle Scholar
  60. Huang TF, Liu CZ, Yang SH. Aggretin, a novel platelet-aggregation inducer from snake (Calloselasma rhodostoma) venom, activates phospholipase C by acting as a glycoprotein Ia/IIa agonist. Biochem J. 1995;309(Pt 3):1021–7.PubMedCentralPubMedGoogle Scholar
  61. Huang MZ, Gopalakrishnakone P, Chung MC, Kini RM. Complete amino acid sequence of an acidic, cardiotoxicphospholipase A2 from the venom of Ophiophagus hannah (King cobra): a novel cobra venom enzyme with “pancreatic loop”. Arch Biochem Biophys. 1997a;338(2):150–6.PubMedGoogle Scholar
  62. Huang MZ, Gopalakrishnakone P, Kini RM. Role of enzymatic activity in the anti-platelet effects of a phospholipase A2 from Ophiophagus hannah snake venom. Life Sci. 1997b;61(22):2211–7.PubMedGoogle Scholar
  63. Hutton RA, Looareesuwan S, Ho M, Silamut K, Chanthavanich P, Karbwang J, Supanaranond W, Vejcho S, Viravan C, Phillips RE. Arboreal green pit vipers (genus Trimeresurus) of South-East Asia: bites by T. albolabris and T. macrops in Thailand and a review of the literature. Trans R Soc Trop Med Hyg. 1990;84(6):866–74.PubMedGoogle Scholar
  64. Ismail M, Ellison AC. Ocular effects of the venom from the spitting cobra (Naja nigricollis). J Toxicol Clin Toxicol. 1986;24(3):183–202.PubMedGoogle Scholar
  65. Ismail M, al-Bekairi AM, el-Bedaiwy AM, Abd-el Salam MA. The ocular effects of spitting cobras: II. Evidence that cardiotoxins are responsible for the corneal opacification syndrome. J Toxicol Clin Toxicol. 1993;31(1):45–62.PubMedGoogle Scholar
  66. Ismail AK, Weinstein SA, Auliya M, Appareo P. Ventricular bigeminy following a cobra envenomation. Clin Toxicol (Phila). 2012;50(6):518–521.Google Scholar
  67. Jamaiah I, Rohela M, Roshalina R, Undan RC. Prevalence of snake bites in Kangar District Hospital, Perlis, west Malaysia: a retrospective study (January 1999–December 2000). Southeast Asian J Trop Med Public Health. 2004;35(4):962–5.PubMedGoogle Scholar
  68. Jamaiah I, Rohela M, Ng TK, Ch’ng KB, Teh YS, Nurulhuda AL, Suhaili N. Retrospective prevalence of snakebites from Hospital Kuala Lumpur (HKL) (1999–2003). Southeast Asian J Trop Med Public Health. 2006;37(1):200–5.PubMedGoogle Scholar
  69. Jeyaseelan K, Armugam A, Lachumanan R, Tan CH, Tan NH. Six isoforms of cardiotoxin in Malayan spitting cobra (NajaNaja sputatrix) venom: cloning and characterization of cDNAs. Biochim Biophys Acta. 1998;1380(2):209–22.PubMedGoogle Scholar
  70. Jeyaseelan K, Poh SL, Nair R, Armugam A. Structurally conserved alpha-neurotoxin genes encode functionally diverse proteins in the venom of Naja sputatrix. FEBS Lett. 2003;553(3):333–41.PubMedGoogle Scholar
  71. Jiang MS, Häggblad J, Heilbronn E. Interaction with chick myotube cholinergic receptors of an alpha-neurotoxin isolated from venom of the banded krait (Bungarus fasciatus). Toxicon. 1986;24(7):713–9.PubMedGoogle Scholar
  72. Joubert FJ. Snake venom toxins the amino acid sequences of two toxins from Ophiophagus hannah (King cobra) venom. Biochim Biophys Acta. 1973;317(1):85–98.PubMedGoogle Scholar
  73. Kanthimathi MS. Acetylcholinesterase from the venom of Enhydrina schistosa. MSc thesis. Department of Biochemistry, University of Malaya, Kuala Lumpur, Malaysia. 1980.Google Scholar
  74. Karlsson E, Eaker D. Isolation of the principal neurotoxins of NajaNaja subspecies from the Asian mainland. Toxicon. 1972;10(3):217–25.PubMedGoogle Scholar
  75. Karlsson E, Eaker D, Fryklund L, Kadin S. Chromatographic separation of Enhydrina schistosa (common sea snake) venom and the characterization of two principal neurotoxins. Biochemistry. 1972;11(24):4628–33.PubMedGoogle Scholar
  76. Khomvilai S. New improvement in the production technique of polyvalent snake antivenom imunoglobulins. Paper presented at the inaugural conference on global issues in clinical toxinology, 23rd–28th Nov 2008, Melbourne.Google Scholar
  77. Khow O, Chanhome L, Omori-Satoh T, Puempunpanich S, Sitprija V. A hemorrhagin as a metalloprotease in the venom of Trimeresurus purpureomaculatus: purification and characterization. Toxicon. 2002a;40(4):455–61.PubMedGoogle Scholar
