Advertisement

Scorpion Venom Gland Transcriptomics

  • Martha Rendón-Anaya
  • Thalita S. Camargos
  • Ernesto Ortiz
Living reference work entry

Abstract

For decades, the study of venomous animals has focused on the isolation and biochemical characterization of specific venom components that have medical or biotechnological importance. Indeed, scorpions have been extensively studied under this optics, which has led to the identification of hundreds of different transcripts encoding toxic peptides. However, scorpions are interesting organisms not only because of their toxin diversity but also because they represent the most ancient terrestrial animals that fossil records have identified. About 2,000 species have been described around the world, which also implies that scorpions are extremely well-adapted arthropods that have managed to survive in different environmental conditions. Even though the divergence timing of scorpions places them as interesting model organisms for evolutionary inferences, little is known about the genomic organization, speciation events, and population dynamics of these arthropods.

Different “omic” approaches have become a very powerful strategy for understanding the complexity of venomous animals. Transcriptomics, in particular, has been widely used to explore the transcriptional diversity of venom glands of several scorpion species. Recently, high-throughput sequencing platforms have substantially improved our capacity to describe biological features of scorpions but, most importantly, have outlined new directions toward a more complete understanding of the evolution of these arthropods.

In this chapter, those transcriptomic strategies followed in the last two decades that went from cDNA cloning to next-generation sequencing methods will be described. Some biological and evolutionary questions about scorpion speciation and venom diversification will also be addressed. Finally, an attempt to raise some future directions in the field will be made.

