Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede


  • William W. Hay
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_58-1


Events are relatively short-lived phenomena recorded in the geologic record by depositional, erosional, or geochemical features. They may be of local significance (e.g., a storm deposit (tempestite), debris flow, submarine landslide, tsunami deposit) or more extensive (e.g., a volcanic ash deposit, changes in the distribution of fossil species, changes in ocean water properties such as anoxia reflected by sapropels) or even global (eustatic sea level changes, variations in isotopic ratios, changes in seawater composition).

Major Events in Ocean History

Knowledge of the history of the oceans depends in part on how much of the ocean floor is still available for an examination. As shown in Fig. 1a, only half of the ocean crust with its sediment that existed 180 million years ago is still present. The oldest fragment of the ocean crust in the ocean basins is between 180 and 200 million years old, but other bits of the older ocean crust are preserved as ophiolites in mountain...


Debris Flow Ocean Crust Ocean Basin Planktonic Foraminifera Tsunami Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Dercourt, J., Ricou, L. E., Adamia, S. A., Csaszar, G., Funk, H., Lefeld, J., Rakus, M., Sandulescu, M., Tollman, A., and Tchoumatchenko, P., 1990. Northern Margin of Tethys; Paleogeographical Maps. Bratislava: Statny Geologicky Ustav Dionyza Stura. 11 sheets.Google Scholar
  2. Dercourt, J., Ricou, L.-E., and Vrielynck, B. (eds.), 1993. Atlas of Tethys Paleoenvironmental Maps. Paris: Gauthier-Villars. 14 maps + explanatory notes.Google Scholar
  3. Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M. F., Cadet, J. P., Crasquin, S., and Sandulescu, M., 2000. Peri-Tethys Paleogeographical Atlas. Paris: Gauthier-Villars. 24 maps + explanatory notes.Google Scholar
  4. Erba, E., 2004. Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology, 52, 85–106.CrossRefGoogle Scholar
  5. Haq, B. U., Hardenbol, J., and Vail, P. R., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.CrossRefGoogle Scholar
  6. Hay, W. W., Migdisov, A., Balukhovsky, A. N., Wold, C. N., Flögel, S., and Söding, E., 2006. Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate, ocean circulation and life. Palaeogeography Palaeoclimatology Palaeoecology, 240, 3–46.CrossRefGoogle Scholar
  7. Hohbein, M. W., Sexton, P. F., and Cartwright, J. A., 2012. Onset of North Atlantic deep water production coincident with inception of the Cenozoic global cooling trend. Geology, 40, 255–258.CrossRefGoogle Scholar
  8. Holser, W. T., 1977. Catastrophic chemical events in the history of the ocean. Nature, 267, 403–498.CrossRefGoogle Scholar
  9. Holser, W. T., 1985. Gradual and abrupt shift in ocean chemistry during Phanerozoic time. In Holland, H. D., and Trendall, A. F. (eds.), Patterns of Change in Earth Evolution, Dahlem Konferenzen 1984. Berlin: Springer, pp. 123–143.Google Scholar
  10. Jenkyns, H. C., 1999. Mesozoic anoxic events and paleoclimate. Zentralblatt für Geologie und Paläontologie, Teil I 1998. Heft, 5–6, 943–949.Google Scholar
  11. Kazmin, V. G., and Napatov, L. M. (eds.), 1998. The Paleogeographic Atlas of Northern Eurasia. Moscow: Institute of Tectonics of the Lithospheric Plates, Russian Academy of Natural Sciences. 26 maps.Google Scholar
  12. Knauth, L. P., 2005. Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeography Palaeoclimatology Palaeoecology, 219, 53–69.CrossRefGoogle Scholar
  13. Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9, Q04006, doi:10.1029/2007GC001743. 19 pp.CrossRefGoogle Scholar
  14. Schlanger, S. O., and Jenkyns, H. C., 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw, 55, 179–184.Google Scholar
  15. Sclater, J. G., Jaupart, C., and Galson, D., 1980. The heat flow through oceanic and continental crust and the heat loss of the Earth. Reviews of Geophysics and Space Physics, 18, 269–311.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Geological Sciences, University of ColoradoBoulderUSA