  78. Khow O, Chanhome L, Omori-Satoh T, Sitprija V. Isolation of the major lethal toxin in the venom of Bungarus flaviceps. Toxicon. 2002b;40(4):463–9.PubMedGoogle Scholar
  79. Khow O, Chanhome L, Omori-Satoh T, Ogawa Y, Yanoshita R, Samejima Y, Kuch U, Mebs D, Sitprija V. Isolation, toxicity and amino terminal sequences of three major neurotoxins in the venom of Malayan krait (Bungarus candidus) from Thailand. J Biochem. 2003;134(6):799–804.PubMedGoogle Scholar
  80. Kini RM, Chan YM. Accelerated evolution and molecular surface of venom phospholipase A2 enzymes. J Mol Evol. 1999;48(2):125–32.PubMedGoogle Scholar
  81. Kordis D, Gubensek F. Adaptive evolution of animal toxin multigene families. Gene. 2000;261(1):43–52.PubMedGoogle Scholar
  82. Kruck TP, Logan DM. Neurotoxins from Bungarus fasciatus venom: a simple fractionation and separation of alpha- and beta-type neurotoxins and their partial characterization. Biochemistry. 1982;21(21):5302–9.PubMedGoogle Scholar
  83. Kuch U, Molles BE, Omori-Satoh T, Chanhome L, Samejima Y, Mebs D. Identification of alpha-bungarotoxin (A31) as the major postsynaptic neurotoxin, and complete nucleotide identity of a genomic DNA of Bungarus candidus from Java with exons of the Bungarus multicinctus alpha-bungarotoxin (A31) gene. Toxicon. 2003;42(4):381–90.PubMedGoogle Scholar
  84. Kuhn P, Deacon AM, Comsa DS, Rajaseger G, Kini RM, Usón I, Kolatkar PR. The atomic resolution structure of bucandin, a novel toxin isolated from the Malayan krait, determined by direct methods. Acta Crystallogr D Biol Crystallogr. 2000;56(Pt 11):1401–7.PubMedGoogle Scholar
  85. Kulkeaw K, Chaicumpa W, Sakolvaree Y, Tongtawe P, Tapchaisri P. Proteome and immunome of the venom of the Thai cobra, Naja kaouthia. Toxicon. 2007;49(7):1026–41.PubMedGoogle Scholar
  86. Kumar V, Elliott WB. The acetylcholinesterase of Bungarus fasciatus venom. Eur J Biochem. 1973;34:586–92.PubMedGoogle Scholar
  87. Lachumanan R, Armugam A, Durairaj P, Gopalakrishnakone P, Tan CH, Jeyaseelan K. In situ hybridization and immunohistochemical analysis of the expression of cardiotoxin and neurotoxin genes in NajaNaja sputatrix. J Histochem Cytochem. 1999;47(4):551–60.PubMedGoogle Scholar
  88. Laothong C, Sitprija V. Decreased parasympathetic activities in Malayan krait (Bungarus candidus) envenoming. Toxicon. 2001;39:1353–7.PubMedGoogle Scholar
  89. Lee ML, Tan NH, Fung SY, Sekaran SD. Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom. Comp Biochem Physiol C Toxicol Pharmacol. 2011;153(2):237–42.PubMedGoogle Scholar
  90. Leeprasert W, Kaojarern S. Specific antivenom for Bungarus candidus. J Med Assoc Thai. 2007;90(7):1467–76.PubMedGoogle Scholar
  91. Leong PK, Sim SM, Fung SY, Sumana K, Sitprija V, Tan NH. Cross neutralization of Afro-Asian cobra and Asian krait venoms by a Thai polyvalent snake antivenom (Neuro polyvalent snake antivenom). PLoS Negl Trop Dis. 2012a;6(6):e1672.PubMedCentralPubMedGoogle Scholar
  92. Leong PK, Tan NH, Fung SY, Sim SM. Cross neutralization of Southeast Asian cobra and krait venoms by Indian polyvalent antivenoms. Trans R Soc Trop Med Hyg. 2012b;106(12):731–7.PubMedGoogle Scholar
  93. Leong PK, Tan CH, Sim SM, Fung SY, Sumana K, Sitprija V, Tan NH. Cross neutralization of common Southeast Asian viperid venoms by a Thai polyvalent snake antivenom (hemato polyvalent snake antivenom). Acta Trop. 2014;132:7–14.Google Scholar
  94. Leung WN, Jeffrey PL, Rostas JA. Effect of denervation on sarcolemmal proteins and glycoproteins of fast and slow mammalian skeletal muscle. Exp Neurol. 1986;91(2):229–45.PubMedGoogle Scholar
  95. Levy DE, del Zoppo GJ, Demaerschalk BM, Demchuk AM, Diener HC, Howard G, Kaste M, Pancioli AM, Ringelstein EB, Spatareanu C, Wasiewski WW. Ancrod in acute ischemic stroke: results of 500 subjects beginning treatment within 6 hours of stroke onset in the ancrod stroke program. Stroke. 2009;40(12):3796–803.PubMedGoogle Scholar
  96. Li ZY, Yu TF, Lian EC. Purification and characterization of L-amino acid oxidase from king cobra (Ophiophagus hannah) venom and its effects on human platelet aggregation. Toxicon. 1994;32(11):1349–58.PubMedGoogle Scholar
