Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Mid-Ocean Ridge Magmatism and Volcanism

  • Ken H. Rubin
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_28-3


Mid-Ocean Ridge. A linear, narrow volcanic and tectonic region which marks the constructive boundary between two tectonic plates. It is divided into segments by transform faults and other offsets. The global ridge system cuts through every major ocean basin and comes ashore in a few places like Iceland. It forms an approximately 65,000 km long, globe-encircling, largely submarine mountain chain.

Magmatism. Magmatism is the production and migration of magma, which is molten rock produced from the partial or complete melting of solid materials within a planetary body. When magma erupts on the surface, it is known as lava.

Volcanism. Volcanism is the eruption of molten rock, hot gases, or solidified rock fragments from an opening (“vent”) in the Earth’s crust. Volcanism occurs on Earth and other planets and moons. Most of the volcanism on Earth occurs at mid-ocean ridges, almost always sight unseen.

Mid-Ocean Ridge Magmatism. By far, the dominant type of lava resulting from...


Lava Flow Oceanic Crust Mantle Composition Ridge System Mantle Heterogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Agranier, A., et al., 2005. The spectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth and Planetary Science Letters, 238, 96–109.Google Scholar
  2. Allègre, C. J., Hamelin, B., and Dupre, B., 1984. Statistical analysis of isotopic ratios in MORB: the mantle blob cluster model and the convective regime of the mantle. Earth and Planetary Science Letters, 71, 71–84.Google Scholar
  3. Arevalo, R., Jr., and McDonough, W. F., 2010. Chemical variations and regional diversity observed in MORB. Chemical Geology, 271, 70–85.Google Scholar
  4. Asimow, P. D., Dixon, J. E., and Langmuir, C. H., 2004. A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the Mid-Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems, 5, Q01E16.Google Scholar
  5. Baker, E. T., Massoth, G. J., and Feely, R.A., 1987. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature, 329(6135), 149–151.Google Scholar
  6. Baker, E. T., Lupton, J. E., Resing, J. A., Baumberger, T., Lilley, M. D., Walker, S. L., and Rubin, K. H., 2011. Unique event plumes from a 2008 eruption on the Northeast Lau Spreading Center. Geochemistry, Geophysics, Geosystems, 12, Q0AF02.Google Scholar
  7. Baker, E. T., Chadwick, W. W., Jr., Cowen, J. P., Dziak, R. P., Rubin, K. H., and Fornari, D. J., 2012. Hydrothermal discharge during submarine eruptions: the importance of detection, response, and new technology. Oceanography, 25, 128–141.Google Scholar
  8. Ballard, R. D., and van Andel, T. H., 1977. Morphology and tectonics of the inner rift valley at lat 36°50′ N on the Mid- Atlantic Ridge, Geol. Soc. Am. Bull., 88, 507–530.Google Scholar
  9. Ballard, R. D., van Andel, T. H., and Holcomb, R. T., 1982. The Galapagos Rift at 86°W 5. Variations in volcanism, structure, and hydrothermal activity along a 30-kilometer segment of the rift valley. Journal of Geophysical Research, 87, 1149–1161.Google Scholar
  10. Bergmanis, E., Sinton, J. M., and Rubin, K. H., 2007. Recent eruptive history and Magma reservoir dynamics on the Southern East Pacific Rise at 17.5oS. Geochemistry, Geophysics, Geosystems, 8, Q12O06.Google Scholar
  11. Bowles, J., Gee, J. S., Kent, D. V., Perfit, M. R., Soule, S. A., and Fornari, D. J., 2006. Paleointensity applications to timing and extent of eruptive activity, 9–10° N East Pacific Rise. Geochemistry, Geophysics, Geosystems, 7, Q06006.Google Scholar
  12. Bowles, J. A., Colman, A., McClinton, J. T., Sinton, J. M., White, S. M., and Rubin, K. H., 2014. Eruptive timing and 200 year episodicity at 92° W on the hot spot-influenced Galapagos Spreading Center derived from geomagnetic paleointensity. Geochemistry, Geophysics, Geosystems, 15, 2211–2224.Google Scholar
