Advertisement

New Insights on the Pharmacokinetics of Venoms and Antivenoms

  • Carlos Sevcik
  • Gina D’Suze
Living reference work entry

Abstract

The development of enzyme-linked immunosorbent assays (ELISA) for venoms and antivenoms with high sensitivity has enabled to characterize pharmacokinetics (PK) of venoms and antivenoms, which in turn allowed modeling their absorption, distribution, and elimination, as well as the adequacy of different therapeutic regimes. Pharmacokinetics is the branch of pharmacology dealing with absorption, distribution, and elimination of drugs in the body; it is fundamental to determine the dose and dosing scheme of a drug. ELISA studies provided evidence indicating that antivenoms (in spite of their large molecular size) are quickly and actively extravasated from blood to tissues. ELISA studies have also enabled to show that heterologous antibodies induce production of antibodies able to interact with antivenoms, modifying their PK and reducing their effectiveness. This has been confirmed using high-resolution deconvolution fluorescence microscopy (HRDFM) of fluorescently labeled antivenoms. HRDFM has also provided evidence showing a complex distribution of antivenoms in the body and has shown that mammalian immunoglobulins (IgG) are transported very differently in the body than avian IgYs, which suggests they must have different PK.

Keywords

Scorpion Venom Scorpion Sting Extracellular Extravascular Space Coral Snake Viperid Snake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amarant T, Burkhart W, LeVine III H, Arocha-Pinango CL, Parikh I. Isolation and complete amino acid sequence of two fibrinolytic proteinases from the toxic Saturnid caterpillar Lonomia achelous. Biochim Biophys Acta. 1991;1079:214–21.PubMedCrossRefGoogle Scholar
  2. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm OT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K. Botulinum toxin as a biological weapon: medical and public health management. J Am Med Assoc. 2001;285:1059–70.CrossRefGoogle Scholar
  3. Avogadro A. Essai d’une manière de déterminer les masses relatives des molécules élémentaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons. J Phys. 1811;73:58–76.Google Scholar
  4. Batista C, D’Suze G, Gómez F, Zamudio F, Sevcik C, Possani LD. Proteomic analysis of Tityus discrepans scorpion venom and amino acid sequence of novel toxins. Proteomics. 2006;6:3718–27.PubMedCrossRefGoogle Scholar
  5. Binford GJ, Cordes MHJ, Wells MA. Sphingomyelinase D from venoms of Loxosceles spiders: evolutionary insights from cDNA sequences and gene structure. Toxicon. 2005;45:547–60.PubMedCrossRefGoogle Scholar
  6. Blode H, Brett M, Bührens KG, Cawello W, Frick A, Gieschke R, Giese U, Heine PR, Kloft C, Kovar A, Pabst G, Pechstein B, Römer A, Steinsträer A, Terlinden R, Weimann HJ, Würthwein G, Zimmermann H. Collection of terms, symbols, equations, and explanations of common pharmacokinetic and pharmacodynamic parameters and some statistical functions. AGAH Working Group on PK-PD modeling, Association for Applied Human Pharmacology (AGAH). 2004. http://www.agah.eu/fileadmin/_migrated/content_uploads/PK-glossary_PK_working_group_2004.pdf
  7. Boyer L. Editorial. Int Immunopharmacol. 2010;10:1317.PubMedCrossRefGoogle Scholar
