Skip to main content

Technology in Marine Geosciences

  • Living reference work entry
  • First Online:
Encyclopedia of Marine Geosciences
  • 162 Accesses

Definition

Technology within this chapter defines the instrumentation and technologies used mainly to observe and sample the seafloor and subseafloor for geoscientific purposes. Equipment used specifically to observe or sample for other scientific disciplines may not be listed.

Introduction

Advances in our understanding of ocean floor processes are closely linked to advances in the technology that is being used. We came a long way from measuring ocean depths using simple lead lines to complex (and expensive) submersibles, remotely operated or autonomous vehicles, or tectonic plate-wide cabled observatories (Kelley et al., 2014; Favali et al., 2015). This is largely related to our needs to better understand marine processes and therefore to investigate over longer periods of time and with higher precision and resolution. Also, seabed sampling has changed dramatically from the first sampling programs performed, for instance, during the famous voyage of the VMS Challenger in 1872–1876 to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Abegg, F., Hohnberg, H. J., Pape, T., Bohrmann, G., and Freitag, J., 2008. Development and application of pressure-core-sampling systems for the investigation of gas- and gas-hydrate-bearing sediments. Deep-Sea Research I: Oceanographic Research Papers, 55, 1590–1599.

    Article  Google Scholar 

  • Anderson, C., and Mattson, J., 2010. An integrated approach to marine electromagnetic surveying using a towed streamer and source. First Break, 28, 71–75.

    Google Scholar 

  • Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., and Weatherall, P., 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32, 355–371.

    Article  Google Scholar 

  • Blackman, D. K., Karner, G. D., and Searle, R., 2008. Three-dimensional structure of oceanic core complexes: effects on gravity signature and ridge flank morphology, Mid-Atlantic Ridge 30°N. Geochemistry, Geophysics, Geosystems, 9, Q06007, doi:10.1029/2008GC001951.

    Article  Google Scholar 

  • Blondel, P., 2010. The Handbook of Sidescan Sonar. Berlin/Heidelberg: Springer, 316 pp.

    Google Scholar 

  • Caress, D. W., Clague, D. A., Paduan, J. B., Martin, J. F., Dreyer, B. M., Chadwick, W. W., Jr., Denny, A., and Kelley, D. S., 2012. Repeat bathymetric surveys at 1-metre resolution of lava flows erupted at Axial Seamount in April 2011. Nature Geoscience, 5, 483–488.

    Article  Google Scholar 

  • Clague, D. A., Dreyer, B. M., Paduan, J. B., Martin, J. F., Caress, D. W., Gill, J. B., Kelley, D. S., Thomas, H., Portner, R. A., Delaney, J. R., Guilderson, T. P., and McGann, M. L., 2014. Eruptive and tectonic history of the Endeavour Segment, Juan de Fuca Ridge, based on AUV mapping data and lava flow ages. Geochemistry, Geophysics, Geosystems, 15, 3364–3391.

    Article  Google Scholar 

  • Constable, S., 2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics, 75, 75A67–75A81.

    Article  Google Scholar 

  • Constable, S., 2013. Review paper: instrumentation for marine magnetotelluric and controlled source electromagnetic sounding. Geophysical Prospecting, 61, 505–532.

    Article  Google Scholar 

  • Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., Von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T. H., 1979. Submarine thermal springs on the Galapagos rift. Science, 203, 1073–1083.

    Article  Google Scholar 

  • Davis, E. E., and Lister, C. R. B., 1977. Heat flow measured over the Juan de Fuca Ridge : evidence for widespread, hydrothermal circulation in a highly heat transportive crust. Journal of Geophysical Research, 82, 4845–4860.

    Article  Google Scholar 

  • Denny, A. R., Saebo, T. O., Hansen, R. E., and Pedersen, R. B., 2015. The use of synthetic aperture sonar to survey seafloor massive sulfide deposits. The Journal of Ocean Technology, 10, 37–53.