  13. Bown, J. W., and White, R. S., 1994. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth and Planetary Science Letters, 121, 435–451.Google Scholar
  14. Buck, W. R., Carbotte, S. M., and Mutter, C., 1997. Controls on extrusion at mid-ocean ridges. Geology, 25, 935–938.Google Scholar
  15. Cann, J. R., 1974. A model for oceanic crustal structure developed. Geophysical Journal of the Royal Astronomical Society, 39, 169–187.Google Scholar
  16. Cannat, M., Sauter, D., Bezos, A., Meyzen, C., Humler, E., and Le Rigoleur, M., 2008. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 9, Q04002.Google Scholar
  17. Carbotte, S. M., Canales, J. P., Nedimović, M. R., Carton, H., and Mutter, J. C., 2012. Recent seismic studies at the East Pacific Rise 8°20′–10°10′N and endeavour segment: Insights into mid-ocean ridge hydrothermal and magmatic processes. Oceanography, 25, 100–112.Google Scholar
  18. Carbotte, S. M., Marjanović, M., Carton, H., Mutter, J. C., Canales, J. P., Nedimović, M. R., Han, S., and Perfit, M. R., 2013. Fine-scale segmentation of the crustal magma reservoir beneath the East Pacific Rise. Nature Geoscience, 6, 866–870.Google Scholar
  19. Caress, D. W., Clague, D. A., Paduan, J. B., Martin, J. F., Dreyer, B. M., Chadwick, W. W., Jr., Denny, A., and Kelley, D. S., 2012. Repeat bathymetric surveys at 1-metre resolution of lava flows erupted at Axial Seamount in April 2011. Nature Geoscience, 5, 483–488.Google Scholar
  20. Carlut, J., Cormier, M.-H., Kent, D. V., Donnelly, K. E., and Langmuir, C. H., 2004. Timing of volcanism along the northern East Pacific Rise based on paleointensity experiments on basaltic glasses. Journal of Geophysical Research, 109, B04104.Google Scholar
  21. Chadwick, W. W., Jr., Embley, R. W., and Fox, C. G., 1991. Evidence for volcanic eruption on the southern Juan de Fuca Ridge between 1981 and 1987. Nature, 350, 416–418.Google Scholar
  22. Chadwick, W. W., Jr., Nooner, S. L., Zumberge, M. A., Embley, R. W., and Fox, C. G., 2006. Vertical deformation monitoring at axial seamount since its 1998 eruption using deep-sea pressure sensors. Journal of Volcanology and Geothermal Research, 150, 313–32.Google Scholar
  23. Chadwick, W. W., Jr., Nooner, S., Butterfield, D. A., and Lilley, M. D., 2012. Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount. Nature Geoscience, 5, 474–477.Google Scholar
  24. Clague, D. A., Paduan, J. B., and Davis, A. S., 2009. Widespread strombolian eruptions of mid-ocean ridge basalt. Journal of Volcanology and Geothermal Research, 180, 171–188.Google Scholar
  25. Clague, D. A., Dreyer, B. M., Paduan, J. B., Martin, J. F., Chadwick, W. W., Jr., Caress, D. W., Portner, R. A., Guilderson, T. P., McGann, M. L., Thomas, H., Butterfield, D. A., and Embley, R. W., 2013. Geologic history of the summit of axial seamount, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 14, 4403–4443.Google Scholar
  26. Colman, A., Sinton, J. M., White, S. M., McClinton, J. T., Bowles, J. A., Rubin, K. H., Behn, M. D., Cushman, B., Eason, D. E., Gregg, T. K. P., Grönvold, K., Hidalgo, S., Howell, J., Neill, O., and Russo, C., 2012. Effects of variable magma supply on mid-ocean ridge eruptions: constraints from mapped lava flow fields along the Galápagos Spreading Center. Geochemistry, Geophysics, Geosystems, 13, Q08014.Google Scholar
  27. Coogan, L. A., 2007. The lower oceanic crust. Treatise on Geochemistry, 3(19), 1–45.Google Scholar
  28. Coogan, L. A., Jenkin, G. R. T., and Wilson, R. N., 2007. Contrasting cooling rates in the lower oceanic crust at fast- and slow-spreading ridges revealed by geospeedometry. Journal of Petrology, 48, 2211–2231.Google Scholar
