Skip to main content

Clay Minerals

  • Living reference work entry
  • Latest version View entry history
  • First Online:
  • 175 Accesses

Definition

Clay minerals are hydrous aluminum phyllosilicates. The main representatives are kaolinite, illite, chlorite, and smectite.

Structure and Composition

The structure of clay minerals is characterized by alternation of sheets, which yield the layer structure. The composition and configuration of these sheets are different for different clay minerals. There are, however, two basic types of sheets, composing any given clay mineral (Grim, 1962; Bridley and Brown, 1984 ; Chamley, 1989): (i) tetrahedral sheets with one silicon atom surrounded by four oxygen atoms in a tetrahedral configuration and (ii) octahedral sheets with an aluminum, magnesium, or iron atom surrounded by hydroxyl groups and oxygen in a sixfold coordinated configuration (Fig. 1ad). Alternation of one tetrahedral and one octahedral sheet yields the 1:1 structure, whereas alternation of two tetrahedral sheets with one octahedral sheet results to the 2:1 structure. In most clay minerals, substitution in...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Behrends, M., 1999. Reconstruction of sea-ice drift and terrigenous sediment supply in the Late Quaternary: heavy-mineral associations in sediments of the Laptev-Sea continental margin and the central Arctic Ocean. Reports on Polar Research, 310, 167.

    Google Scholar 

  • Behrends, M., Hoops, E., and Peregovich, B., 1999. Distribution patterns of heavy minerals in Siberian rivers, the Laptev Sea and the eastern Arctic Ocean: an approach to identify sources, transport and pathways of terrigenous matter. In Kassens, H., Bauch, H., Dmitrenko, I., Eicken, H., Hubberten, H. W., Melles, M., Thiede, J., and Timokhov, L. (eds.), Land-Ocean Systems in the Siberian: Dynamics and History. Heidelberg: Springer, pp. 265–286.

    Chapter  Google Scholar 

  • Bergaya, F., Theng, B. K. G., and Lagaly, G., 2006. Handbook of Clay Science. Amsterdam: Elsevier. Developments in Clay Science, Vol. 1, p. 1224.

    Google Scholar 

  • Biscaye, P. E., 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 455–486.

    Article  Google Scholar 

  • Bridley, G. W., and Brown, G., 1984. Crystal structures of clay minerals and their X-ray identification. Mineralogical Society Monograph, 5, 248.

    Google Scholar 

  • Chamley, H., 1989. Clay Sedimentology. Heidelberg: Springer, p. 623.

    Book  Google Scholar 

  • Dethleff, D., 2005. Entrainment and export of Laptev Sea ice sediments, Siberian Arctic. Journal Geophysical Research, 110(C07009), doi:10.1029/2004JC002740.

    Google Scholar 

  • Duzhikov, O. A., and Strunin, B. M. (eds.), 1992. Geology and Metallogeny of Sulfide Deposits, Norilisk Region. Moscow: USSR SEG Special Publication, p. 60.

    Google Scholar 

  • Ehrmann, W. U., Melles, M., Kuhn, G., and Grobe, H., 1992. Significance of clay mineral assemblages in the Antarctic Ocean. Marine Geology, 107, 249–273.

    Article  Google Scholar 

  • Fütterer, D. K., 2006. The solid phase of marine sediments. In Schulz, H. D., and Zabel, M. (eds.), Marine Geochemistry, 2nd edn. Heidelberg: Springer, p. 574.

    Google Scholar 

  • Griffin, J. J., and Goldberg, E. D., 1963. Clay-mineral distribution in the Pacific Ocean. In Hill, M. N. (ed.), The Sea. New York: Interscience, Vol. 3, pp. 728–741.

    Google Scholar 

  • Griffin, J. J., Windom, H., and Goldberg, E. D., 1968. The distribution of clay minerals in the World Ocean. Deep-Sea Research, 15, 433–459.

    Google Scholar 

  • Grim, R. E., 1962. Clay mineralogy. Science, New Series, 135, 890–898.

    Google Scholar 

  • Heath, G. R., and Pisias, N. G., 1979. A method for the quantitative estimation of clay minerals in North Pacific deep-sea sediments. Clays and Clay Minerals, 27, 175–184.

    Article  Google Scholar 

  • Janecek, T. R., and Rea, D. K., 1983. Eolian deposition in the northeast Pacific Ocean: Cenozoic history of atmospheric circulation. Geological Society of America Bulletin, 94, 730–738.

    Article  Google Scholar 

  • Kolla, V., Henderson, L., and Biscaye, P. E., 1976. Clay mineralogy and sedimentation in the western Indian Ocean. Deep-Sea Research, 23, 949–961.

    Google Scholar 

  • Meunier, A., 2005. Clays. Berlin: Springer, p. 472.

    Google Scholar 

  • Moore, D. M., and Reynolds, R. C., Jr., 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edn. Oxford: Oxford University Press, p. 378.

    Google Scholar 

  • Naidu, A. S., Creager, J. S., and Mowatt, T. C., 1982. Clay mineral dispersal patterns in the North Bering and Chukchi seas. Marine Geology, 47, 1–15.

    Article  Google Scholar 

  • Pfirman, S. L., Colony, R., Nürnberg, D., Eicken, H., and Rigor, I., 1997. Reconstructing the origin and trajectory of drifting Arctic sea ice. Journal of Geophysical Research, 102(C6), 12575–12586.

    Article  Google Scholar 

  • Poppe, L. J., Paskevich, V. F., Hathaway, J. C., and Blackwood, D. S., 2010. A Laboratory Manual for X-Ray Powder Diffraction. Woods Hole: U. S. Geological Survey Open-File Report 01-041. http://pubs.usgs.gov/of/2001/of01-041/htmldocs/clays/kaogr.htm; Webpage 2010.

  • Rateev, M. A., Gorbunova, Z. N., Lisitzyn, A. P., and Nosov, G. L., 1969. The distribution of clay minerals in the oceans. Sedimentology, 13, 21–43.

    Article  Google Scholar 

  • Rateev, M. A., Sadchikova, T. A., and Shabrova, V. P., 2008. Clay minerals in recent sediments of the World Ocean and their relation to types of lithogenesis. Lithology and Mineral Resources, 43, 125–135.

    Article  Google Scholar 

  • Robert, C., and Kennett, J. P., 1994. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: clay mineral evidence. Geology, 22, 211–214.

    Article  Google Scholar 

  • Shichi, T., and Takagi, K., 2000. Clay minerals as photochemical reaction fields. Journal of Photochemistry and Photobiology, C, Photochemistry Reviews, 1, 113–130.

    Article  Google Scholar 

  • Spielhagen, R. F., Bonani, G., Eisenhauer, A., Frank, M., Frederichs, T., Kassens, H., Kubik, P. W., Mangini, A., Nøgaard-Pedersen, N., Nowaczyk, N. R., Schäper, S., Stein, R., Thiede, J., Tiedemann, R., and Wahsner, M., 1997. Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheets. Geology, 25, 783–786.

    Article  Google Scholar 

  • Spielhagen, R. F., Baumann, K.-H., Erlenkeuser, H., Nowaczyk, N. R., Nørgaard-Pedersen, N., Vogt, C., and Weiel, D., 2004. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quaternary Science Reviews, 23, 1455–1483.

    Article  Google Scholar 

  • Stein, R., 1985. The post- Eocene sediment record of DSDP-Site 366: implications for African climate and plate tectonic drift. Geological Society of America Memoir, 163, 305–315.

    Article  Google Scholar 

  • Stein, R., 2008. Arctic Ocean Sediments: Processes, Proxies, and Palaeoenvironment. Amsterdam: Elsevier. Developments in Marine Geology, Vol. 2, p. 587.

    Google Scholar 

  • Stein, R., Robert, C., et al., 1985. Siliciclastic sediments at Sites 588, 590, and 591: Neogene and Paleogene evolution in the Southwest Pacific and Australian climate. In Kennett, J. P., and van der Borch, C. (eds.), Initial Reports of the Deep Sea Drilling Project. Washington: U.S. Govt. Printing Office, Vol. 90, pp. 1437–1455.

    Google Scholar 

  • Venkatarathnam, K., and Biscaye, P. E., 1973. Clay mineralogy and sedimentation in the eastern Indian Ocean. Deep-Sea Research, 20, 727–738.

    Google Scholar 

  • Vogt, C., 1997. Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as climatic indicator during glacial/interglacial changes. Reports on Polar Research, 251, 309.

    Google Scholar 

  • Vogt, C., 2004. Mineralogy of sediment core p S2185–3. Data Report, doi:10.1594/PANGAEA.138269.

    Google Scholar 

  • Vyssotski, A. V., Vyssotski, V. N., and Nezhdanov, A. A., 2006. Evolution of the West Siberian basin. Marine and Petroleum Geology, 23, 93–126.

    Article  Google Scholar 

  • Wahsner, M., Müller, C., Stein, R., Ivanov, G., Levitan, M., Shelekova, E., and Tarasov, G., 1999. Clay mineral distributions in surface sediments from the Central Arctic Ocean and the Eurasian continental margin as indicator for source areas and transport pathways: a synthesis. Boreas, 28, 215–233.

    Article  Google Scholar 

  • Windom, H. L., 1976. Lithogeneous material in marine sediments. In Riley, J. P., and Chester, R. (eds.), Chemical Oceanography. New York/London: Academic, pp. 103–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Stein, R. (2015). Clay Minerals. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6644-0_48-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6644-0_48-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6644-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Clay Minerals
    Published:
    07 March 2015

    DOI: https://doi.org/10.1007/978-94-007-6644-0_48-2

  2. Original

    Clay Minerals
    Published:
    14 February 2014

    DOI: https://doi.org/10.1007/978-94-007-6644-0_48-1