Keywords

cDNA Library cDNA Library Construction Venom Gland Scorpion Venom Scorpion Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC. Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 1991;252(5013):1651–6.PubMedCrossRefGoogle Scholar
  2. Adams MD, Soares MB, Kerlavage AR, Fields C, Venter JC. Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nat Genet. 1993;4(4):373–80.PubMedCrossRefGoogle Scholar
  3. Almeida DD, Scortecci KC, Kobashi LS, Agnez-Lima LF, Medeiros SR, Silva-Junior AA. Junqueira-de-Azevedo I de L, Fernandes-Pedrosa M de F. Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. BMC Genomics. 2012;13:362.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Alvarenga ER, Mendes TM, Magalhães BF, Siqueira FF, Dantas AE, Barroca TM, Horta CC, Kalapothakis E. Transcriptome analysis of the Tityus serrulatus scorpion venom gland. Open J Genet. 2012;2(4):210–20.CrossRefGoogle Scholar
  5. Becerril B, Vázquez A, García C, Corona M, Bolivar F, Possani LD. Cloning and characterization of cDNAs that code for Na+-channel-blocking toxins of the scorpion Centruroides noxius Hoffmann. Gene. 1993;128:165–71.PubMedCrossRefGoogle Scholar
  6. Becerril B, Corona M, Coronas FI, Zamudio F, Calderon-Aranda ES, Fletcher Jr PL, Martin BM, Possani LD. Toxic peptides and genes encoding toxin gamma of the Brazilian scorpions Tityus bahiensis and Tityus stigmurus. Biochem J. 1996;313:753–60.PubMedCentralPubMedGoogle Scholar
  7. Benkhadir K, Kharrat R, Cestele S, Mosbah A, Rochat H, El Ayeb M, Karoui H. Molecular cloning and functional expression of the alpha-scorpion toxin BotIII: pivotal role of the C-terminal region for its interaction with voltage-dependent sodium channels. Peptides. 2004;25:151–61.PubMedCrossRefGoogle Scholar
  8. Bougis PE, Rochat H, Smith LA. Precursors of Androctonus australis scorpion neurotoxins. Structures of precursors, processing outcomes, and expression of a functional recombinant toxin II. J Biol Chem. 1989;264:19259–65.PubMedGoogle Scholar
  9. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol. 2000;18(6):630–4.PubMedCrossRefGoogle Scholar
  10. D’Suze G, Schwartz EF, García-Gómez BI, Sevcik C, Possani LD. Molecular cloning and nucleotide sequence analysis of genes from a cDNA library of the scorpion Tityus discrepans. Biochimie. 2009;91:1010–9.PubMedCrossRefGoogle Scholar
  11. de Junqueira-de-Azevedo I L, Ho PL. A survey of gene expression and diversity in the venom glands of the pitviper snake Bothrops insularis through the generation of expressed sequence tags (ESTs). Gene. 2002;299(1–2):279–91.CrossRefGoogle Scholar
  12. De Sousa L, Borges A, Vásquez-Suárez A, Op den Camp HJ, Chadee-Burgos RI, Romero-Bellorín M, Espinoza J, De Sousa-Insana L, Pino-García O. Differences in venom toxicity and antigenicity between females and males Tityus nororientalis (Buthidae) scorpions. J Venom Res. 2010;21(1):61–70.Google Scholar
  13. Diego-García E, Schwartz EF, D’Suze G, Roman-Gonzalez SA, Batista CV, Garcia BI. Rodriguez de la Vega R, Possani LD. Wide phylogenetic distribution of Scorpine and long-chain beta-KTx-like peptides in scorpion venoms: identification of “orphan” components. Peptides. 2007;28:31–7.PubMedCrossRefGoogle Scholar
  14. Diego-García E, Peigneur S, Clynen E, Marien T, Czech L, Schoofs L, Tytgat J. Molecular diversity of the telson and venom components from Pandinus cavimanus (Scorpionidae Latreille 1802): transcriptome, venomics and function. Proteomics. 2012;12(2):313–28.PubMedCrossRefGoogle Scholar
  15. Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, Chacón D, Sasa M, Angulo Y, Gutiérrez JM, Calvete JJ. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics. 2013;14:234.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Fet V, Gantenbei B, Gromov AV, Lowe G, Lourenço WR. The first molecular phylogeny of Buthidae (Scorpiones). Euscorpius. 2003;4:1–10.Google Scholar
  17. Gurevitz M, Zlotkin E, Zilberberg N. Characterization of the transcript for a depressant insect selective neurotoxin gene with an isolated cDNA clone from the scorpion Buthotus judaicus. FEBS Lett. 1990;269:229–32.PubMedCrossRefGoogle Scholar
  18. Hanrahan SJ, Johnston JS. New genome size estimates of 134 species of arthropods. Chromosome Res. 2011;19:809–23.PubMedCrossRefGoogle Scholar
  19. Hohenlohe PA, Catchen J, Cresko WA. Population genomic analysis of model and nonmodel organisms using sequenced RAD tags. Methods Mol Biol. 2012;888:235–60.PubMedCrossRefGoogle Scholar
  20. Jeyaprakash A, Hoy MA. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol. 2009;47:1–18.PubMedCrossRefGoogle Scholar
  21. Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Tagami M, Sasaki D, Imamura K, Kai C, Harbers M, Hayashizaki Y, Carninci P. CAGE: cap analysis of gene expression. Nat Methods. 2006;3(3):211–22.PubMedCrossRefGoogle Scholar
  22. Kozminsky-Atias A, Bar-Shalom A, Mishmar D, Zilberberg N. Assembling an arsenal, the scorpion way. BMC Evol Biol. 2008;8:333.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Lan ZD, Dai L, Zhuo XL, Feng JC, Xu K, Chi CW. Gene cloning and sequencing of BmK AS and BmK AS-1, two novel neurotoxins from the scorpion Buthus martensi Karsch. Toxicon. 1999;37:815–23.PubMedCrossRefGoogle Scholar
  24. Li S, Ma Y, Jang S, Wu Y, Liu H, Cao Z, Li W. A HindIII BAC library construction of Mesobuthus martensii Karsch (Scorpiones:Buthidae): an important genetic resource for comparative genomics and phylogenetic analysis. Genes Genet Syst. 2009;84:417–24.PubMedCrossRefGoogle Scholar
  25. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.Google Scholar
  26. Luna-Ramírez K, Quintero-Hernández V, Vargas-Jaimes L, Batista CV, Winkel KD, Possani LD. Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. Toxicon. 2013;63:44–54.PubMedCrossRefGoogle Scholar