  97. Li X, Zheng L, Kong C, Kolatkar PR, Chung MC. Purpureotin: a novel di-dimeric C-type lectin-like protein from Trimeresurus purpureomaculatus venom is stabilized by noncovalent interactions. Arch Biochem Biophys. 2004;424(1):53–62.PubMedGoogle Scholar
  98. Li J, Zhang H, Liu J, Xu K. Novel genes encoding six kinds of three-finger toxins in Ophiophagus hannah (king cobra) and function characterization of two recombinant long-chainneurotoxins. Biochem J. 2006;398(2):233–42.PubMedCentralPubMedGoogle Scholar
  99. Lin WW, Smith LA, Lee CY. A study on the cause of death due to waglerin-I, a toxin from Trimeresurus wagleri. Toxicon. 1995;33(1):111–4.PubMedGoogle Scholar
  100. Liu CS, Hsiao PW, Chang CS, Tzeng MC, Lo TB. Unusual amino acid sequence of fasciatoxin, a weak reversibly acting neurotoxin in the venom of the banded krait, Bungarus fasciatus. Biochem J. 1989;259(1):153–158.PubMedGoogle Scholar
  101. Liu CS, Chen JM, Chang CH, Chen SW, Tsai IH, Lu HS, Lo TB. Revised amino acid sequences of the three major phospholipases A2 from Bungarus fasciatus (banded krait) venom. Toxicon. 1990;28(12):1457–68.PubMedGoogle Scholar
  102. Liu S, Marder VJ, Levy DE, Wang SJ, Yang F, Paganini-Hill A, Fisher MJ. Ancrod and fibrin formation: perspectives on mechanisms of action. Stroke. 2011;42(11):3277–80.PubMedCentralPubMedGoogle Scholar
  103. Lomonte B, Angulo Y, Calderón L. An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action. Toxicon. 2003;42(8):885–901. doi:10.1016/j.toxicon.2003.11.008.PubMedGoogle Scholar
  104. Lowe KL, Navarro-Nunez L, Watson SP. Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res. 2012;129 Suppl 1:S30–7.PubMedGoogle Scholar
  105. Lu MS, Lo TB. Complete amino acid sequences of two cardiotoxin-like analogues from Bungarus fasciatus (banded krait) snake venom. Toxicon. 1981;19:103–11.PubMedGoogle Scholar
  106. Lu J, Yang H, Yu H, Gao W, Lai R, Liu J, Liang X. A novel serine protease inhibitor from Bungarus fasciatus venom. Peptides. 2008;29(3):369–74. doi:10.1016/j.peptides.2007.11.013.PubMedGoogle Scholar
  107. MacHeroux P, Seth O, Bollschweiler C, Schwarz M, Kurfürst M, Au LC, Ghisla S. L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Comparative sequence analysis and characterization of active and inactive forms of the enzyme. Eur J Biochem. 2001;268(6):1679–86.PubMedGoogle Scholar
  108. Mackessy SP. The field of reptile toxinology: snakes, lizards, and their venoms. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: Taylor and Francis Group/CRC Press; 2009. p. 3–23.Google Scholar
  109. Malhotra A, Thorpe RS. A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for Asian pit vipers (Trimeresurus and Ovophis). Mol Phylogenet Evol. 2004;32(1):83–100.PubMedGoogle Scholar
  110. Marsden AT, Reid HA. Pathology of sea-snake poisoning. Br Med J. 1961;1(5235):1290–3.PubMedCentralPubMedGoogle Scholar
  111. McArdle JJ, Lentz TL, Witzemann V, Schwarz H, Weinstein SA, Schmidt JJ. Waglerin-1 selectively blocks the epsilon form of the muscle nicotinic acetylcholine receptor. J Pharmacol Exp Ther. 1999;289(1):543–50.PubMedGoogle Scholar
  112. Minton Jr SA. Preliminary observations on the venom of Wagler’s pit viper (Trimeresurus wagleri). Toxicon. 1968;6(2):93–7.PubMedGoogle Scholar
  113. Moustafa IM, Foster S, Lyubimov AY, Vrielink A. Crystal structure of LAAO from Calloselasma rhodostoma with an l-phenylalanine substrate: insights into structure and mechanism. J Mol Biol. 2006;364(5):991–1002.PubMedCentralPubMedGoogle Scholar
  114. Mukherjee AK. Non-covalent interaction of phospholipase A2 (PLA2) and kaouthiotoxin (KTX) from venom of Naja kaouthia exhibits marked synergism to potentiate their cytotoxicity on target cells. J Venom Res. 2010;1:37–42.PubMedCentralPubMedGoogle Scholar
  115. Navdaev A, Clemetson JM, Polgar J, Kehrel BE, Glauner M, Magnenat E, Wells TN, Clemetson KJ. Aggretin, a heterodimeric C-type lectin from Calloselasma rhodostoma (Malayan pit viper), stimulates platelets by binding to α2β1 integrin and glycoprotein Ib, activating Syk and phospholipase Cγ 2, but does not involve the glycoprotein VI/Fc receptor γ chain collagen receptor. J Biol Chem. 2001;276(24):20882–9.PubMedGoogle Scholar