  29. Corliss, J. B., Dymond, J., Gordon, L. I., Edmund, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Brainbridge, A., Crane, K., and Van Andel, T. J., 1979. Submarine thermal springs on the Galapagos Rift. Science, 203, 1073–1083.Google Scholar
  30. Cushman, B., Sinton, J. M., Ito, G., and Dixon, J. E., 2004. Glass compositions, plume-ridge interaction, and hydrous melting along the Galápagos Spreading Center, 90.5°W to 98°W. Geophysics Geochemistry Geosystems, 5, 8–17.Google Scholar
  31. Dalton, C. A., Langmuir, C. H., and Gale, A., 2014. Geophysical and geochemical evidence for deep temperature variations beneath Mid-Ocean Ridges. Science, 344, 80–83.Google Scholar
  32. Delaney, J. R., Kelley, D. S., Lilley, M. D., Butterfield, D. A., Baross, J. A., Wilcock, W. S. D., Embley, R. W., and Summit, M., 1998. The quantum event of oceanic crustal accretion: Impacts of diking at mid-ocean ridges. Science, 281, 222–230.Google Scholar
  33. Dick, H. J. B., Fisher, R. L., and Bryan, W. B., 1984. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth and Planetary Science Letters, 69, 88–106.Google Scholar
  34. Dupre, B., and Allègre, C. J., 1980. Pb-Sr-Nd isotopic correlation and the chemistry of the North Atlantic mantle. Nature, 286, 17–22.Google Scholar
  35. Dziak, R. P., Bohnenstiehl, D. R., Cowen, J. P., Baker, E. T., Rubin, K. H., Haxel, J. H., and Fowler, M. J., 2007. Rapid dike emplacement leads to eruptions and hydrothermal plume release during seafloor spreading events. Geology, 35, 579–582.Google Scholar
  36. Dziak, R. P., Hammond, S. R., and Fox, C. G., 2011. A 20-year hydroacoustic time series of seismic and volcanic events in the Northeast Pacific Ocean. Oceanography, 24, 280–293.Google Scholar
  37. Dziak, R. P., Haxel, J. H., Bohnenstiehl, D., and Matsumoto, H., 2012. Seismic precursors and magma ascent before the April 2011 eruption at Axial Seamount. Nature Geoscience, 5, 478–482.Google Scholar
  38. Elliott, T., and Spiegelman, M., 2007. Melt migration in oceanic crustal production: a U-series perspective. Treatise on Geochemistry, 3(14), 465–510.Google Scholar
  39. Elthon, D., 1979. High magnesia liquids as the parental magma for ocean floor basalts. Nature, 278, 514–518.Google Scholar
  40. Embley, R. W., Chadwick, W. W., Jr., Perfit, M. R., and Baker, E. T., 1991. Geology of the northern Cleft segment, Juan de Fuca Ridge: recent lava flows, sea-floor spreading, and the formation of megaplumes. Geology, 19, 771–775.Google Scholar
  41. Embley, R. W., Chadwick, Jr., W. W., Perfit, M. R., Smith, M. C., and Delaney. J. R., 2000. Recent eruptions on the CoAxial segment of the Juan de Fuca Ridge: Implications for mid-ocean ridge accretion processes, J. Geophys. Res., 105, 16501–16525.Google Scholar
  42. Fornari, D. J., Von Damm, K. L., Bryce, J. G., Cowen, J. P., Ferrini, V., Fundis, A., et al., 2012. The East Pacific Rise between 9°N and 10°N: twenty-five years of integrated, multidisciplinary oceanic spreading center studies. Oceanography, 25, 18–43.Google Scholar
  43. Fox, C. G., Dziak, R. P., Matsumoto, H., and Schreiner, A. E., 1994. Potential for monitoring low-level seismicity on the Juan de Fuca Ridge using military hydrophone arrays. Marine Technology Society Journal, 27, 22–30.Google Scholar
  44. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., and Schilling, J.-G., 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14, 489–518.Google Scholar
  45. Goss, A. R., Perfit, M. R., Ridley, W. I., Rubin, K. H., Kamenov, G. D., Soule, S. A., Fundis, A., and Fornari, D. J., 2010. Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46′N–9°56′N: Implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochemistry, Geophysics, Geosystems, 11, Q05T09.Google Scholar
  46. Graham, D. W., Blichert-Toft, J., Russo, C. J., Rubin, K. H., and Albarède, F., 2006. Cryptic striations in the upper mantle revealed by hafnium isotopes in Southeast Indian Ridge basalts. Nature, 440, 199–202.Google Scholar
  47. Gregg, T. K. P., and Fink, J. H., 1995. Quantification of submarine lava-flow morphology through analog experiments. Geology, 23, 73–76.Google Scholar
  48. Grove, T. L., Kinzler, R. J., and Bryan, W. B., 1992. Fractionation of mid-ocean ridge basalt (MORB). In Phipps Morgan, J., Blackman, D. K., and Sinton, J. M. (eds.), Mantle Flow and Melt Generation at Mid-Ocean Ridges. Washington, DC: American Geophysical Union. American Geophysical Union Monograph, Vol. 71, pp. 281–310.Google Scholar
  49. Haase, K. M., Stroncik, N. A., Hékinian, R., and Stoffers, P., 2005. Nb-depleted andesites from the Pacific-Antarctic rise as analogs for early continental crust. Geology, 33, 921–924.Google Scholar
  50. Hall, M., 1876. Note upon a portion of Basalt from the mid-Atlantic. The Mineralogical Magazine and Journal, 1, 1–3.Google Scholar
  51. Hamelin, B., and Allègre, C. J., 1985. Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge. Nature, 315, 196–199.Google Scholar
  52. Hanan, B. B., Blichert-Toft, J., Pyle, D. G., and Christie, D. M., 2004. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature, 432, 91–94.Google Scholar
  53. Haymon, R. M., Fornari, D. J., Von Damn, K. L., Lilley, M. D., Perfit, M. R., Edmond, J. M., Shanks, W. C., Lutz, R. A., Grebmeier, J. M., Carbotte, S., et al., 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9° 45–52′N: direct submersible observations of seafloor phenomena associated with an eruption event in April 1991. Earth and Planetary Science Letters, 119, 85–101.Google Scholar
  54. Helo, C., Longpre, M., Shimizu, A. N., Clague, D. A., and Stix, J., 2011. Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nature Geoscience, 4, 260–263.Google Scholar
  55. Herzberg, C., 2004. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. Journal of Petrology, 45, 2389–2405.Google Scholar
  56. Ito, G., and Mahoney, J. J., 2005. Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth and Planetary Science Letters, 230, 29–46.Google Scholar
  57. Keleman, P., and Aharonov, E., 1998. Periodic formation of magma fractures and generation of layered gabbros in the lower crust beneath oceanic spreading ridges. In Buck, W. R., Delaney, P. T., Karson, J. A., and Lagabrielle, Y. (eds.), Faulting and Magmatism at Mid-Ocean Ridges. Washington, DC: American Geophysical Union. American Geophysical Union Monograph, Vol. 106, pp. 267–289.Google Scholar
  58. Kelemen, P. B., Hirth, G. B., Shimizu, N., Spiegelman, M., and Dick, H. J. B., 1997. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading centers. Philosophical Transactions of The Royal Society A, 355, 283–318.Google Scholar
  59. Kelley, D. S., Baross, J. A., and Delaney, J. R., 2002. Volcanoes, fluids, and life at ridge spreading centers. Annual Review of Earth and Planetary Sciences. 30, 385–491.Google Scholar
  60. Klein, E. M., and Langmuir, C. H., 1987. Global correlation of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research, 92, 8089–8115.Google Scholar
  61. Langmuir, C. H., Bender, J. F., and Batiza, R., 1986. Petrological and tectonic segmentation of the East Pacific Rise, 5 30′-14 30′N. Nature, 322, 422–429.Google Scholar
  62. Lissenberg, C. J., and Dick, H. J. B., 2008. Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth and Planetary Science Letters, 271, 311–325.Google Scholar
  63. Lissenberg, J. C., Rioux, M., Shimizu, N., Bowring, S. A., and Mével, C., 2009. Zircon dating of oceanic crustal accretion. Science, 3, 1048–1050.Google Scholar
  64. Lissenberg, C. J., MacLeod, C. J., Howard, K. A., and Godard, M., 2013. Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth and Planetary Science Letters, 361, 436–447.Google Scholar
  65. Liu, C.-Z., et al., 2008. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature, 452, 312–316.Google Scholar
  66. Macdonald, K. C., 1982. Mid-ocean ridges: fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Annual Review of Earth and Planetary Science, 10, 155–190.Google Scholar
  67. Macdonald, K. C., 1998. Linkages between faulting, volcanism, hydrothermal activity and segmentation on fast spreading centers. In Buck, R. (ed.), Faulting and Magmatism at Mid-Ocean Ridges. Washington, DC: AGU. AGU Geophysical Monograph, Vol. 106, p. 27.Google Scholar
  68. Mahoney, J. J., Natland, J. H., White, W. M., Poreda, R., Fisher, R. L., Bloomer, S. H., and Baxter, A. N., 1989. Isotopic and geochemical provinces of the western Indian Ocean spreading centers. Journal of Geophysical Research, 94, 4033–4053.Google Scholar
  69. Martin, E., and Sigmarsson, O., 2007. Crustal thermal state and origin of silicic magma in Iceland: the case of Torfajökull, Ljósufjöll and Snæfellsjökull volcanoes. Contributions to Mineralogy and Petrology, 153, 593–605.Google Scholar
  70. McClinton, T., White, S. M., Colman, A., and Sinton, J. M., 2013. Reconstructing lava flow emplacement processes at the hot spot-affected Galápagos Spreading Center, 95°W and 92°W. Geochemistry, Geophysics, Geosystems, 14, 2731–2756.Google Scholar
  71. Meyzen, C. M., et al., 2007. Isotopic portrayal of the Earth’s upper mantle flow field. Nature, 447, 1069–1074.Google Scholar
  72. Michael, P. J., and Cornell, W. C., 1998. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. Journal of Geophysical Research, 103, 18325–18356.Google Scholar
  73. Michael, P. J., Langmuir, C. H., Dick, H. J. B., Snow, J. E., Goldstein, S. L., Graham, D. W., Lehnert, K., Kurras, G., Jokat, W., Mühe, R., and Edmonds, H. N., 2003. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean. Nature, 423, 956–961.Google Scholar
  74. Murray, J., and Renard, A. F., 1891. Report on Deep-Sea Deposits, Based on Specimens Collected During the Voyage of H.M.S. Challenger in the Years 1872–76. London: H. M. Stationary Office.Google Scholar
  75. Niu, Y., and O’Hara, M. J., 2008. Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth: a New Perspective. Journal of Petrology, 49, 633–664.Google Scholar
  76. O’Neill, H. S. C., and Jenner, F. E., 2012. The global pattern of trace-element distributions in ocean floor basalts. Nature, 491, 698–705.Google Scholar
  77. Pallister, J. S., and Hopson, C. A., 1981. Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. Journal of Geophysical Research, 86, 2593–2644.Google Scholar
  78. Paonita, A., and Martelli, M., 2007. A new view of the He–Ar–CO2 degassing at mid-ocean ridges: homogeneous composition of magmas from the upper mantle. Geochimica et Cosmochimica Acta, 71, 1747–1763.Google Scholar
  79. Perfit, M. R., and Chadwick, W. W., Jr., 1998. Magmatism at mid-ocean ridges: constraints from volcanological and geochemical investigations. In Buck, W. R., Delaney, P. T., Karson, J. A., and Lagabrielle, Y. (eds.), Faulting and Magmatism at Mid-Ocean Ridges. Washington, DC: American Geophysical Union. American Geophysical Union Monograph, Vol. 106, pp. 59–115.Google Scholar
  80. Perfit, M. R., Fornari, D. J., Smith, M. C., Bender, J. F., Langmuir, C. H., and Haymon, R. M., 1994. Small-scale spatial and temporal variations in mid-ocean ridge crest magmatic processes. Geology, 22, 375–379.Google Scholar
  81. Phipps Morgan, J., and Chen, Y. J., 1994. The genesis of oceanic crust: magma injection, hydrothermal circulation, and crustal flow. Journal of Geophysical Research, 98, 6283–6298.Google Scholar
  82. Pollock, M. A., Klein, E. M., Karson, J. A., and Coleman, D. S., 2009. Compositions of dikes and lavas from the Pito Deep Rift: implications for accretion at superfast spreading centers. Journal of Geophysical Research, 114, B03207.Google Scholar
  83. Reynolds, J. R., Langmuir, C. H., Bender, J. F., Kastens, K. A., and Ryan, W. B. F., 1992. Spatial and temporal variability geochemistry of basalts from the East Pacific Rise. Nature, 359, 493–499.Google Scholar
  84. Rubin, K. H., and Sinton, J. M., 2007. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth and Planetary Science Letters, 260, 257–276.Google Scholar
  85. Rubin, K. H., Macdougall, J. D., and Perfit, M. R., 1994. 210Po-210Pb dating of recent volcanic eruptions on the sea floor. Nature, 368, 841–844.Google Scholar
  86. Rubin, K. H., Smith, M. C., Bergmanis, E. C., Perfit, M. R., Sinton, J. M., and Batiza, R., 2001. Geochemical heterogeneity within mid-ocean ridge lava flows: insights into eruption, emplacement and global variations in magma generation. Earth and Planetary Science Letters, 188, 349–367.Google Scholar
  87. Rubin, K. H., van der Zander, I., Smith, M. C., and Bergmanis, E. C., 2005. Minimum speed limit for ocean ridge magmatism from 210Pb-226Ra-230Th disequilibria. Nature, 437, 534–538.Google Scholar
  88. Rubin, K. H., Sinton, J. M., Maclennan, J., and Hellebrand, E., 2009. Magmatic filtering of mantle compositions at mid-ocean ridge volcanoes. Nature Geoscience, 2, 321–328.Google Scholar
  89. Rubin, K. H., Soule, S. A., Chadwick, W. W., Fornari, D. J., Clague, D. S., Embley, R. W., Baker, E. T., Perfit, M. R., Caress, D. W., and Dziak, R. P., 2012. Volcanic eruptions in the deep sea. Oceanography, 25, 142–157.Google Scholar
  90. Rubin, K. H., Soule, Fornari, D. J., Tolstoy, M. Bryce, J. G. Prado, F., Wauldhauser, F., Shank, T. M. Perfit, M. R., and Von Damm, K., 2015. First detailed study of a multiphase deep-sea mid-ocean ridge eruption reveals new volcanic style (2015)Google Scholar
  91. Russo, C. J., Rubin, K. H., and Graham, D. W., 2009. Mantle melting and magma supply to the Southeast Indian Ridge: the roles of lithology and melting conditions from U-series disequilibria. Earth and Planetary Science Letters, 278, 55–66.Google Scholar
  92. Schilling, J.-G., 1991. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature, 352, 397–403.Google Scholar
  93. Schmitt, A. K., Perfit, M. R., Rubin, K. H., Stockli, D. F., Smith, M. C., Cotsonika, L. A., Zellmer, G. F., Ridley, W. I., and Lovera, O. M., 2011. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology. Earth and Planetary Science Letters, 302, 349–358.Google Scholar
  94. Searle, R. C., Murton, B. J., Achenbach, K., LeBas, T., Tivey, M., Yeo, I., Cormier, M. H., Carlut, J., Ferreira, P., Mallows, C., et al., 2010. Structure and development of an axial volcanic ridge: mid-Atlantic Ridge, 45°N. Earth and Planetary Science Letters, 299, 228–241.Google Scholar
  95. Sims, K. W. W., et al., 2012. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochimica et Cosmochimica Acta, 66, 3481–3504.Google Scholar
  96. Singh, S. C., Kent, G. M., Collier, J. S., Harding, A. J., and Orcutt, J. A., 1998. Melt to mush variations in crustal magma properties along the ridge crest at the southern East Pacific Rise. Nature, 394, 874–878.Google Scholar
  97. Sinton, J. M., and Detrick, R. S., 1992. Mid-ocean ridge magma chambers. Journal of Geophysical Research, 97, 197–216.Google Scholar
  98. Sinton, J. M., Wilson, D., Christie, D. M., Hey, R. N., and Delaney, J. R., 1983. Petrological consequences of rift propagation on oceanic spreading ridges. Earth and Planetary Science Letters, 62, 193–207.Google Scholar
  99. Sinton, J. M., Smaglik, S. M., Mahoney, J. J., and Macdonald, K. C., 1991. Magmatic, processes at superfast spreading mid-ocean ridges: glass compositional variations along the East Pacific Rise, 13-23 S. Journal of Geophysical Research, 96, 6133–6155.Google Scholar
  100. Sinton, J., Bergmanis, E., Rubin, K. H., Batiza, R., Gregg, T. K., Grönvold, P. K., Macdonald, K., and White, S., 2002. Volcanic eruptions on mid-ocean ridges: New evidence from the superfast-spreading East Pacific Rise, 17°-19°S. Journal of Geophysical Research, 107(B6), 2115.Google Scholar
  101. Small, C., 1998. Global systematics of mid-ocean ridge morphology. In Buck, W. R., Delaney, P. T., Karson, J. A., and Lagabrielle, Y. (eds.), Faulting and Magmatism at Mid-Ocean Ridges. Washington, DC: American Geophysical Union. American Geophysical Union Monograph, Vol. 106, pp. 59–115.Google Scholar
  102. Soule, S. A., Fornari, D. J., Perfit, M. R., and Rubin, K. H., 2007. New insights into mid-ocean ridge volcanic processes from the 2005–2006 eruption of the East Pacific Rise, 9°46′N–9°56′N. Geology, 35, 1079–1082.Google Scholar
  103. Soule, S. A., Nakata, D. S., Fornari, D. J., Fundis, A. T., Perfit, M. R., and Kurz, M. D., 2012. CO2 variability in mid-ocean ridge basalts from syn-emplacement degassing: constraints on eruption dynamics. Earth and Planetary Science Letters, 327–328, 39–49.Google Scholar
  104. Spiess, F. N., Macdonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., et al., 1980. East pacific rise: hot springs and geophysical experiments. Science, 207, 1421–1433.Google Scholar
  105. Standish, J. J., and Sims, K. W. W., 2010. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge. Nature Geoscience, 3, 286–292.Google Scholar
  106. Stracke, A., Bourdon, B., and McKenzie, D., 2006. Melt extraction in the Earth’s mantle: constraints from U–Th–Pa–Ra studies in oceanic basalts. Earth and Planetary Science Letters, 244, 97–112.Google Scholar
  107. Stracke, A., Snow, J. E., Hellebrand, E., von der Handt, A., Bourdon, B., Birbaum, K., and Günther, D., 2011. Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth and Planetary Science Letters, 308, 359–368.Google Scholar
  108. Suhr, G., Hellebrand, E., Johnson, K. T. M., and Brunelli, D., 2008. Stacked gabbro units and intervening mantle: a detailed look at a section of IODP Leg 305, Hole U1309D. Geochemistry, Geophysics, Geosystems, 9, Q10007.Google Scholar
  109. Tolstoy, M., Cowen, J. P., Baker, E. T., Fornari, D. J., Rubin, K. H., Shank, T. M., Waldhauser, F., Bohnenstiehl, D. R., Forsyth, D. W., Holmes, R. C., et al., 2006. A sea-floor spreading event captured by seismometers. Science, 314, 1920–1922.Google Scholar
  110. Von Damm, K. L., et al., 2004. Evolution of the hydrothermal system at East Pacific Rise 9°50′N: geochemical evidence for changes in the upper oceanic crust. In German, C. R. (ed.), Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Ocean. Washington, DC: American Geophysical Union. AGU Geophysical Monograph, Vol. 148, pp. 285–304.Google Scholar
  111. Wadge, G., 1982. Steady state volcanism: evidence from eruption histories of polygenetic volcanoes. Journal of Geophysical Research, 87, 4035–4049.Google Scholar
  112. Wanless, V. D., Perfit, M. R., Ridley, W. I., and Klein, E., 2010. Dacite petrogenesis on mid-ocean ridges: evidence for oceanic crustal melting and assimilation. Journal of Petrology, 51, 2377–2410.Google Scholar
  113. Waters, C. L., Sims, K. W. W., Klein, E. M., White, S. M., et al., 2013. Sill to surface: linking young off-axis volcanism with subsurface melt at the overlapping spreading center at 9°03′N East Pacific Rise. Earth and Planetary Science Letters, 369–370, 59–70.Google Scholar
  114. White, S. M., Haymon, R. H., Fornari, D. J., Perfit, M. R., and Macdonald, K. C., 2002. Volcanic structures and lava morphology of the East Pacific Rise, 9-10N: constraints on volcanic segmentation and eruptive processes at fast-spreading ridges. Journal of Geophysical Research, 107, B8, doi:10.1029/2001JB000571.Google Scholar
  115. White, S. M., Crisp, J. A., and Spera, F. J., 2006. Long-term volumetric eruption rates and magma budgets. Geochemistry, Geophysics, Geosystems, 7, Q03010.Google Scholar
  116. Yeo, I., Searle, R. C., Achenbach, K. L., Le Bas, T. P., and Murton, B. J., 2012. Eruptive hummocks: building blocks of the upper ocean crust. Geology, 40, 91–94.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Geology & Geophysics, SOESTUniversity of HawaiiHonoluluUSA