Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Gravity Field: Marine Geosciences

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_201-1

Definition

The gravity field in marine geosciences is the gravitational force that the Earth’s mass exerts on objects on or near its surface.

Introduction

The basic principle for the Earth’s gravity field in classical mechanics is Newton’s law of universal gravitation. It states that every massive body exerts an attractive force on all other massive objects. The force is proportional to the product of the bodies’ masses and inversely proportional to the square of the distance between them. For extended bodies like the Earth, their mass can be assumed to be concentrated as a point mass in their center (strictly this is only true for spheres with a symmetrical mass distribution). In geophysics, Newton’s law is used in the form
$$ \underset{\bar{\mkern6mu}}{K}=G\frac{mM}{r^2}\underset{\bar{\mkern6mu}}{r^0} $$

Keywords

Gravity Field Gravity Anomaly Normal Gravity Centrifugal Acceleration Marine Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

Bibliography

  1. Craig, C. H., and Sandwell, D. T., 1988. Global distribution of seamounts from Seasat profiles. Journal of Geophysical Research, 93, 10408–10420.CrossRefGoogle Scholar
  2. Haxby, W. F., Karner, G. D., LaBrecque, J. L., and Weissel, J. K., 1983. Digital images of combined oceanic and continental data sets and their use in tectonic studies. EOS Transactions American Geophysical Union, 64(52), 995–1004.CrossRefGoogle Scholar
  3. Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406.CrossRefGoogle Scholar
  4. Smith, W. H. F., 1998. Seafloor tectonic fabric from satellite altimetry. Annual Reviews of Earth and Planetary Science, 26, 697–737.CrossRefGoogle Scholar
  5. Smith, W. H. F., and Sandwell, D. T., 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.CrossRefGoogle Scholar
  6. Stacey, F. D., 1992. Physics of the Earth, 3rd edn. Kenmore: Brookfield Press.Google Scholar
  7. Tapley, B. D., Born, G. H., and Parke, M. E., 1982. The Seasat altimeter data and its accuracy assessment. Journal of Geophysical Research, 87, 3179–3188.CrossRefGoogle Scholar
  8. Torge, W., 1989. Gravimetry. Berlin: de Gruyter.Google Scholar
  9. von Eötvös, R., 1919. Experimenteller Nachweis der Schwereänderung, die ein auf normal geformter Erdoberfläche in östlicher und westlicher Richtung bewegter Körper durch diese Bewegung erleidet. Annalen der Physik, 59, 743–752, Ser. 4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Division 1, Energy and Mineral ResourcesBundesanstalt für Geowissenschaften und RohstoffeHanoverGermany