  116. Nirthanan S, Charpantier E, Gopalakrishnakone P, Gwee MC, Khoo HE, Cheah LS, Kini RM, Bertrand D. Neuromuscular effects of candoxin, a novel toxin from the venom of the Malayan krait (Bungarus candidus). Br J Pharmacol. 2003a;139(4):832–44.PubMedCentralPubMedGoogle Scholar
  117. Nirthanan S, Gopalakrishnakone P, Gwee MC, Khoo HE, Kini RM. Non-conventional toxins from Elapid venoms. Toxicon. 2003b;41(4):397–407.PubMedGoogle Scholar
  118. Ohsaka A. Hemorrhagic, necrotizing and edema-forming effects of snake venoms. In: Lee CY, editor. Handbook of experimental pharmacology, vol. 52. Berlin: Springer; 1979. p. 481–546.Google Scholar
  119. Ouyang C, Yeh HI, Huang TF. Purification and characterization of a platelet aggregation inducer from Calloselasma rhodostoma snake venom. Toxicon. 1986;24:633–44.PubMedGoogle Scholar
  120. Pawelek PD, Cheah J, Coulombe R, Macheroux P, Ghisla S, Vrielink A. The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J. 2000;19(16):4204–15.PubMedCentralPubMedGoogle Scholar
  121. Pfeiffer G, Linder D, Strube KH, Geyer R. Glycosylation of the thrombin-like serine protease ancrod from Agkistrodon rhodostoma venom. Oligosaccharide substitution pattern at each glycosylation site. Glycoconj J. 1993;10:240.PubMedGoogle Scholar
  122. Phillips DJ, Swenson SD, Markland FS. Thrombin-like snake venom serine proteases. In: Mackessy SP, editors. Handbook of venoms and toxins of reptiles. Boca Raton, Taylor & Fracis Group/CRC Press. 2009;pp 139–154.Google Scholar
  123. Poh SL, Mourier G, Thai R, Armugam A, Molgó J, Servent D, Jeyaseelan K, Ménez A. A synthetic weak neurotoxin binds with low affinity to Torpedo and chicken alpha7 nicotinic acetylcholine receptors. Eur J Biochem. 2002;269(17):4247–56.PubMedGoogle Scholar
  124. Ponnudurai G. Biochemical and immunological studies on Malayan pit viper (Calloselasma rhodostoma) Venom Hemorrhagin. PhD thesis, University of Malaya, Kuala Lumpur. 1995.Google Scholar
  125. Ponnudurai G, Chung MCM, Tan NH. Isolation and characterization of a hemorrhagin from the venom of Calloselasma rhodostoma (Malayan pit viper). Toxicon. 1993;31:997–1005.PubMedGoogle Scholar
  126. Ponnudurai G, Chung MCM, Tan NH. Purification and properties of the L-amino acid oxidase from Malayan pit viper (Calloselasma rhodostoma) venom. Arch Biochem Biophys. 1994;313:373–8.PubMedGoogle Scholar
  127. Pung YF, Wong PT, Kumar PP, Hodgson WC, Kini RM. Ohanin, a novel protein from king cobra venom, induces hypolocomotion and hyperalgesia in mice. J Biol Chem. 2005;280(13):13137–47.PubMedGoogle Scholar
  128. Qin JR, Wei Q. Isolation, purification and characterization of alkaline phosphatase from the venom of Ophiophagus hannah (CANTOR) in Guangxi CHINA. Acta Biochim et Biophys Sinica. 1986;18(4):320–6.Google Scholar
  129. Rajagopalan N, Pung YF, Zhu YZ, Wong PT, Kumar PP, Kini RM. Beta-cardiotoxin: a new three-finger toxin from Ophiophagus hannah (king cobra) venom with beta-blocker activity. FASEB J. 2007;21(13):3685–95.PubMedGoogle Scholar
  130. Reali M, Serafim FG, da Cruz-Höfling MA, Fontana MD. Neurotoxic and myotoxic actions of NajaNaja kaouthia venom on skeletal muscle in vitro. Toxicon. 2003;41(6):657–65.PubMedGoogle Scholar
  131. Reid HA. Myoglobinuria and sea-snake-bite poisoning. Br Med J. 1961;1(5235):1284–9.PubMedCentralPubMedGoogle Scholar
  132. Reid HA. Cobra-bites. Br Med J. 1964;2(5408):540–5.PubMedCentralPubMedGoogle Scholar
  133. Reid HA. Symptomology, pathology and treatment of the bites of sea snakes. In: Lee CY, editor. Handbook of experimental pharmacology, vol. 52. Berlin: Springer; 1979. p. 922–55.Google Scholar
  134. Rojnuckarin P, Banjongkit S, Chantawibun W, Akkawat B, Juntiang J, Noiphrom J, Pakmanee N, Intragumtornchai T. Green pit viper (Trimeresurus albolabris and T. macrops) venom antigenaemia and kinetics in humans. Trop Doct. 2007;37(4):207–10.PubMedGoogle Scholar