    Google Scholar 

  • Devey, C. W., Fisher, C. R., and Scott, S., 2007. Responsible science at hydrothermal vents. Oceanography, 20, 162–171.

    Article  Google Scholar 

  • Dixon, T. H., Naraghi, M., McNutt, M. K., and Smith, S. M., 1983. Bathymetric prediction from Seasat altimeter data. Journal of Geophysical Research, 88, 1563–1571.

    Article  Google Scholar 

  • Edwards, N., 2005. Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surveys in Geophysics, 26, 675–700.

    Article  Google Scholar 

  • Favali, P., Beranzoli, L., and de Santis, A., 2015. Seafloor Observatories. A New Vision of the Earth from the Abyss. Berlin/Heidelberg: Springer, 676 pp.

    Book  Google Scholar 

  • Fisher, A. T., Davis, E. E., Hutnak, M., Spiess, V., Zühlsdorff, L., Cherkaoul, A., Christiansen, L., Edwards, K., Macdonald, R., Villinger, H., Mottl, M. J., Wheat, C. G., and Becker, K., 2003. Hydrothermal recharge and discharge across 50 km guided by seamounts on a young ridge flank. Nature, 421, 618–621.

    Article  Google Scholar 

  • Freudenthal, T., and Wefer, G., 2007. Scientific drilling with the sea floor drill rig MEBO. Scientific Drilling, 5, doi: 10.2204/iodp.sd.5.11.2007.

    Google Scholar 

  • Gee, J. S., and Kent, D. V., 2007. Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. Treatise in Geophysics, 5, 455–507.

    Article  Google Scholar 

  • Hansen, R. E., Callow, H. J., Sabo, T. O., and Synnes, S. A. V., 2015. Challenges in seafloor imaging and mapping with synthetic aperture sonar. IEEE Transactions on Geoscience and Remote Sensing, 49, 3677–3687.

    Article  Google Scholar 

  • Harris, P.T., Macmillan-Lawler, M., Rupp, J., Baker, E.K., 2014. Geomorphology of the oceans. Marine Geology 352, 4–24. doi:10.1016/j.margeo.2014.01.011.

    Article  Google Scholar 

  • Heirtzler, J. R., Dickson, G. O., Herron, E. M., Pitman, W. C., and Le Pichon, X., 1968. Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. Journal of Geophysical Research, 73, 2119–2136.

    Article  Google Scholar 

  • Hölz, S., Swidinsky, A., Sommer, M., Jegen, M., and Bialas, J., 2015. The use of rotational invariants for the interpretation of marine CSEM data with a case study from the North Alex Mud Volcano, West Nile Delta. Geophysical Journal International, 201, 224–245.

    Article  Google Scholar 

  • Humphris, S. E., German, C. R., and Hickey, J. P., 2014. Fifty years of deep ocean exploration with the DSV Alvin. Eos, Transactions American Geophysical Union, 95, 181–182.

    Article  Google Scholar 

  • Hutnak, M., Fisher, A. T., Harris, R., Stein, C., Wang, K., Spinelli, G., Schindler, M., Villinger, H., and Silver, E., 2008. Large heat and fluid fluxes driven through mid-plate outcrops on ocean crust. Nature Geoscience, 1, 611–614.

    Article  Google Scholar 

  • IMMS, 2011. International Marine Minerals Society Code for Environmental Management of Marine Mining (www.immsoc.org/IMMS_code.htm).

  • Jamieson, J. W., Clague, D. A., and Hannington, M. D., 2014. Hydrothermal sulfide accumulation along the Endeavour Segment, Juan de Fuca Ridge. Earth and Planetary Science Letters, 395, 136–148.

    Article  Google Scholar 

  • Johnson, H. P., Becker, K., and Von Herzen, R. P., 1993. Near-axis heat flow measurements on the northern Juan de Fuca Ridge: implications for fluid circulation in oceanic crust. Geophysical Research Letters, 20(17), 1875–1878.