  8. Cunha RB, Barbaro KC, Muramatsu D, Portaro FCV, Fontes W, de Sousa MV. Purification and characterization of loxnecrogin, a dermonecrotic toxin from Loxosceles gaucho brown spider venom. J Protein Chem. 2003;22:135–46.PubMedCrossRefGoogle Scholar
  9. D’Suze G, Sevcik C, Pérez JF, Fox JW. Isolation and characterization of a potent curarizing polypeptide from the Tityus discrepans scorpion venom. Toxicon. 1997;35:1683–9.PubMedCrossRefGoogle Scholar
  10. D’Suze G, Comellas A, Pesce L, Sevcik C, Sanchez-de-León R. Tityus discrepans venom produces a respiratory distress syndrome in rabbits through an indirect mechanism. Toxicon. 1999;37:173–80.PubMedCrossRefGoogle Scholar
  11. D’Suze G, Moncada S, González C, Sevcik C, Aguilar V, Alagón A. Relationship between plasmatic levels of various cytokines, tumour necrosis factor, enzymes, glucose and venom concentration following Tityus scorpion sting. Toxicon. 2003;41:367–75.PubMedCrossRefGoogle Scholar
  12. Dehesa-Davila M, Possani LD. Scorpionism and serotherapy in Mexico. Toxicon. 1994;32:1015–8.PubMedCrossRefGoogle Scholar
  13. Díaz P, D’Suze G, Salazar V, Sevcik C, Shannon JD, Sherman NE, Fox JW. Antibacterial activity of six novel peptides from Tityus discrepans scorpion venom. A fluorescent probe study of microbial membrane Na+ permeability changes. Toxicon. 2009;54:802–17.PubMedCrossRefGoogle Scholar
  14. Fabrichny IP, Mondielli G, Conrod S, Martin-Eauclaire MF, Bourne Y, Marchot P. Structural insights into antibody sequestering and neutralizing of Na+-channel α-type modulator from old-world scorpion venom. J Biol Chem. 2012;287:14136–48.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Feynman RP. Leighton RB. Sands M. The Feynman Lectures on Physics. Vol. 1. MA: Adison Welsley 1964.Google Scholar
  16. Freitas Jr RA. Nanomedicine. Vol. 1: basic capabilities. Georgetown: Landes Biosciences; 1999. Chapter 8, Section 8.2.1.2.Google Scholar
  17. Gibaldi M. Perrier D. Pharmacokinetics: Marcel Dekker Inc. 1982 New York.Google Scholar
  18. Glazko AJ, Kinkel AW, Alegani WC, Holmes GL. An evaluation of the absorption characteristics of different chloramphenicol preparations in normal human subjects. Clin Pharmacol Ther. 1968;9:472–83.PubMedGoogle Scholar
  19. Gutiérrez JM, León G, Lomonte B. Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet. 2003;42:721–41.PubMedCrossRefGoogle Scholar
  20. Harris LJ, Larson SB, Hasel KW, McPherson A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry. 1997;36:1581–97.PubMedCrossRefGoogle Scholar
  21. Ho M, Silamut K, White NJ, Karbwang J, Looareesuwan S, Phillips RE, Warrell DA. Pharmacokinetics of three commercial antivenoms in patients envenomed by the Malayan pit viper, Calloselasma rhodostoma, in Thailand. Am J Trop Med Hyg. 1990;42:260–6.PubMedGoogle Scholar
  22. Ismail M, Abd-Elsalam MA. Pharmacokinetics of 125I-labelled IgG, F(ab’)2 and F(ab) fractions of scorpion and snake antivenins: merits and potential for therapeutic use. Toxicon. 1998;36:1523–8.PubMedCrossRefGoogle Scholar
  23. Ismail M, Abdoulah M, Morad A, Ageel A. Pharmacokinetics of 125I-labelled venom from the scorpion Androctonus amoreuxi (Aud. and Sav.). Toxicon. 1980;18:301–8.PubMedCrossRefGoogle Scholar
  24. Ismail M, Shibl AM, Morad AM, Abdullah ME. Pharmacokinetics of 125I labeled antivenom to the venom from the scorpion Androctonus amoreuxi. Toxicon. 1983;21:47–56.PubMedCrossRefGoogle Scholar