  135. Roy A, Zhou X, Chong MZ, D’hoedt D, Foo CS, Rajagopalan N, Nirthanan S, Bertrand D, Sivaraman J, Kini RM. Structural and functional characterization of a novel homodimeric three-finger neurotoxin from the venom of Ophiophagus hannah (king cobra). J Biol Chem. 2010;285(11):8302–15.PubMedCentralPubMedGoogle Scholar
  136. Rusmili MR, Yee TT, Mustafa MR, Hodgson WC, Othman I. Isolation and characterization of a presynaptic neurotoxin, P-elapitoxin-Bf1a from Malaysian Bungarus fasciatus venom. Biochem Pharmacol. 2014a;91(3):409–16.PubMedGoogle Scholar
  137. Rusmili MR, Yee TT, Mustafa MR, Hodgson WC, Othman I. Isolation and characterization of α-elapitoxin-Bf1b, a postsynaptic neurotoxin from Malaysian Bungarus fasciatus venom. Biochem Pharmacol. 2014b;88(2):229–36.PubMedGoogle Scholar
  138. Rusmili MR, Yee TT, Mustafa MR, Hodgson WC, Othman I. In-vitro neurotoxicity of two Malaysian krait species (Bungarus candidus and Bungarus fasciatus) venoms: neutralization by monovalent and polyvalent antivenoms from Thailand. Toxins (Basel). 2014c;6(3):1036–48.Google Scholar
  139. Saha A, Gomes A, Giri B, Chakravarty AK, Biswas AK, Dasgupta SC, Gomes A. Occurrence of non-protein low molecular weight cardiotoxin in Indian King cobra (Ophiophagus hannah) Cantor 1836, venom. Indian J Exp Biol. 2006;44(4):279–85.PubMedGoogle Scholar
  140. Shin Y, Morita T. Rhodocytin, a functional novel platelet agonist belonging to the heterodimeric C-type lectin family, induces platelet aggregation independently of glycoprotein Ib. Biochem Biophys Res Commun. 1998;245(3):741–5.PubMedGoogle Scholar
  141. Siang AS, Doley R, Vonk FJ, Kini RM. Transcriptomic analysis of the venom gland of the red-headed krait (Bungarus flaviceps) using expressed sequence tags. BMC Mol Biol. 2010;11:24.PubMedCentralPubMedGoogle Scholar
  142. Sim SM, Saremi K, Tan NH, Fung SY. Pharmacokinetics of Cryptelytrops purpureomaculatus (mangrove pit viper) venom following intravenous and intramuscular injections in rabbits. Int Immunopharmacol. 2013;17(4):997–1001.PubMedGoogle Scholar
  143. Sun X, Yang CJ, Chen XL, Lei KJ. Purification and properties of four neurotoxic fractions from the venom of Ophiophagus hannah. Zool Res. 1981;2(4):363–70.Google Scholar
  144. Suzuki-Inoue K, Ozaki Y, Kainoh M, Shin Y, Wu Y, Yatomi Y, Ohmori T, Tanaka T, Satoh K, Morita T. Rhodocytin induces platelet aggregation by interacting with glycoprotein Ia/IIa (GPIa/IIa, Integrin alpha 2 beta 1). Involvement of GPIa/IIa-associated src and protein tyrosine phosphorylation. J Biol Chem. 2001;276(2):1643–52.PubMedGoogle Scholar
  145. Suzuki-Inoue K, Fuller GL, García A, Eble JA, Pöhlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RD, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VL, Ozaki Y, Watson SP. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood. 2006;107(2):542–9.PubMedGoogle Scholar
  146. Suzuki-Inoue K, Inoue O, Ozaki Y. The novel platelet activation receptor CLEC-2. Platelets. 2011;22(5):380–4.PubMedGoogle Scholar
  147. Takasaki C, Yoshida H, Shimazu T, Teruuchi T, Toriba M, Tamiya N. Studies on the venom components of the long-glanded coral snake, Maticora bivirgata. Toxicon. 1991;29(2):191–200.PubMedGoogle Scholar
  148. Tan NH. Acidic phospholipases A2 from the venom of common sea snake Enhydrina schistosa. Biochim Biophys Acta. 1982;717(3):503–8.PubMedGoogle Scholar
  149. Tan NH. Isolation and characterization of two toxins from the venom of the Malayan cobra (NajaNaja sputatrix). Toxicon. 1983;21(2):201–7.PubMedGoogle Scholar
  150. Tan NH. Isolation of the major arginine amidase from the venom of the Malayan pit viper (Agkistrodon rhodostoma). In: Proceedings of the sixth European symposium on animal, plant and microbial toxins. Basel Switzerland. 1984. p. 126.Google Scholar
  151. Tan NH. The Biochemistry of venoms of some venomous snakes of Malaysia – a review. Trop Biomed. 1991;8:91–103.Google Scholar
  152. Tan NH. Kistomin (Calloselasma rhodostoma). In: Barratt A, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. London: Academic; 1998a. p. 1287–90.Google Scholar
  153. Tan NH. L-amino acid oxidases and lactate dehydrogenases. In: Bailey GS, editor. Enzymes from snake venom. Fort Collins: Alaken; 1998b. p. 579–98.Google Scholar
