Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede


  • David M. Buchs
  • Kaj Hoernle
  • Ingo Grevemeyer
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-94-007-6644-0_34-2


Seamounts are literally mountains rising from the seafloor. More specifically, they are “any geographically isolated topographic feature on the seafloor taller than 100 m, including ones whose summit regions may temporarily emerge above sea level, but not including features that are located on continental shelves or that are part of other major landmasses” (Staudigel et al., 2010). The term “guyot” can be used for seamounts having a truncated cone shape with a flat summit produced by erosion at sea level (Hess, 1946), development of carbonate reefs (e.g., Flood, 1999), or partial collapse due to caldera formation (e.g., Batiza et al., 1984). Seamounts <1,000 m tall are sometimes referred to as “knolls” (e.g., Hirano et al., 2008). “Petit spots” are a newly discovered subset of sea knolls confined to the bulge of subducting oceanic plates of oceanic plates seaward of deep-sea trenches (Hirano et al., 2006).

Charting, Abundance, and Distribution

Seamounts form one of the most...


Subduction Zone Oceanic Crust Mantle Plume Volcanic Edifice Ninetyeast Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.



We thank Anthony Watts for his constructive and insightful review.


  1. Batiza, R., Fornari, D. J., Vanko, D. A., and Lonsdale, P., 1984. Craters, calderas, and hyaloclastites on young Pacific seamounts. Journal of Geophysical Research, Solid Earth, 89, 8371–8390.CrossRefGoogle Scholar
  2. Besse, J., and Courtillot, V., 1991. Revised and synthetic apparent polar wander paths of the African, Eurasian, North-American and Indian plates, and true polar wander since 200 Ma. Journal of Geophysical Research, 96, 4029–4050.CrossRefGoogle Scholar
  3. Buchs, D. M., Arculus, R. J., Baumgartner, P. O., and Ulianov, A., 2011. Oceanic intraplate volcanoes exposed: example from seamounts accreted in Panama. Geology, 39, 335–338.CrossRefGoogle Scholar
  4. Clague, D. A., and Dalrymple, G. B., 1987. The Hawaiian-Emperor volcanic chain, Part I, Geologic evolution. In Wright, T. L., Stauffer, P. H., and Decker, R. W. (eds.), Volcanism in Hawaii. Washington: U.S. Government Printing Office, Washington: US Geological Survey Professional Paper 1350. pp. 5–54.Google Scholar
  5. Clark, M. R., Rowden, A. A., Schlacher, T., Williams, A., Consalvey, M., Stocks, K. I., Rogers, A. D., O’Hara, T. D., White, M., Shank, T. M., and Hall-Spencer, J. M., 2010. The ecology of seamounts: structure, function, and human impacts. Annual Review of Marine Science, 2, 253–278.CrossRefGoogle Scholar
  6. Contreras-Reyes, E., Grevemeyer, I., Watts, A. B., Planert, L., Flueh, E. R., and Peirce, C., 2010. Crustal intrusion beneath the Louisville hotspot track. Earth and Planetary Science Letters, 289(3–4), 323–333.CrossRefGoogle Scholar
  7. Creer, K. M., Irving, E., and Runcorn, S. K., 1954. The direction of the geomagnetic field in remote epochs in Great Britain. Journal of Geomagnetism and Geoelectricity, 6, 163–168.CrossRefGoogle Scholar
  8. Ezer, T., 1994. On the interaction between the Gulf stream and the New England seamount chain. Journal of Physical Oceanography, 24, 191–204.CrossRefGoogle Scholar
  9. Fisher, A. T., and Wheat, C. G., 2010. Seamounts as conduits for massive fluid, heat, and solute fluxes on ridge flank. Oceanography, 23(1), 74–87.CrossRefGoogle Scholar
  10. Flinders, A. F., Ito, G., Garcia, M. O., Sinton, J. M., Kauahikaua, J., and Taylor, B., 2013. Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes. Geophysical Research Letters, 40, 3367–3373.CrossRefGoogle Scholar
  11. Flood, P., 1999. Development of northwest Pacific guyots: general results from ocean drilling program legs 143 and 144. Island Arc, 8, 92–98.CrossRefGoogle Scholar
  12. Flood, P. G., 2001. The “Darwin Point” of Pacific Ocean atolls and guyots: a reappraisal. Palaeogeography, Palaeoclimatology, Palaeoecology, 175, 147–152.CrossRefGoogle Scholar