    Article  Google Scholar 

  • Johnson, H. P., Tivey, M. A., Bjorklund, T. A., and Salmi, M. S., 2010. Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 11, doi:10.1029/2009GC002957.

    Google Scholar 

  • Kelley, D. S., Delaney, J. R., and Juniper, S. K., 2014. Establishing a new era of submarine volcanic observatories: Cabling Axial Seamount and the Endeavour Segment of the Juan de Fuca Ridge. Marine Geology, 352, 426–450.

    Article  Google Scholar 

  • Key, K., 2011. Marine electromagnetic studies of seafloor resources and tectonics. Surveys in Geophysics, 33, 135–167.

    Article  Google Scholar 

  • Kowalczyk, P., 2008. Geophysical prelude to first exploitation of submarine massive sulphides. First Break, 26, 99–106.

    Google Scholar 

  • Lin, J., Purdy, G. M., Schouten, H., Sempere, J. C., and Zervas, C., 1990. Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge. Nature, 344, 627–632.

    Article  Google Scholar 

  • Lister, C. R. B., 1972. On the thermal balance of a mid-ocean ridge. Geophysical Journal of the Royal Astronomical Society, 26, 515–535.

    Article  Google Scholar 

  • Lunne, T., Robertson, P. K., and Powell, J. J. M., 1997. Cone Penetrating Testing. Geotechnical Practice. Spon Press. New York: Blackie Academic/Routledge Publishing, 312 pp.

    Google Scholar 

  • McGinnis, T., 2009. Seafloor drilling. In Bar-Cohen, Y., and Zacny, K. (eds.), Drilling in Extreme Environments: Penetration and Sampling on Earth and Other Planets. Weinheim: Wiley, pp. 309–345.

    Chapter  Google Scholar 

  • Pecher, I. A., Bialas, J., and Flueh, E. R., 2011. Ocean bottom seismics. In Gupta, H. K. (ed.), Encyclopedia of Solid Earth Geophysics. Heidelberg: Springer. Encyclopedia of Earth Science Series, Vol. 1–2, pp. 901–918.

    Chapter  Google Scholar 

  • Prodehl, C., and Mooney, W. D., 2014. Exploring the Earths Crust: History and Results of Controlled-source Seismology. Geological Society of America Memoir, 208, 764 pp.

    Google Scholar 

  • Quesnel, Y., Catalan, M., and Ishihara, T., 2009. A new global marine magnetic anomaly data set. Journal of Geophysical Research, 114, B04106, doi:10.1029/2008JB006144.

    Article  Google Scholar 

  • Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R., 2009. Global multi-resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10, Q03014, doi:10.1029/2008GC002332.

    Article  Google Scholar 

  • Sandwell, D. T., and Smith, W. H. F., 1997. Marine gravity anomaly from Geosat und ERS1 satellite altimetry. Journal of Geophysical Research, 102, 10039–10054.

    Article  Google Scholar 

  • Sandwell, D. T., Muller, R. D., Smith, W. H. F., Garcia, E., and Francis, R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346, 65–67, doi:10.1126/science.1258213.

    Article  Google Scholar 

  • Schwalenberg, K., Haeckel, M., Poort, J., and Jegen, M., 2010. Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: results from Opouawe Bank, Hikurangi Margin, New Zealand. Marine Geology, 272, 79–88.

    Article  Google Scholar 

  • Shah, A. K., Cormier, M.-H., Ryan, W. B. F., et al., 2003. Episodic dike swarms inferred from near-bottom magnetic anomaly maps at the southern East Pacific Rise. Journal of Geophysical Research, 108(B2), 2097, doi:10.1029/2001JB000564.

    Article  Google Scholar 

  • Sleep, N. H., and Wolery, T. J., 1978. Egress of hot water from mid-ocean ridge hydrothermal systems : some thermal constraints. Journal of Geophysical Research, 83, 5913–5922.

    Article  Google Scholar 

  • Smith, W. H. F., and Sandwell, D. T., 1994. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathmetry. Journal of Geophysical Research, 99, 21803–21824.

    Article  Google Scholar 

  • Smith, W. H. F., and Sandwell, D. T., 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.

    Article  Google Scholar 

  • Spiess, F. N., Macdonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., Macdougall, J. D., Miller, S., Normark, W., Orcutt, J., and Rangin, C., 1980. East Pacific Rise: hot springs and geophysical experiments. Science, 207, 1421–1433.

    Article  Google Scholar 

  • Stegmann, S., Mörz, T., and Kopf, A., 2006. Initial results of a new free fall-cone penetrometer (FF-CPT) for geotechnical in situ characterisation of soft marine sediments. Norwegian Journal of Geology, 86, 199–208.

    Google Scholar 

  • Stein, C. A., and Stein, S., 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–129.

    Article  Google Scholar 

  • Sterk, R., and Stein, J. K., 2015. Seabed mineral deposits – an overview of sampling techniques and future developments, In: Paper Presented at the Deep-Sea Mining Summit, Aberdeen, pp. 1–29.

    Google Scholar 

  • Swidinsky, A., Hölz, S., and Jegen, M., 2012. On mapping seafloor mineral deposits with central loop transient electromagnetics. Geophysics, 77, E171–E184.

    Article  Google Scholar 

  • Tanaka, K. L., Robbins, S. J., Fortezzo, C. M., Skinner, J. A., and Hare, T. M., 2014. The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history. Planetary and Space Science, 95, 11–24.

    Article  Google Scholar 

  • Tivey, M. A., and Dymont, J., 2010. The magnetic signature of hydrothermal systems in slow spreading environments. In Rona, P. A. (ed.), Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, DC: American Geophysical Union. Geophysical Monograph Series, Vol. 188, pp. 43–66.

    Chapter  Google Scholar 

  • Tivey, M. A., and Johnson, H. P., 2002. Crustal magnetization reveals subsurface structure of Juan de Fuca Ridge hydrothermal vent fields. Geology, 30, 979–982.

    Article  Google Scholar 

  • Tominaga, M., Sager, W. W., Tivey, M. A., and Lee, S.-M., 2008. Deep-tow magnetic anomaly study of the Pacific Jurassic Quiet Zone and implications for the geomagnetic polarity reversal timescale and geomagnetic field behavior. Journal of Geophysical Research, 113, B07110, doi:10.1029/2007JB005527.

    Article  Google Scholar 

  • Vine, F. J., and Matthew, D. H., 1963. Magnetic anomalies over oceanic ridges. Nature, 199, 947–949.

    Article  Google Scholar 

  • Watts, A. B., and Talwani, M., 1974. Gravity anomalies seaward of deep-sea trenches and their tectonic implications. Geophysical Journal of the Royal Astronomical Society, 36, 57–90.

    Article  Google Scholar 

  • Wuest, G., 1964. The major deep-sea expeditions and research vessels 1873–1960. Progress in Oceanography, 2, 3–52.

    Google Scholar 

  • Wynn, R. B., Huvenne, V. A. I., Le Bas, T. P., Murton, B. J., Connelly, D. P., Bett, B. J., Ruhl, H. A., Morris, K. J., Peakall, J., Parsons, D. R., Sumner, E. J., Darby, S. E., Dorrell, R. M., and Hunt, J. E., 2014. Autonomous Underwater Vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Marine Geology, 352, 451–468.

    Article  Google Scholar 

  • Yoshikawa, S., Okino, K., and Asada, M., 2012. Geomorphological variations at hydrothermal sites in the southern Mariana Trough: relationship between hydrothermal activity and topographic characteristics. Marine Geology, 303–306, 172–182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Petersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Petersen, S. (2015). Technology in Marine Geosciences. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6644-0_207-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6644-0_207-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6644-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics