Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Radiocarbon: Clock and Tracer

  • PieterM. Grootes
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-94-007-6644-0_89-2

Synonyms

Introduction

Carbon

Carbon (chemical symbol C) is an element with six protons in a nucleus circled by six electrons. In addition, the nucleus may contain six, seven, or eight neutrons, which leads to three forms of carbon having 12, 13, and 14 mass units (12C,13C, 14C) with a natural relative abundance of 98.9 %, 1.1 %, and ca. 10−10 %, respectively. These three natural forms of carbon, called isotopes, have the same chemical properties but slightly different, mass-dependent, physical properties. The isotope carbon-14 (14C) is also called radiocarbon, because it is radioactive, showing beta decay. Carbon is a key building block for life on earth, and its isotopes can be used to study physiological and environmental processes.

Production, Dispersion, and Decay

Radiocarbon is produced in the upper atmosphere, near the boundary between the stratosphere and troposphere (9–15 km altitude). There a neutron (n), produced by incoming cosmic radiation and...

Keywords

Dissolve Inorganic Carbon Accelerator Mass Spectrometry Accelerator Mass Spectrometry World Ocean Circulation Experiment Annual Layer Counting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Bard, E., Ménot, G., Rostek, F., Licari, L., Böning, P., Edwards, R. L., Cheng, H., Wang, Y.-J., and Heaton, T. J., 2013. Radiocarbon calibration/comparison records based on marine sediments from the Pakistan and Iberian margins. Radiocarbon, 55(4), 1999–2019.CrossRefGoogle Scholar
  2. Bien, G. S., Rakestraw, N. W., and Suess, H. E., 1960. Radiocarbon concentration in Pacific Ocean water. Tellus, 12, 436–443.CrossRefGoogle Scholar
  3. Broecker, W. S., 1991. The great ocean conveyor. Oceanography, 4(2), 49–89.Google Scholar
  4. Broecker, W. S., Tucek, C. S., and Olson, E. A., 1959. Radio-carbon analysis of oceanic CO2. International Journal of Applied Radiation and Isotopes, 7, 2903–2931.CrossRefGoogle Scholar
  5. Broecker, W. S., Peng, T. S., Ostlund, G., and Stuiver, M., 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research, 90(C4), 6953–6970.CrossRefGoogle Scholar
  6. Bronk Ramsey, C., Staff, R. A., Bryant, C. L., Brock, F., Kitagawa, H., van der Plicht, J., Schlolaut, G., Marshall, M. H., Brauer, A., Lamb, H. F., Payne, R. L., Tarasov, P. E., Haraguchi, T., Gotanda, K., Yonenobu, H., Yokoyama, Y., Tada, R., and Nakagawa, T., 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science, 338(6105), 370–374.CrossRefGoogle Scholar
  7. De Vries, H., 1958. Variation in concentration of radiocarbon with time and location on earth. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen Series B, 61, 94–102.Google Scholar
  8. Fonselius, S., and Ostlund, H. G., 1959. Natural radiocarbon measurements on surface water from the North Atlantic and the Arctic Sea. Tellus, 11, 77–82.CrossRefGoogle Scholar
  9. Godwin, H., 1962. Half-life of radiocarbon. Nature, 195, 984.CrossRefGoogle Scholar
  10. Ingram, B. L., and Southon, J. R., 1996. Reservoir ages in Eastern Pacific coastal and estuarine waters. Radiocarbon, 38(3), 573–582.Google Scholar
  11. Key, R. M., Quay, P. D., Jones, G. A., McNichol, A. P., Von Reden, K. F., and Schneider, R. J., 1996. WOCE AMS radiocarbon I: Pacific Ocean results (P6, P16 and P17). Radiocarbon, 38(3), 425–518.Google Scholar
  12. Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J., Feely, R. A., Millero, F., Mordy, C., and Peng, T.-H., 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles, 18, GB4031.CrossRefGoogle Scholar
  13. Libby, W. F., 1965. Radiocarbon Dating. Chicago, IL: University of Chicago Press.Google Scholar
  14. Matsumoto, K., 2007. Radiocarbon-based circulation age of the world oceans. Journal of Geophysical Research, 112, C09004, doi:10.1029/2007JC0040952007.Google Scholar
  15. McNichol, A. P., Schneider, R. J., Von Reden, K. F., Gagnon, A. R., Elder, K. L., Key, R. M., and Quay, P. D., 2000. Ten years after – the WOCE AMS radiocarbon program. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 172(1–4), 479–484.CrossRefGoogle Scholar
  16. Miyake, F., Nagaya, K., Masuda, K., and Nakamura, T., 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature, 486, 240–242.Google Scholar
  17. Nydal, R., and Gislefoss, J. S., 1996. Further application of bomb 14C as a tracer in the atmosphere and ocean. Radiocarbon, 38(3), 389–406.Google Scholar
  18. Ostlund, H. G., 1983. TTO North Atlantic Studies, Tritium and Radiocarbon, Data Rel. Miami: Tritium Laboratory University of Miami, pp. 83–85.Google Scholar
  19. Quay, P. D., Stuiver, M., and Broecker, W. S., 1983. Upwelling rates for the equatorial Pacific Ocean derived from bomb 14C distribution. Journal of Marine Research, 41, 769–792.CrossRefGoogle Scholar
  20. Rafter, T. A., and O’Brien, B. J., 1970. Exchange rates between the atmosphere and the ocean as shown by recent C-14 measurements in the South Pacific. In Olsson, I. U. (ed.), Nobel Symposium 12, Radiocarbon Variations and Absolute Chronology. New York: Wiley, pp. 355–377.Google Scholar
  21. Rahmstorf, S., 2006. Thermohaline ocean circulation. In Elias, S. A. (ed.), Encyclopedia of Quaternary Sciences. Amsterdam: Elsevier, pp. 1–10.Google Scholar
  22. Reimer, P. J., and Reimer, R. W., 2001. A marine reservoir correction database and on-line interface. Radiocarbon, 43(2A), 461–463.Google Scholar
  23. Reimer, P. J., Bard, E., Bayliss, A., Warren Beck, J., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Hai, C., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55, 1869–1887.CrossRefGoogle Scholar
  24. Roberts, M. L., and Southon, J. R., 2007. A preliminary determination of the absolute 14C/12C ratio of OX-I. Radiocarbon, 49(2), 441–445.Google Scholar
  25. Sarnthein, M., Grootes, P. M., Kennett, J. P., and Nadeau, M.-J., 2007. 14C reservoir ages show deglacial changes in ocean currents and carbon cycle. In Schmittner, A., Chiang, J. C. H., and Hemming, S. R. (eds.), Ocean Circulation: Mechanisms and Impacts – Past and Future Changes of Meridional Overturning. Washington, DC: American Geophysical Union. AGU geophysics. Monographs, Vol. 173, pp. 175–196, doi:10.1029/173GM13.CrossRefGoogle Scholar
  26. Sarnthein, M., Schneider, B., and Grootes, P. M., 2013. Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean. Climate of the Past, 9, 2595–2614, doi:10.5194/cp-9-2595-2013.CrossRefGoogle Scholar
  27. Sarnthein, M., Balmer, S., Grootes, P. M., and Mudelsee, M., 2015. Planktic and benthic 14C reservoir ages for three ocean basins, calibrated by a suite of 14C plateaus in the glacial-to-deglacial Suigetsu atmospheric 14C record. Radiocarbon, 57(1), 129–151.CrossRefGoogle Scholar
  28. Stommel, H., 1961. Thermohaline convection with two stable regimes of flow. Tellus, 13, 224–230.CrossRefGoogle Scholar
  29. Stuiver, M., and Braziunas, T. F., 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon, 35(1), 137–189.Google Scholar
  30. Stuiver, M., and Quay, P. D., 1980. Changes in atmospheric carbon-14 attributed to a variable sun. Science, 207, 11–19, doi:10.1126/science.207.4426.11.CrossRefGoogle Scholar
  31. Stuiver, M., Quay, P. D., and Östlund, H. G., 1983. Abyssal water carbon-14 distribution and the age of the world oceans. Science, 219, 849–851.CrossRefGoogle Scholar
  32. Stuiver, M., Ostlund, H. H., Key, R. M., and Reimer, P. J., 1996. Large-volume WOCE radiocarbon sampling in the Pacific Ocean. Radiocarbon, 38(3), 519–561.Google Scholar
  33. Suess, H. E., 1955. Radiocarbon concentration in modern wood. Science, 122, 415–417.CrossRefGoogle Scholar
  34. Thornalley, D. J. R., Barker, S., Broecker, W. S., Elderfield, H., and McCave, I. N., 2011. The deglacial evolution of the North Atlantic deep convection. Science, 331, 202–205.CrossRefGoogle Scholar
  35. Tunis, C., Bird, J. R., Fink, D., and Herzog, G. F., 1998. Accelerator Mass Spectrometry. Ultrasensitive Analysis for Global Science. Boca Raton: LLC, CRC Press, p. 371.Google Scholar
  36. Usoskin, G., Kromer, B., Ludlow, F., Beer, J., Friedrich, M., Kovaltsov, G. A., Solanki, S. K., and Wacker, L., 2013. The AD775 cosmic event revisited: the Sun is to blame. Astronomy and Astrophysics, 552, L3, doi:10.1051/0004-6361/201321080.CrossRefGoogle Scholar
  37. Voelker, A. H. L., Sarnthein, M., Grootes, P. M., Erlenkeuser, H., Laj, C., Mazaud, A., Nadeau, M.-J., and Schleicher, M., 1998. Correlation of marine 14C ages from the Nordic Seas with the GISP2 isotope record: implications for 14C calibration beyond 25 ka BP. Radiocarbon, 40, 517–534.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute for Ecosystem ResearchKiel UniversityKielGermany