  154. Tan NH. Isolation and characterization of the thrombin-like enzyme from Cryptelytrops purpureomaculatus venom. Comp Biochem Physiol C Toxicol Pharmacol. 2010;151(1):131–6.PubMedGoogle Scholar
  155. Tan NH, Armugam A. In vivo interactions between neurotoxin, cardiotoxin and phospholipases A2 isolated from Malayan cobra (NajaNaja sputatrix) venom. Toxicon. 1990;28(10):1193–8.PubMedGoogle Scholar
  156. Tan NH, Fung SY. A hemorrhagic toxin from the venom of Trimeresurus purpureomaculatus snake (Mangrove pit viper). Eur J Biochem. 2002;269:99.Google Scholar
  157. Tan NH, Fung SY. Snake venom L-amino acid oxidase. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press/Taylor and Francis Group; 2009. p. 219–34.Google Scholar
  158. Tan NH, Hj MN. Enzymatic and toxic properties of Ophiophagus hannah (king cobra) venom and venom fractions. Toxicon. 1989;27(6):689–95.PubMedGoogle Scholar
  159. Tan NH, Saifuddin MN. Isolation and characterization of an unusual form of L-amino acid oxidase from King cobra (Ophiophagus hannah) venom. Biochem Int. 1989;19(4):937–44.PubMedGoogle Scholar
  160. Tan NH, Saifuddin MN. Isolation and characterization of a hemorrhagin from the venom of Ophiophagus hannah (king cobra). Toxicon. 1990a;28(4):385–92.PubMedGoogle Scholar
  161. Tan NH, Saifuddin MN. Purification and characterization of two acidic phospholipase A2 enzymes from king cobra (Ophiophagus hannah) snake venom. Int J Biochem. 1990b;22(5):481–7.PubMedGoogle Scholar
  162. Tan NH, Tan CS. Biological properties of Trimeresurus purpureomaculatus (shore pit viper) venom and its fractions. Toxicon. 1988a;26(11):989–96.Google Scholar
  163. Tan NH, Tan CS. Partial purification of acetylcholinesterase from the venom of the shore pit viper (Trimeresurus purpureomaculatus). Toxicon. 1988b;26(5):505–8.PubMedGoogle Scholar
  164. Tan NH, Tan CS. Enzymatic activities and lethal toxins of Trimeresurus wagleri (Speckled pit viper) venom. Toxicon. 1989a;27:349–57.PubMedGoogle Scholar
  165. Tan NH, Tan CS. Fractionation of Sumatran pit viper (Trimeresurus sumatranus sumatranus) venom by DEAE-Sephacel ion exchange chromatography and some biological properties of the fractions. Toxicon. 1989b;27(6):697–702.PubMedGoogle Scholar
  166. Tan NH, Kanthimathi MS, Tan CS. Enzymatic activities of Calloselasma rhodostoma (Malayan pit viper) venom. Toxicon. 1986;24:626–30.PubMedGoogle Scholar
  167. Tan NH, Armugam A, Tan CS. A comparative study of the enzymatic and toxic properties of venoms of the Asian lance-headed pit viper (Genus Trimeresurus). Comp Biochem Physiol B. 1989a; 93(4): 757–62Google Scholar
  168. Tan NH, Poh CH, Tan CS. The lethal and biochemical properties of Bungarus candidus (Malayan krait) venom and venom fractions. Toxicon. 1989b; 27(9):1065–70Google Scholar
  169. Tan NH, Tan CS, Khor HT. Isolation and characterization of the major phospholipase A2from the venom of Trimeresurus purpureomaculatus (shore pit viper). Int J Biochem. 1989c; 21(12):1421–26Google Scholar
  170. Tan NH, Choy SK, Chin KM, Gnanajothy P. Cross-reactivity of monovalent and polyvalent Trimeresurus antivenoms with venoms from various species of Trimeresurus (lance-headed pit viper) snake. Toxicon. 1994;32:849–53.PubMedGoogle Scholar
  171. Tan NH, Fung SY, Ponnudurai G. Enzymatic and immunological properties of Bungarus flaviceps (red-headed krait) venom. J Venom Anim Toxins Incl Trop Dis. 2010;16(1):147–54.Google Scholar
  172. Tan CH, Leong PK, Fung SY, Sim SM, Ponnudurai G, Ariaratnam C, Khomvilai S, Sitprija V, Tan NH. Cross neutralization of Hypnale hypnale (hump-nosed pit viper) venom by polyvalent and monovalent Malayan pit viper antivenoms in vitro and in a rodent model. Acta Trop. 2011;117(2):119–24.PubMedGoogle Scholar
  173. Tan CH, Tan NH, Sim SM, Fung SY, Jayalakshmi P, Gnanathasan CA. Nephrotoxicity of hump-nosed pit viper (Hypnale hypnale) venom in mice is preventable by the paraspecific Hemato polyvalent antivenom (HPA). Toxicon. 2012;60(7):1259–62.PubMedGoogle Scholar
