Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Paleoceanographic Proxies

  • Gerold Wefer
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_82-1


Proxies stand in for direct measurements of past environmental conditions such as temperature, salinity, etc.


Measured climate information such as temperature is only available back to the late nineteenth century. To extend the record further back in history, proxies have to be used. Proxies are physical and chemical parameters that can be transformed through a calibration process to real measured variables such as temperature. From the ratios of stable oxygen isotopes in the carbonate shells of marine organisms, e.g., past temperatures can be reconstructed if the isotopic composition of the seawater is known. The information is stored in sediments of the shelf areas, continental margins and abyssal plains, and in the skeletons of tropical or cold-water corals. Environmental information can be obtained from the quantity and composition of organic matter, carbonate, and opal shells and from the species compositions of plants and animals. An overview of the use of...


Benthic Foraminifera Planktonic Foraminifera Accelerator Mass Spectrometry Boron Isotope Biological Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Altabet, M. A., 2006. Isotopic tracers of the marine nitrogen cycle: present and past. The Handbook of Environmental Chemistry, 2N, 251–293, doi:10.1007/698_2_008.Google Scholar
  2. CLIMAP, 1981. Seasonal reconstructions of the Earth’s surface at the last glacial maximum in Map Series, Technical Report MC-36. Boulder: Geological Society of America.Google Scholar
  3. Cohen, A. L., Owens, K. E., Layne, G. D., and Shimizu, N., 2002. The effect of algal symbiosis on the accuracy of Sr/Ca paleotemperatures from coral. Science, 296(5566), 331–333.CrossRefGoogle Scholar
  4. Felis, T., Giry, C., Scholz, D., Lohmann, G., Pfeiffer, M., Pätzold, J., Kölling, M., and Scheffers, S. R., 2015. Tropical Atlantic temperature seasonality at the end of the last interglacial. Nature Communications, 6, 6159, doi:10.1038/ncomms7159.CrossRefGoogle Scholar
  5. Fischer, G., and Wefer, G. (eds.), 1999. Use of Proxies in Paleoceanography: Examples from the South Atlantic. Berlin/Heidelberg: Springer, p. 735.Google Scholar
  6. Gersonde, R., de Vernal, A., and Wolff, E. W., 2014. Past sea ice reconstruction – proxy data and modeling. PAGES Magazine, 22(2), 97.Google Scholar
  7. Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., Wu, H. B., Qiao, Y. S., Zhu, R. X., Peng, S. Z., Wei, J. J., Yuan, B. Y., and Liu, T. S., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159–163.CrossRefGoogle Scholar
  8. Heguera, J. C., and Berger, W. H., 1994. Glacial to postglacial drop in productivity in the western equatorial Pacific: mixing rate vs. nutrient concentrations. Geology, 22, 629–632.CrossRefGoogle Scholar
  9. Hönisch, B., and Hemming, N. G., 2004. Ground-truthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells: partial dissolution and shell size effects. Paleoceanography, 19(4). doi: 10.1029/2004PA001026Google Scholar
  10. Imbrie, J., and Kipp, N. G., 1971. A new micropaleontological method for quantitative paleoclimatology: application to a Late Pleistocene Caribbean core. In Turekian, K. (ed.), The Late Cenozoic Glacial Ages. New Haven: Yale University Press, pp. 71–181.Google Scholar
  11. Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L. M., and Wefer, G., 2013. NW African hydrology and vegetation during the last glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quaternary Science Reviews, 82, 56–67, doi:10.1016/j.quascirev.2013.10.013.CrossRefGoogle Scholar
  12. Lisiecki, L. E., and Raymo, M. E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.Google Scholar
  13. Mann, M. E., Zhan, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegl, G., and Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326, 1256–1260, doi:10.1126/science.1177303.CrossRefGoogle Scholar
  14. Mollenhauer, G., Basse, A., Kim, J. H., Sinninghe Damsté, J. S., and Fischer, G., 2015. A four-year record of – and TEX86-derived sea surface temperature estimates from sinking particles in the filamentous upwelling region off Cape Blanc, Mauritania. Deep Sea Research I, 97, 67–79.CrossRefGoogle Scholar
  15. Raymo, M. E., and Mitrovica, J. X., 2012. Collapse of polar ice sheets during the state 11 interglacial. Nature, 483, 453–456, doi:10.1038/nature10891.CrossRefGoogle Scholar
  16. Röhl, U., Bralower, T. J., Norris, R. D., and Wefer, G., 2000. New chronology for the late Paleocene thermal maximum and its environmental implications. Geology, 28(10), 927–930.CrossRefGoogle Scholar
  17. Stein, R., Fahl, K., and Müller, J., 2012. Proxy reconstruction of Arctic Ocean sea ice history – From IRD to IP25. Polarforschung, 82, 37–71.Google Scholar
  18. Wefer, G., Berger, W. H., Fischer, G., and Bijma, J., 1999. Clues to ocean history – a brief overview of proxies. In Fischer, G., and Wefer, G. (eds.), Use of Proxies in Paleoceanography: Examples from the South Atlantic. Berlin/Heidelberg: Springer, pp. 1–68.CrossRefGoogle Scholar
  19. Ziegler, M., Diz, P., Hall, I. R., and Zahn, R., 2013. Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian–Atlantic Ocean Gateway. Earth and Planetary Science Letters, 383, 101–112.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.MARUM – Center for Marine Environmental SciencesUniversity of BremenBremenGermany