  25. Ismail M, Aly MHM, Abd-Elsalam MA, Morad MA. A three-compartment open pharmacokinetic model can explain variable toxicities of cobra venoms and their alpha toxins. Toxicon. 1996;34:1011–26.PubMedCrossRefGoogle Scholar
  26. Koeleman HA, Van Oudtshoorn MCB. An Evaluation of the biological availability of chloramphenicol. S Afr Med J. 1973;47:94–9.PubMedGoogle Scholar
  27. Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science. 1995;270:293–6.PubMedCrossRefGoogle Scholar
  28. Paniagua D, Jiménez L, Romero C, Vergara I, Calderón A, Benard M, Bernas MJ, Rilo H, de Roodt A, D’Suze G, Witte MH, Boyer L, Alagón A. Lymphatic route of transport and pharmacokinetics of Micrurus fulvius (coral snake) venom in sheep. Lymphology. 2012;45:144–53.PubMedGoogle Scholar
  29. Pentel PR, Keyler DE, Gilbertson DG, Ruth G, Pond SM. Pharmacokinetics and toxicity of high doses of antibody Fab fragments in rats. Drug Metab Dispos. 1988;16:141–5.PubMedGoogle Scholar
  30. Pépin S, Lutsch C, Grandgeorge M, Lang J, Scherrmann JM. Snake F(ab’)2 antivenom from hyperimmunized horse: pharmacokinetics following intravenous and intramuscular administration. Pharmacol Res. 1995;12:1470–3.CrossRefGoogle Scholar
  31. Pepin-Covata S, Lutsch C, Grandgeorge M, Lang J, Scherrmann JM. Immunoreactivity and pharmacokinetics of horse anti-scorpion venom F(ab’)2-scorpion venom interactions. Toxicol Appl Pharmacol. 1996a;141:272–7.Google Scholar
  32. Pepin-Covata S, Lutsch C, Lang J, Scherrmann JM. Preclinical assessment of immunoreactivity of new purified equine F(ab’)2 against European viper venom. J Pharm Sci. 1996b;87:221–5.CrossRefGoogle Scholar
  33. Pinheiro CB, Marangoni S, Toyama MH, Polikarpov I. Structural analysis of Tityus serrulatus Ts1 neurotoxin at atomic resolution: insights into interactions with Na+ channels. Acta Crystallogr Sect D. 2003;59:405–15.CrossRefGoogle Scholar
  34. Quesada L, Sevcik C, Lomonte B, Rojas E, Gutierrez JM. Pharmacokinetics of whole IgG equine antivenom: comparison between normal and envenomed rabbits. Toxicon. 2006;48:255–63.PubMedCrossRefGoogle Scholar
  35. Rivière G, Choumet V, Audebert V, Saboraud A, Debray M, Scherrmann J-M, Bon C. Effect of antivenom on venom pharmacokinetics in experimentally envenomed rabbits: toward an optimization of antivenom therapy. J Pharmacol Exp Ther. 1997;281:1–8.PubMedGoogle Scholar
  36. Rivière G, Choumet V, Saliou B, Debray M, Bon C. Absorption and elimination of viper antivenom after antivenom administration. J Pharmacol Exp Ther. 1998;285:490–5.PubMedGoogle Scholar
  37. Russell FE, Walter FG, Bey TA, Fernandez MC. Review article – snakes and snakebite in Central America. Toxicon. 1997;35:1469–522.PubMedCrossRefGoogle Scholar
  38. Sevcik C, VÃzquez H, Salazar V, Diaz P, D'Suze G. Pharmacokinetics and high resolution deconvolution fluorescence study of horse IgG and F(ab’)2 in rabbits. Unpublished.Google Scholar
  39. Sevcik C, D’Suze G. Farmacocinética básica del tratamiento con antivenenos. In: D’Suze G, Corzo-Burguete G, Paniagua J, editors. Emergencias por animales ponzoñosos de las Américas. Mexico City: Instituto Bioclón, SA de CV; 2011. p. 249–86. ISBN 978-607-7987-00-0.Google Scholar
  40. Sevcik C, D’Suze G, Díaz P, Salazar V, Hidalgo C, Azpúrua H, Bracho N. Modelling Tityus scorpion venom and antivenom pharmacokinetics. Evidence of active immunoglobulin G’s f(ab’)2 extrusion mechanism from blood to tissues. Toxicon. 2004;44:731–4.PubMedCrossRefGoogle Scholar
  41. Sevcik C, Salazar V, Díaz P, D’Suze G. Initial volume of a drug before it reaches the volume of distribution. Pharmacokinetics of F(ab’)2 antivenoms and other drugs. Toxicon. 2007;50:653–65.PubMedCrossRefGoogle Scholar
  42. Sevcik C, Díaz P, D’Suze G. On the presence of antibodies against bovine, equine and poultry immunoglobulins in human IgG preparations, and its implications on antivenom production. Toxicon. 2008;51:10–6.PubMedCrossRefGoogle Scholar
  43. Sevcik C, D’Suze G, Salazar V, Díaz P, Vázquez H. Horse IgG- and ostrich IgY-F(ab’)2 groups have different affinities for mice erythrocytes and lymphocytes. Implications for avian immunoglobulin therapeutic usefulness. Toxicon. 2012;60:1215–21.PubMedCrossRefGoogle Scholar
  44. Sevcik C, Salazar V, Díaz P, D’Suze G, Vázquez H. High resolution fluorescence microscopy evidence on the transport of immunoglobulins. Differences between mammalian IgG, F(ab’)2 and avian IgY. Toxicon. 2013;63:7–18.PubMedCrossRefGoogle Scholar
  45. Silveira PV, Nishioka Sde A. Venomous snake bite without clinical envenoming (‘dry-bite’). A neglected problem in Brazil. Trop Geogr Med. 1995;47:82–5.PubMedGoogle Scholar
  46. Smith LA. Botulism and vaccines for its prevention. Vaccine. 2009;27 Suppl 4:D33–9.PubMedCrossRefGoogle Scholar
  47. Südhof TC. α-Latrotoxin and its receptors: neurexins and CIRL/Latrophilins. Ann Rev Neurosci. 2001;24:933–62.PubMedCrossRefGoogle Scholar
  48. Tambourgi DV, Magnoli FC, van den Berg CW, Morgan BP, de Araujo PS, Alves EW, Da Silva WD. Sphingomyelinases in the venom of the spider Loxosceles intermedia are responsible for both dermonecrosis and complement-dependent hemolysis. Biochem Biophys Res Commun. 1998;251:366–73.PubMedCrossRefGoogle Scholar
  49. Theakston RD, Lloyd-Jones MJ, Reid HA. Micro-ELISA for detecting and assaying snake venom and venom-antibody. Lancet. 1977;24:639–42.CrossRefGoogle Scholar
  50. Thygerson AL, Gulli B, Krohmer JR. First aid, CPR, and AED. 5th ed. Boston: Jones & Bartlett Publishers; 2006. p. 120.Google Scholar
  51. Vázquez H, Chávez-Haro A, García-Ubbelohde W, Mancilla-Nava R, Paniagua-Solís J, Alagón A, Sevcik C. Pharmacokinetics of a F(ab’)2 scorpion antivenom in healthy human volunteers. Toxicon. 2005;46:797–805.PubMedCrossRefGoogle Scholar
  52. Vázquez H, Chávez-Haro A, García-Ubbelohde W, Paniagua-Solís J, Alagón A, Sevcik C. Pharmacokinetics of a F(ab’)2 scorpion antivenom administered intramuscularly in healthy human volunteers. Int Immunopharmacol. 2010a;10:1318–24.PubMedCrossRefGoogle Scholar
  53. Vázquez H, Olvera F, Paniagua-Solís J, Alagón A, Sevcik C. Pharmacokinetics in rabbits and anti-sphingomyelinase D neutralizing power of Fab, F(ab’)2, IgG and IgG(T) fragments from hyper immune equine plasma. Int Immunopharmacol. 2010b;10:447–54.PubMedCrossRefGoogle Scholar
  54. Vázquez H, Olvera F, Alagón A, Sevcik C. Production of anti-horse antibodies induced by IgG, F(ab’)2, and Fab applied repeatedly to rabbits. Effect on antivenom pharmacokinetics. Toxicon. 2013;74:208–14.CrossRefGoogle Scholar
  55. White J. Ophidian envenomation a South Australian perspective. Rec Adelaide Child Hosp. 1982;2:311–421.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratory on Cellular NeuropharmacologyCentro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela

Personalised recommendations