  13. Geldmacher, J., Hoernle, K., Klügel, A., van den Bogaard, P., and Bindeman, I., 2008. Geochemistry of a new enriched mantle type locality in the northern hemisphere: implications for the origin of the EM-I source. Earth and Planetary Science Letters, 265, 167–182.CrossRefGoogle Scholar
  14. Grevemeyer, I., Flueh, E. R., Reichert, C., Bialas, J., Klaeschen, D., and Kopp, C., 2001. Crustal architecture and deep structure of the Ninetyeast Ridge hotspot trail from active-source ocean bottom seismology. Geophysical Journal International, 144, 414–431.CrossRefGoogle Scholar
  15. Hein, J. R., Conrad, T. A., and Staudigel, H., 2010. Seamount mineral deposits. Oceanography, 23(1), 184–189.CrossRefGoogle Scholar
  16. Hess, H. H., 1946. Drowned ancient islands of the Pacific Basin. American Journal of Science, 244, 772–791.CrossRefGoogle Scholar
  17. Hillier, J. K., 2007. Pacific seamount volcanism in space and time. Geophysical Journal International, 168, 877–889.CrossRefGoogle Scholar
  18. Hillier, J. K., and Watts, A. B., 2007. Global distribution of seamounts from ship-track bathymetry data. Geophysical Research Letters, 34, L13304.CrossRefGoogle Scholar
  19. Hirano, N., Takahashi, E., Yamamoto, J., Abe, N., Ingle, S. P., Kaneoka, I., Hirata, T., Kimura, J. I., Ishii, T., Ogawa, Y., Machida, S., and Suyehiro, K., 2006. Volcanism in response to plate flexure. Science, 313, 1426–1428.CrossRefGoogle Scholar
  20. Hirano, N., Koppers, A. A. P., Takahashi, A., Fujiwara, T., and Nakanishi, M., 2008. Seamounts, knolls and petit-spot monogenetic volcanoes on the subducting Pacific Plate. Basin Research, 20, 543–553.CrossRefGoogle Scholar
  21. Hoernle, K. A., Bogaard, P. V. D., Werner, R., Lissinna, B., Hauff, F., Alvarado, G., and Garbe-Schönberg, D., 2002. The missing history (16–71 Ma) of the Galápagos hotspot: implications for the tectonic and biological evolution of the Americas. Geology, 30, 795–798.CrossRefGoogle Scholar
  22. Hoernle, K., Abt, D. L., Fischer, K. M., Nichols, H., Hauff, F., Abers, G., van den Bogaard, P., Heydolph, K., Alvarado, G., Protti, J. M., and Strauch, W., 2008. Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature, 451, 1094–1097.CrossRefGoogle Scholar
  23. Hoernle, K., Hauff, F., Werner, R., van den Bogaard, P., Gibbons, A. D., Conrad, S., and Muller, R. D., 2011. Origin of Indian Ocean seamount province by shallow recycling of continental lithosphere. Nature Geoscience, 4(12), 883–887.CrossRefGoogle Scholar
  24. Holbrook, W. S., 1995. Underplating over hotspots. Nature, 373, 559.CrossRefGoogle Scholar
  25. Keleman, P. B., and Holbrook, W. S., 1995. Origin of thick, high-velocity igneous crust along the U.S. East Coast margin. Journal of Geophysical Research, 100, 10077–10094.CrossRefGoogle Scholar
  26. Kopf, A. J., 2002. Significance of mud volcanism. Reviews of Geophysics, 40, 1005.CrossRefGoogle Scholar
  27. Koppers, A. A. P., and Watts, A. B., 2010. Intraplate seamounts as a window into deep earth processes. Oceanography, 23(1), 42–57.CrossRefGoogle Scholar
  28. Lavelle, J. W., and Mohn, C., 2010. Motion, commotion, and biophysical connections at deep ocean seamounts. Oceanography, 23(1), 90–103.CrossRefGoogle Scholar
  29. Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., and Løvholt, F., 2006. Submarine landslides: processes, triggers and hazard prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364, 2009–2039.CrossRefGoogle Scholar
  30. Merrill, R. T., and McElhinny, M. W., 1983. The Earth’s Magnetic Field: Its History, Origin and Planetary Perspective. San Diego: Academic Press. pp. 401.Google Scholar
  31. Morgan, W. J., 1972. Deep mantle convection plumes and plate motions. AAPG Bulletin, 56, 203–213.Google Scholar
  32. Mortimer, N., Hoernle, K., Hauff, F., Palin, J. M., Dunlop, W. J., Werner, R., and Faure, K., 2006. New constraints on the age and evolution of the Wishbone Ridge, southwest Pacific Cretaceous microplates, and Zealandia-West Antarctica breakup. Geology, 34(3), 185–188.CrossRefGoogle Scholar
  33. Natland, J.H., and Winterer, E.L., 2005. Fissure control on volcanic action in the Pacific. In: Foulger, G.R., Natland, J.H., Presnall, D.C., and Anderson, D.L. (eds.), Plates, Plumes and Paradigms. Boulder, CO: Geological Society of America, Special volume 388, pp. 687–710.Google Scholar
  34. Niu, Y., Regelous, M., Wendt, I. J., Batiza, R., and O’Hara, M. J., 2002. Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letters, 199, 327–345.CrossRefGoogle Scholar
  35. O’Connor, J., Hoernle, K., Butterworth, N., Müller, D., Hauff, F., Sandwell, D., Phipps Morgan, J., Jokat, W., Wijbrans, J., and Stoffers, P., (2015) Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian–Emperor bend. Nature Geoscience, 8, 393–397. DOI: 10.1038/NGEO2416.Google Scholar
  36. Portnyagin, M., Savelyev, D., Hoernle, K., Hauff, F., and Garbe-Schönberg, D., 2008. Mid-Cretaceous Hawaiian tholeiites preserved in Kamchatka. Geology, 36(11), 903–906.CrossRefGoogle Scholar
  37. Rubin, K. H., Soule, S. A., Chadwick, W. W., Fornari, D. J., Clague, D. A., Embley, R. W., Baker, E. T., Perfit, M. R., Caress, D. W., and Dziak, R. P., 2012. Volcanic eruptions in the deep sea. Oceanography, 25(1), 142–157.CrossRefGoogle Scholar
  38. Staudigel, H., and Clague, D. A., 2010. The geological history of deep-sea volcanoes. Oceanography, 23(1), 58–71.CrossRefGoogle Scholar
  39. Staudigel, H., and Schmincke, H.-U., 1984. The Pliocene seamount series of La Palma, Canary Islands. Journal of Geophysical Research, 89, 11195–11215.CrossRefGoogle Scholar
  40. Staudigel, H., Koppers, A. A. P., Lavelle, J. W., Pitcher, T. J. P., and Shank, T. M., 2010. Defining the word “seamount”. Oceanography, 23(1), 20–21.CrossRefGoogle Scholar
  41. Tarduno, J. A., 2007. On the motion of Hawaii and other mantle plumes. Chemical Geology, 241, 234–247.CrossRefGoogle Scholar
  42. Tarduno, J. A., Duncan, R. A., Scholl, D. W., Cottrell, R. D., Steinberger, B., Thordarson, T., Kerr, B. C., Neal, C. R., Frey, F. A., Torii, M., and Carvallo, C., 2003. The Emperor seamounts: southward motion of the Hawaiian hotspot plume in Earth’s mantle. Science, 301, 1064–1069.CrossRefGoogle Scholar
  43. Valentine, G. A., and Hirano, N., 2010. Mechanisms of low-flux intraplate volcanic fields–Basin and Range (North America) and northwest Pacific Ocean. Geology, 38, 55–58.CrossRefGoogle Scholar
  44. Watts, A. B., 1978. An analysis of isostasy in the world’s oceans: 1. Hawaiian-Emperor seamount chain. Journal of Geophysical Research, 83, 5989–6004.CrossRefGoogle Scholar
  45. Watts, A. B., 2001. Isostasy and Flexure of the Lithosphere. Cambridge: Cambridge University Press, p. 458.Google Scholar
  46. Watts, A. B., and Masson, D. G., 1995. A giant landslide on the north flank of Tenerife, Canary Islands. Journal of Geophysical Research, 100, 24487–24498.CrossRefGoogle Scholar
  47. Watts, A. B., ten Brink, U. S., Buhl, P., and Brocher, T. M., 1985. A multichannel seismic study of the lithospheric flexure across the Hawaiian-Emperor seamount chain. Nature, 315, 105–111.CrossRefGoogle Scholar
  48. Watts, A. B., Koppers, A. A. P., and Robinson, R. T., 2010. Seamount subduction and earthquakes. Oceanography, 23(1), 166–173.CrossRefGoogle Scholar
  49. Wessel, P., 2001. Global distribution of seamounts inferred from gridded Geosat/ERS-1 altimetry. Journal of Geophysical Research, 106, 19421.CrossRefGoogle Scholar
  50. Wessel, P., Sandwell, D. T., and Kim, S.-S., 2010. The global seamount census. Oceanography, 23(1), 24–33.CrossRefGoogle Scholar
  51. White, R. S., and McKenzie, D. P., 1989. The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94, 7685–7729.CrossRefGoogle Scholar
  52. White, R. S., MCKenzie, D. P., and O’Nions, R. K., 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research, 97, 19683–19715.CrossRefGoogle Scholar
  53. Wolfe, C. J., McNutt, M. K., and Detrick, R. S., 1994. The Marquesas archipelagic apron: seismic stratigraphy and implications for volcano growth, mass wasting, and crustal underplating. Journal of Geophysical Research, 99, 13591–13608.CrossRefGoogle Scholar
  54. Weigel, W., and Grevemeyer, I., 1999. The Great Meteor seamount: seismic structure of a submerged intraplate volcano. In Charvis, P., and Danobeitia, J. J. (eds.), Hotspot and Oceanic Crust Interaction. Journal of geodynamics, Vol. 28, pp. 27–40.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Earth and Ocean SciencesCardiff UniversityCardiffUK
  2. 2.GEOMAR Helmholtz Centre for Ocean ResearchKielGermany