  174. Tan CH, Sim SM, Gnanathasan CA, Fung SY, Tan NH. Pharmacokinetics of the Sri Lankan Hump-nosed Pit Viper (Hypnale hypnale) Venom following intravenous and intramuscular injections of the venom into rabbits. Toxicon. 2014;79:37–44.Google Scholar
  175. Teichert RW, Garcia CC, Potian JG, Schmidt JJ, Witzemann V, Olivera BM, McArdle JJ. Peptide-toxin tools for probing the expression and function of fetal and adult subtypes of the nicotinic acetylcholine receptor. Ann N Y Acad Sci. 2008;1132:61–70.PubMedGoogle Scholar
  176. Teng CM, Hung ML, Huang TF, Ouyang C. Triwaglerin: a potent platelet aggregation inducer purified from Trimeresurus wagleri snake venom. Biochim Biophys Acta. 1989;992(3):258–64.PubMedGoogle Scholar
  177. Torres AM, Kini RM, Selvanayagam N, Kuchel PW. NMR structure of bucandin, a neurotoxin from the venom of the Malayan krait (Bungarus candidus). Biochem J. 2001;360(Pt 3):539–48.PubMedCentralPubMedGoogle Scholar
  178. Tsai MC, Hsieh WH, Smith LA, Lee CY. Effects of waglerin-I on neuromuscular transmission of mouse nerve-muscle preparations. Toxicon. 1995;33(3):363–71.PubMedGoogle Scholar
  179. Tsai IH, Wang YM, Au LC, Ko TP, Chen YH, Chu YF. Phospholipases A2 from Callosellasma rhodostoma venom gland cloning and sequencing of 10 of the cDNAs, three-dimensional modelling and chemical modification of the major isozyme. Eur J Biochem. 2000;267(22):6684–91.PubMedGoogle Scholar
  180. Tsai IH, Chen YH, Wang YM, Liau MY, Lu PJ. Differential expression and geographic variation of the venom phospholipases A2 of Calloselasma rhodostoma and Trimeresurus mucrosquamatus. Arch Biochem Biophys. 2001a;387(2):257–64.PubMedGoogle Scholar
  181. Tsai IH, Chen YH, Wang YM, Tu MC, Tu AT. Purification, sequencing, and phylogenetic analyses of novel Lys-49 phospholipases A2 from the venoms of rattlesnakes and other pit vipers. Arch Biochem Biophys. 2001b;394(2):236–44.PubMedGoogle Scholar
  182. Tsai IH, Chang HC, Chen JM, Cheng AC, Khoo KH. Glycan structures and intrageneric variations of venom acidic phospholipases A2 from Tropidolaemus pit vipers. FEBS J. 2012;279(15):2672–82.PubMedGoogle Scholar
  183. Tseng YL, Peng HC, Huang TF. Rhodostomin, a disintegrin, inhibits adhesion of neutrophils to fibrinogen and attenuates superoxide production. J Biomed Sci. 2004;11(5):683–91.PubMedGoogle Scholar
  184. Tu AT. Venoms: chemistry and molecular biology. New York: Wiley; 1977.Google Scholar
  185. Tweedie MWF. The snakes of Malaya. Singapore: Singapore National Printers; 1983.Google Scholar
  186. Utkin YN, Kukhtina VV, Maslennikov IV, Eletsky AV, Starkov VG, Weise C, Franke P, Hucho F, Tsetlin VI. First tryptophan-containing weak neurotoxin from cobra venom. Toxicon. 2001;39(7):921–7.PubMedGoogle Scholar
  187. Vejayan J, Shin Yee L, Ponnudurai G, Ambu S, Ibrahim I. Protein profile analysis of Malaysian snake venoms by two-dimensional gel electrophoresis. J Venom Anim Toxins Incl Trop Dis. 2010;16(4):623–30.Google Scholar
  188. Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, Kerkkamp HM, Vos RA, Guerreiro I, Calvete JJ, Wüster W, Woods AE, Logan JM, Harrison RA, Castoe TA, de Koning AP, Pollock DD, Yandell M, Calderon D, Renjifo C, Currier RB, Salgado D, Pla D, Sanz L, Hyder AS, Ribeiro JM, Arntzen JW, van den Thillart GE, Boetzer M, Pirovano W, Dirks RP, Spaink HP, Duboule D, McGlinn E, Kini RM, Richardson MK. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110(51):20651–6.PubMedCentralPubMedGoogle Scholar
  189. Vyas KA, Patel HV, Vyas AA, Wu W. Glycosaminoglycans bind to homologous cardiotoxins with different specificity. Biochemistry. 1998;37(13):4527–34.PubMedGoogle Scholar
  190. Wang R, Kini RM, Chung MC. Rhodocetin, a novel platelet aggregation inhibitor from the venom of Calloselasma rhodostoma (Malayan pit viper): synergistic and noncovalent interaction between its subunits. Biochemistry. 1999a;38(23):7584–93.PubMedGoogle Scholar
  191. Wang YM, Liew YF, Chang KY, Tsai IH. Purification and characterization of the venom phospholipase A2 from Asian monotypic Crotalinae snakes. J Nat Toxins. 1999b;8(3):331–40.PubMedGoogle Scholar
  192. Wang R, Kong C, Kolatkar P, Chung MC. A novel dimer of a C-type lectin-like heterodimer from the venom of Calloselasma rhodostoma (Malayan pit viper). FEBS Lett. 2001;508(3):447–53.PubMedGoogle Scholar
  193. Wang Y, Hong J, Liu X, Yang H, Liu R, Wu J, Wang A, Lin D, Lai R. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS One. 2008;3(9):e3217.PubMedCentralPubMedGoogle Scholar
  194. Warrell DA, Looareesuwan S, White NJ, Theakston RD, Warrell MJ, Kosakarn W, Reid HA. Severe neurotoxicen venoming by the Malayan krait Bungarus candidus (Linnaeus): response to antivenom and anticholinesterase. Br Med J (Clin Res Ed). 1983;286(6366):678–80.Google Scholar
  195. Watson AA, O’Callaghan CA. Molecular analysis of the interaction of the snake venom rhodocytin with the platelet receptor CLEC-2. Toxins (Basel). 2011;3(8):991–1003.Google Scholar
  196. Wei JF, Lü QM, Jin Y, Li DS, Xiong YL, Wang WY. Alpha-neurotoxins of Naja atra and Naja kaouthia snakes in different regions. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2003;35(8):683–8.Google Scholar
  197. Wei JF, Yang HW, Wei XL, Qiao LY, Wang WY, He SH. Purification, characterization and biological activities of the L-amino acid oxidase from Bungarus fasciatus snake venom. Toxicon. 2009;54(3):262–71.PubMedGoogle Scholar
  198. Weinstein SA, Schmidt JJ, Bernheimer AW, Smith LA. Characterization and amino acid sequences of two lethal peptides isolated from venom of Wagler’s pit viper, Trimeresurus wagleri. Toxicon. 1991;29(2):227–36.PubMedGoogle Scholar
  199. Weissenberg S, Ovadia M, Kochva E. Species specific sensitivity towards the hemorrhagin of Ophiophagus hannah (Elapidae). Toxicon. 1987;25(5):475–82.PubMedGoogle Scholar
  200. White J. CSL antivenom handbook. 3rd ed. Melbourne: CSL; 2013.Google Scholar
  201. Williams DJ, Gutiérrez JM, Calvete JJ, Wüster W, Ratanabanangkoon K, Paiva O, Brown NI, Casewell NR, Harrison RA, Rowley PD, O’Shea M, Jensen SD, Winkel KD, Warrell DA. Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J Proteomics. 2011;74(9):1735–67.PubMedGoogle Scholar
  202. World Health Organization. WHO Guidelines for the production control and regulation of snake antivneom immuniglobulins. 2010. Retrieved from: http://www.who.int/bloodproducts/snake_antivenoms/snakeantivenomguideline.pdf
  203. Wüster W. Taxonomic changes and toxinology: systematic revisions of the Asiatic cobras (NajaNaja species complex). Toxicon. 1996;34(4):399–406.PubMedGoogle Scholar
  204. Wüster W, Harvey AL. Reviews of venomous snake systematics in Toxicon. Toxicon. 1996;34(4):397–8.PubMedGoogle Scholar
  205. Wüster W, Peppin L, Pook CE, Walker DE. A nesting of vipers: phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Mol Phylogenet Evol. 2008;49(2):445–59. doi:10.1016/j.ympev.2008.08.019.PubMedGoogle Scholar
  206. Yamakawa Y, Omori-Satoh T. A protease in the venom of king cobra (Ophiophagus hannah): purification, characterization and substrate specificity on oxidized insulin B-chain. Toxicon. 1988;26(12):1145–55.PubMedGoogle Scholar
  207. Yanoshita R, Ogawa Y, Murayama N, Omori-Satoh T, Saguchi K, Higuchi S, Khow O, Chanhome L, Samejima Y, Sitprija V. Molecular cloning of the major lethal toxins from two kraits (Bungarus flaviceps and Bungarus candidus). Toxicon. 2006;47(4):416–24.PubMedGoogle Scholar
  208. Yap MKK, Tan NH, Fung SY. Biochemical and toxinological characterization of Naja sumatrana (Equatorial spitting cobra) venom. J Venom Anim Toxins Incl Trop Dis. 2011;17(4):451–9.Google Scholar
  209. Yap MK, Fung SY, Tan KY, Tan NH. Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra). Acta Trop. 2014a;133:15–25.PubMedGoogle Scholar
  210. Yap MK, Tan NH, Sim SM, Fung SY, Tan CH. Pharmacokinetics of Naja sumatrana (equatorial spitting cobra) venom and its major toxins in experimentally envenomed rabbits. PLoS Negl Trop Dis. 2014b;8(6):e2890.PubMedCentralPubMedGoogle Scholar
  211. Ye JH, McArdle JJ. Waglerin-1 modulates gamma-aminobutyric acid activated current of murine hypothalamic neurons. J Pharmacol Exp Ther. 1997;282(1):74–80.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Molecular Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations