Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede


  • Mark Maslin
  • Alexander J. Dickson
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_81-1


Marine sediments provide long continuous records of past climate changes at intraannual, annual to centennial scale resolutions enabling insights into past changes within both oceanic and continental environments. Stable oxygen isotopes are a fundamental tool for palaeoceanographers providing the means to reconstruct a range of variables including sea surface and bottom water temperature, sea surface salinity, sea level, river discharge, and iceberg activity. Comprehensive introductions on oxygen isotopes and their physicochemical behavior/systematics are given in Craig and Gordon (1965), Garlick (1974), Hoefs (1997), Criss (1999), Rohling and Cooke (1999), Zeebe and Wolf-Gladrow (2001) and Pearson (2012).

Oxygen Isotopes in Marine Archives

Oxygen isotope compositions can be measured in many forms of mineral, including calcite, aragonite, opal, and barite. The shells of carbonate producing organisms have most commonly been used for δ18O analysis, and have underpinned many...


Oxygen Isotope Dissolve Inorganic Carbon Benthic Foraminifera Oxygen Isotope Composition Planktonic Foraminifera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., and Rougerieet, F., 1996. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharges. Nature, 382, 241–244.CrossRefGoogle Scholar
  2. Bemis, B. E., Spero, H., Bijma, J., and Lea, D. W., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography, 13, 150–160.CrossRefGoogle Scholar
  3. Bralower, T. J., Zachos, J. C., Thomas, E., Parrow, M., Paull, C. K., Kelly, D. C., Pre-Moli Silva, I., Sliter, W. V., and Loh-Mann, K. C., 1995. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography, 10, 841–865.CrossRefGoogle Scholar
  4. Broecker, W. S., 2003. The oceanic CaCO3 cycle. In Holland, H. D., and Turekian, K. K. (eds.), Treatise on Geochemistry. Amsterdam: Elsevier, Vol. 6, pp. 529–549.CrossRefGoogle Scholar
  5. Burns, S., and Maslin, M. A., 1999. Composition and circulation of bottom water in the western Atlantic Ocean during the last glacial, based on pore-water analyses from the Amazon Fan. Geology, 27, 1011–1014.CrossRefGoogle Scholar
  6. Chapman, M., and Maslin, M. A., 1999. Low latitude forcing of meridional temperature and salinity gradients in the North Atlantic and the growth of glacial ice sheets. Geology, 27, 875–878.CrossRefGoogle Scholar
  7. Chappell, J., and Shackleton, N. J., 1986. Oxygen isotopes and sea level. Nature, 324, 137–140.CrossRefGoogle Scholar
  8. Craig, H., 1965. Measurement of oxygen isotope paleotemperatures. In Tongiorgi, E. (ed.), Stable Isotopes in Oceanographic Studies and Paleotemperatures. Spoleto: Consiglio Nazionale delle Ricerche, pp. 162–182.Google Scholar
  9. Craig, H., and Gordon, L. I., 1965. Isotope oceanography: deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In Symposium on Marine Geochemistry, University of Rhode Island Occasional Publications 3, USA, pp. 77–374.Google Scholar
  10. Criss, R. E., 1999. Principles of Stable Isotope Distribution. New York: Oxford University Press, p. 254.Google Scholar
  11. Dickson, A. J., Leng, M. J., Maslin, M. A., Sloane, H. J., Green, J., Bendle, J. A., McClymont, E. L., and Pancost, R. D., 2010. Atlantic overturning circulation and Agulhas leakage influences on southeast Atlantic upper ocean hydrography during marine isotope stage 11. Paleoceanography, 25, PA3208, doi:10.1029/2009PA001830.CrossRefGoogle Scholar
  12. Duplessy, J.-C., Labeyrie, L., and Waelbroeck, C., 2002. Constraints on the ocean oxygen isotopic enrichment between the Last Glacial Maximum and the Holocene. Quaternary Science Reviews, 21, 315–330.CrossRefGoogle Scholar
  13. Elderfield, H., and Ganssen, G., 2000. Past temperature and delta18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature, 405, 442–445.CrossRefGoogle Scholar
  14. Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C., 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64, 1315–1325.CrossRefGoogle Scholar
  15. Fairbanks, R. G., 1989. A 17,000 year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637–642.CrossRefGoogle Scholar
  16. Garlick, G. D., 1974. The stable isotopes of oxygen, carbon, hydrogen in the marine environment. In Goldberg, E. D. (ed.), The Sea. New York: Wiley, Vol. 5, pp. 393–425.Google Scholar
  17. Hays, P. D., and Grossman, E. L., 1991. Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology, 19, 441–444.CrossRefGoogle Scholar
  18. Hoefs, J., 1997. Stable Isotope Geochemistry, 4th edn. Berlin: Springer.CrossRefGoogle Scholar
  19. Imbrie, J., and Kipp, N. G., 1971. A new micropaleontological method for quantitative paleoclimatology. In Turekian, K. K. (ed.), Late Cenozoic Glacial Ages. New Haven: Yale University Press, pp. 71–182.Google Scholar
  20. Kim, S. T., and O’Neil, J. R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic calcites. Geochimica et Cosmochimica Acta, 61, 3461–3475.CrossRefGoogle Scholar
  21. Kucera, M., Weinel, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M., Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins, S., and Waelbroeck, C., 2005. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quaternary Science Reviews, 24, 951–998.CrossRefGoogle Scholar
  22. Marchitto, T. M., Curry, W. B., Lynch-Stieglitz, J., Bryan, S. P., Cobb, K. M., and Lund, D. C., 2014. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera. Geochimica et Cosmochimica Acta, 130, 1–11.CrossRefGoogle Scholar
  23. Martinez-Mendez, G., Zahn, R., Hall, I. R., Peeters, F. J. C., Pena, L. D., Cacho, I., and Negre, C., 2010. Contrasting multiproxy reconstructions of surface ocean hydrography in the Agulhas Corridor and implications for the Agulhas Leakage dduring the last 345,000 years. Paleoceanography, 25, PA4227, doi:10.1029/2009PA001879.CrossRefGoogle Scholar
  24. Maslin, M. A., and Burns, S. J., 2000. Reconstruction of the Amazon Basin effective moisture availability over the last 14,000 years. Science, 290, 2285–2287.Google Scholar
  25. Maslin, M. A., and Swann, G., 2005. Isotopes in marine sediments. In Leng, M. (ed.), Isotopes in Palaeoenvironmnetal Research. Dordrecht: Springer, pp. 227–290.Google Scholar
  26. Maslin, M. A., Shackleton, N. J., and Pflaumann, U., 1995. Temperature, salinity and density changes in the Northeast Atlantic during the last 45,000 years: Heinrich events, deep water formation and climatic rebounds. Paleoceanography, 10, 527–544.CrossRefGoogle Scholar
  27. Maslin, M. A., Ettwein, V. J., Wilson, K. E., Guilderson, T. P., Burns, S. J., and Leng, M. J., 2011. Dynamic boundary-monsoon intensity hypothesis: evidence from the deglacial Amazon River discharge record. Quaternary Science Reviews, 30, 3823–3833.CrossRefGoogle Scholar
  28. McCrea, J. M., 1950. On the isotope chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics, 18, 849–857.CrossRefGoogle Scholar
  29. O’Neil, J. R., Clayton, R. N., and Mayeda, T. K., 1969. Oxygen isotope fractionation on divalent metal carbonates. Journal of Chemical Physics, 51, 5547–5558.CrossRefGoogle Scholar
  30. Pearson, P. N., 2012. Oxygen isotopes in foraminifera: overview and historical review. Paleontological Society Papers, 18, 1–38.Google Scholar
  31. Pearson, P. N., van Dongen, B. E., Nicholas, C. J., Pancost, R. D., Schouten, S., Singano, J. M., and Wade, B. S., 2007. Stable warm tropical climate through the Eocene epoch. Geology, 35, 211–214.CrossRefGoogle Scholar
  32. Pflaumann, U., Sarnthein, M., Chapman, M., d’Abreu, L., Funnell, B., Huels, M., Kiefer, T., Maslin, M. A., Schulz, H., Swallow, J., van Kreveld, S., Vautravers, M., Vogelsang, E., and Weinelt, M., 2003. The Glacial North Atlantic: sea-surface conditions reconstructed by GLAMAP-2000. Paleoceanography, 18, 1065, doi:10.1029/2002PA000774.CrossRefGoogle Scholar
  33. Prahl, F. G., and Wakeham, S. G., 1987. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature, 330, 367–369.CrossRefGoogle Scholar
  34. Rohling, E. J., 2000. Paleosalinity: confidence limits and future applications. Marine Geology, 163, 1–11.CrossRefGoogle Scholar
  35. Rohling, E. J., and Cooke, S., 1999. Stable oxygen and carbon isotope ratios in foraminiferal carbonate. In Sen Gupta, B. K. (ed.), Modern Foraminifera. Dordrecht: Kluwer, pp. 239–258.Google Scholar
  36. Schmidt, G. A., 1999. Error analysis of paleosalinity calculations. Paleoceanography, 14, 422–429.CrossRefGoogle Scholar
  37. Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J. S., 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new organic proxy for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters, 204, 265–274.CrossRefGoogle Scholar
  38. Schrag, D. P., 1999. Effects of diagenesis on the isotopic record of late Paleogene tropical sea surface temperatures. Chemical Geology, 161, 215–224.CrossRefGoogle Scholar
  39. Schrag, D. P., Hampt, G., and Murray, D. W., 1996. Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science, 272, 1930–1932.CrossRefGoogle Scholar
  40. Schrag, D. P., Higgins, J. A., Macdonald, F. A., and Johnston, D. T., 2013. Authigenic carbonate and the history of the global carbon cycle. Science, 339, 540–543.CrossRefGoogle Scholar
  41. Shackleton, N. J., 1974. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. CNRS, Colloques Internationals, 219, 203–209.Google Scholar
  42. Shackleton, N. J., 1987. Oxygen isotopes, ice volume and sea-level. Quaternary Science Reviews, 6, 183–190.CrossRefGoogle Scholar
  43. Shackleton, N. J., 2000. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 289(5486), 1897–1902.CrossRefGoogle Scholar
  44. Shackleton, N., and Boersma, A., 1981. The climate of the Eocene ocean. Journal of the Geological Society of London, 138, 153–157.CrossRefGoogle Scholar
  45. Shemesh, A., Hodell, D., Crosta, C., Kanfoush, S., Charles, C., and Guilderson, T., 2002. Sequence of events during the last deglaciation in Southern Ocean sediments and Antarctic ice cores. Paleoceanography, 17, 1056, doi:10.1029/2000PA000599.CrossRefGoogle Scholar
  46. Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E., 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390, 470–500.CrossRefGoogle Scholar
  47. Tiedemann, R., Sarnthein, M., and Shackleton, N. J., 1994. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of ODP Site 659. Paleoceanography, 9, 619–638.CrossRefGoogle Scholar
  48. Turchyn, A. V., and Schrag, D., 2004. Oxygen isotope constraints on the sulphur cycle over the last 10 million years. Science, 303, 2004–2007.CrossRefGoogle Scholar
  49. Turchyn, A. V., Schrag, D. P., Coccioni, R., and Montanari, A., 2009. Stable isotope analysis of the Cretaceous sulfur cycle. Earth and Planetary Science Letters, doi:10.1016/j.epsl.2009.06.002.Google Scholar
  50. Wang, L. J., Sarnthein, M., Erlenkeuser, H., Grootes, P., Grimalt, J., Pelejero, C., and Linck, G., 1999. Holocene variations in Asian monsoon moisture: a bidecadal sediment record from the South China Sea. Geophysical Research Letters, 26, 2889–2892.CrossRefGoogle Scholar
  51. Wilson, P. A., and Norris, R. D., 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature, 412, 425–429.CrossRefGoogle Scholar
  52. Zeebe, R. E., 1999. An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochimica et Cosmochimica Acta, 63, 2001–2007.CrossRefGoogle Scholar
  53. Zeebe, R. E., and Wolf-Gladrow, D. A., 2001. CO 2 in Seawater: Equilibrium, Kinetics, Isotopes. Amsterdam: Elsevier. Elsevier Oceanography Series, 65, p. 346.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of GeographyUniversity College LondonLondonUK
  2. 2.Department of Earth SciencesUniversity of OxfordOxfordUK