Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Volcanogenic Massive Sulfides

  • John W. Jamieson
  • Mark D. Hannington
  • Sven Petersen
  • Margaret K. Tivey
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_37-1



Volcanogenic Massive Sulfides. Accumulations of dominantly sulfide minerals that form at sites of focused hydrothermal discharge on the seafloor. Also refers to a class of ore deposit mined from ancient oceanic crust that is now exposed on land.


Volcanogenic massive sulfide (VMS) deposits are mineral accumulations that form on or near the seafloor at sites of high-temperature hydrothermal vent fluid discharge. The deposits are formed by the precipitation of dominantly sulfide minerals around hydrothermal vents (e.g., black and white smokers) where high-temperature, metal- and sulfur-rich fluids mix with cold seawater. VMS deposits commonly form along submarine tectonic plate boundaries such as mid-ocean ridges and subduction-relating settings such as volcanic arcs and back-arc basins. Although high-temperature “ black smoker” chimneys are the most recognizable features, the deposits can take on a variety of forms, from...


Massive Sulfide Volcanogenic Massive Sulfide Volcanogenic Massive Sulfide Deposit Hydrothermal Plume Fuca Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Beaulieu, S. E., Baker, E. T., German, C. R., and Maffei, A., 2013. An authoritative global database for active submarine hydrothermal vent fields. Geochemistry Geophysics Geosystems, 14, 4892–4905.CrossRefGoogle Scholar
  2. Davis, E. E., Mottl, M. J., and Fisher, A. T., et al., 1992. Proceedings of the ODP, Initial Reports, 139. College Station (Ocean Drilling Program). doi:10.2973/odp.proc.ir.139.1992Google Scholar
  3. Embley, R. W., Jonasson, I. R., Perfit, M. R., Franklin, J. M., Tivey, M. A., Malahoff, A., Smith, M. F., and Francis, T. J. G., 1988. Submersible investigation of an extinct hydrothermal system on the Galapagos Ridge – Sulfide mounds, stockwork zone, and differentiated lavas. Canadian Mineralogist, 26, 517–539.Google Scholar
  4. Francheteau, J., Needham, H. D., Choukroune, P., Juteau, T., Seguret, M., Ballard, R. D., Fox, P. J., Normark, W., Carranza, A., Cordoba, D., Guerrero, J., Rangin, C., Bougault, H., Cambon, P., and Hekinian, R., 1979. Massive deep-sea sulfide ore-deposits discovered on the East Pacific Rise. Nature, 277, 523–528.CrossRefGoogle Scholar
  5. Hannington, M., Jonasson, I., Herzig, P., and Petersen, S., 1995. Physical and chemical processes of seafloor mineralization at mid-ocean ridges. Geophysical Monograph, 11, 115–157.Google Scholar
  6. Hannington, M., Galley, A., Herzig, P., and Petersen, S., 1998. Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits. In Herzig, P. M., Humphris, S. E., Miller, D. J., and Zierenberg, R. A. (eds.), Proceedings of ODP, Science Results, 158, College Station, TX (Ocean Drilling Program), pp. 389–415.Google Scholar
  7. Hannington, M., De Ronde, C., and Petersen, S., 2005. Sea-floor tectonics and submarine hydrothermal systems. In Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. and Richards, J. P. (eds.), Economic Geology 100th Anniversary Volume, Society of Economic Geologists, Littelton, Colorado, USA, pp. 111–141.Google Scholar
  8. Hannington, M., Jamieson, J., Monecke, T., and Petersen, S., 2010. Modern sea-floor massive sulfides and base metal resources: towards an estimate of global sea-floor massive sulfide potential. Society of Economic Geologists, Special Publication, 15, 111–141.Google Scholar
  9. Klinkhammer, G. P., Chin, C. S., Keller, R. A., Dahlmann, A., Sahling, H., Sarthou, G., Petersen, S., and Smith, F., 2001. Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica. Earth and Planetary Science Letters, 193, 395–407.CrossRefGoogle Scholar
  10. Lalou, C., Reyss, J. L., and Brichet, E., 1993. Actinide-series disequilibrium as a tool to establish the chronology of deep-sea hydrothermal activity. Geochimica et Cosmochimica Acta, 57, 1221–1231.CrossRefGoogle Scholar
  11. Lipton, I., 2012. Mineral resource estimate – Solwara Project, Bismarck Sea, `. Canadian NI 43–101 Technical Report for Nautilus Minerals Inc., 240 p.Google Scholar
  12. Michael, P. J., Langmuir, C. H., Dick, H. J. B., Snow, J. E., Goldstein, S. L., Graham, D. W., Lehnert, K., Kurras, G., Jokat, W., Muhe, R., and Edmonds, H. N., 2003. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature, 423, 956–U951.CrossRefGoogle Scholar
  13. Robigou, V., Delaney, J. R., and Stakes, D. S., 1993. Large massive sulfide deposits in a newly discovered active hydrothermal system, the High-rise Field, Endeavour Segment, Juan-de-Fuca Ridge. Geophysical Research Letters, 20, 1887–1890.CrossRefGoogle Scholar
  14. Schmidt, R., and Schmincke, H. U., 2000. Seamounts and island building. In Sigurdsson, H. (ed.), Encyclopedia of Volcanoes. Sand Diego: Academic, pp. 383–402.Google Scholar
  15. Yang, K. H., and Scott, S. D., 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature, 383, 420–423.CrossRefGoogle Scholar
  16. Zierenberg, R. A., Fouquet, Y., Miller, D. J., Bahr, J. M., Baker, P. A., Bjerkgard, T., Brunner, C. A., Duckworth, R. C., Gable, R., Gieskes, J., Goodfellow, W. D., Groschel-Becker, H. M., Guerin, G., Ishibashi, J., Iturrino, G., James, R. H., Lackschewitz, K. S., Marquez, L. L., Nehlig, P., Peter, J. M., Rigsby, C. A., Schultheiss, P., Shanks, W. C., Simoneit, B. R. T., Summit, M., Teagle, D. A. H., Urbat, M., and Zuffa, G. G., 1998. The deep structure of a sea-floor hydrothermal deposit. Nature, 392, 485–488.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • John W. Jamieson
    • 1
  • Mark D. Hannington
    • 1
    • 2
  • Sven Petersen
    • 1
  • Margaret K. Tivey
    • 3
  1. 1.Magmatic and Hydrothermal SystemsGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.Goldcorp Chair in Economic Geology, Department of Earth SciencesUniversity of OttawaOttawaCanada
  3. 3.Marine Chemistry & Geochemistry, Woods Hole Oceanographic InstitutionWoods HoleUSA