  27. Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y, Cao Z, Li W. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal. BMC Genomics. 2009;10:290.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Ma Y, Zhao Y, Zhao R, Zhang W, He Y, Wu Y, Cao Z, Guo L, Li W. Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis. Proteomics. 2010;10:2471–85.PubMedCrossRefGoogle Scholar
  29. Ma Y, He Y, Zhao R, Wu Y, Li W, Cao Z. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal. J Proteomics. 2012;75(5):1563–76.PubMedCrossRefGoogle Scholar
  30. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.PubMedCentralPubMedGoogle Scholar
  31. Morgenstern D, Rohde BH, King GF, Tal T, Sher D, Zlotkin E. The tale of a resting gland: transcriptome of a replete venom gland from the scorpion Hottentotta judaicus. Toxicon. 2011;57:695–703.PubMedCrossRefGoogle Scholar
  32. Morin RD, Bainbridge M, Fejes A, Hirst M, Kryzwinski M, Pugh TJ, McDonald H, Varhol R, Jones SJM, Marra MA. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques. 2008;45(1):81–94.PubMedCrossRefGoogle Scholar
  33. Nie Y, Zeng XC, Luo X, Wu S, Zhang L, Cao H, Zhou J, Zhou L. Tremendous intron length differences of the BmKBT and a novel BmKBT-like peptide genes provide a mechanical basis for the rapid or constitutive expression of the peptides. Peptides. 2012;37:150–6.PubMedCrossRefGoogle Scholar
  34. Pisani D, Poling LL, Lyons-Weiler M, Hedges SB. The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol. 2004;2:1.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Quintero-Hernández V, Ortiz E, Rendón-Anaya M, Schwartz EF, Becerril B, Corzo G, Possani LD. Scorpion and spider venom peptides: gene cloning and peptide expression. Toxicon. 2011;58(8):644–63.PubMedCrossRefGoogle Scholar
  36. Rendón-Anaya M, Delaye L, Possani LD, Herrera-Estrella A. Global transcriptome analysis of the scorpion Centruroides noxius: new toxin families and evolutionary insights from an ancestral scorpion species. PLoS One. 2012;7(8):e43331.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Roeding F, Borner J, Kube M, Klages S, Reinhardt R, Burmester T. A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). Mol Phylogenet Evol. 2009;53:826–34.PubMedCrossRefGoogle Scholar
  38. Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998;281(5375):363–5.PubMedCrossRefGoogle Scholar
  39. Ruiming Z, Yibao M, Yawen H, Zhiyong D, Yingliang W, Zhijian C, Wenxin L. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC Genomics. 2010;11:452.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19(R2):R227–40.PubMedCrossRefGoogle Scholar
  41. Schneider MC, Cella DM. Karyotype conservation in 2 populations of the parthenogenetic scorpion Tityus serrulatus (Buthidae): rDNA and its associated heterochromatin are concentrated on only one chromosome. J Hered. 2010;101:491–6.PubMedCrossRefGoogle Scholar
  42. Schneider MC, Zacaro AA, Pinto-Da-Rocha R, Candido DM, Cella DM. A comparative cytogenetic analysis of 2 Bothriuridae species and overview of the chromosome data of Scorpiones. J Hered. 2009;100:545–55.PubMedCrossRefGoogle Scholar
  43. Schwartz EF, Diego-García E, Rodríguez de la Vega RC, Possani LD. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomics. 2007;8:119–28.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Shi CM, Ji YJ, Liu L, Wang L, Zhang DX. Impact of climate changes from Middle Miocene onwards on evolutionary diversification in Eurasia: insights from the mesobuthid scorpions. Mol Ecol. 2013;22:1700–16.PubMedCrossRefGoogle Scholar
  45. Silva ECN, Camargos TS, Maranhão AQ, Silva-Pereira I, Paulino L, Possani LD, Schwartz EF. Cloning and characterization of cDNA sequences encoding for new venom peptides of the Brazilian scorpion Opisthacanthus cayaporum. Toxicon. 2009;54:252–61.PubMedCrossRefGoogle Scholar
  46. Valdez-Velázquez LL, Quintero-Hernández V, Romero-Gutiérrez MT, Coronas FIV, Possani LD. Mass fingerprinting of the venom and transcriptome of venom gland of scorpion Centruroides tecomanus. PLoS One. 2013;8(6):e66486.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science. 1995;270(5235):484–7.PubMedCrossRefGoogle Scholar
  48. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Wong ES, Papenfuss AT, Whittington CM, Warren WC, Belov K. A limited role for gene duplications in the evolution of platypus venom. Mol Biol Evol. 2012;29:167–77.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Wu JJ, Dai L, Lan ZD, Chi CW. Genomic organization of three neurotoxins active on small conductance Ca2+-activated potassium channels from the scorpion Buthus martensi Karsch. FEBS Lett. 1999;452:360–4.PubMedCrossRefGoogle Scholar
  51. Xiong YM, Lan ZD, Wang M, Liu B, Liu XQ, Fei H, Xu LG, Xia QC, Wang CG, Wang DC, Chi CW. Molecular characterization of a new excitatory insect neurotoxin with an analgesic effect on mice from the scorpion Buthus martensi Karsch. Toxicon. 1999;37:1165–80.PubMedCrossRefGoogle Scholar
  52. Zeng XC, Wang S, Nie Y, Zhang L, Luo X. Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch: gaining insight into a new mechanism for the functional diversification of scorpion venom peptides. Peptides. 2012;33:44–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Martha Rendón-Anaya
    • 1
  • Thalita S. Camargos
    • 2
  • Ernesto Ortiz
    • 3
  1. 1.Laboratorio Nacional de Genómica para la BiodiversidadCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMéxico
  2. 2.Departamento de Ciências Fisiológicas, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaBrasil
  3. 3.Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autonóma de MéxicoCuernavacaMéxico

Personalised recommendations