Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Methane in Marine Sediments

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_190-1

Definition

Methane is the simplest hydrocarbon with the chemical formula CH4. At room temperature and standard pressure, methane is a colorless, odorless gas. It is the main component of natural gas and thus important as an energy source. Due to its ability to absorb energy on the infrared band, methane plays a direct role in the Earth’s greenhouse effect.

Methane Distribution

Methane represents a key component of the carbon cycle in marine sediments. The amount of carbon that presently occurs as methane in marine sediments is thought to be ~500–10,000 Gt (Kvenvolden and Lorenson, 2001; Milkov, 2004; 1 Gt = 1015g). The size of this reservoir is ultimately determined by a balance of organic carbon sources and sinks, which vary in time and space. The loci of large methane deposits are further controlled by thermal, lithological, and structural characteristics of the sediments. Methane production is fundamentally controlled by organic carbon rain to the sediments, which in turn depends...

Keywords

Marine Sediment Methane Flux Methane Hydrate Cold Seep Bubble Plume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

Bibliography

  1. Arndt, S., Hetzel, A., and Brumsack, H. J., 2009. Evolution of organic matter degradation in Cretaceous black shales inferred from authigenic barite: a reaction-transport model. Geochimica et Cosmochimica Acta, 73(7), 2000–2022.CrossRefGoogle Scholar
  2. Boetius, A., and Wenzhöfer, F., 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nature Geoscience, doi:10.1038/ngeo1926.Google Scholar
  3. Boetius, A., Ravenschlag, K., Schubert, C., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626.CrossRefGoogle Scholar
  4. Bohrmann, G., and Torres, M. E., 2006. Gas hydrates in marine sediments. In Schulz, H. D., and Zabel, M. (eds.), Marine Geochemistry. Berlin/Heidelberg: Springer, pp. 481–512.CrossRefGoogle Scholar
  5. Briggs, B. R., Inagaki, F., Morono, Y., Futagami, T., Huguet, C., Rosell-Mele, A., Lorenson, T., and Colwell, F. S., 2012. Bacterial dominance in subseafloor sediments characterized by gas hydrates. FEMS Microbiology Ecology, 81, 88–98.CrossRefGoogle Scholar
  6. Claypool, G. E., and Kaplan, I. R., 1974. The origin and distribution of methane in marine sediments. In Kaplan, I. R. (ed.), Natural Gases in Marine Sediments. New York: Plenum Press, pp. 99–139.CrossRefGoogle Scholar
  7. Colwell, F. S., Boyd, S., Delwiche, M. E., Reed, D. W., Phelps, T. J., and Newby, D. T., 2008. Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia Margin. Applied and Environmental Microbiology, 74, 3444–3452.CrossRefGoogle Scholar
  8. Dickens, G. R., 2011. Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Climate of the Past, 7, 831–846.CrossRefGoogle Scholar
  9. Hoehler, T., Alperin, M. J., Albert, D. B., and Martens, C., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 8, 451–463.CrossRefGoogle Scholar
  10. Joye, S. B., 2012. A piece of the methane puzzle. Nature, 491, 538–539.CrossRefGoogle Scholar
  11. Kvenvolden, K. A., and Lorenson, T. D., 2001. The global occurrence of natural gas hydrate. Geophysical Monograph, 124, 87–98.Google Scholar
  12. Milkov, A. V., 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews, 66, 183–197.CrossRefGoogle Scholar
  13. Milucka, J., Ferdelmann, T. G., Polerecky, L., Franzke, D., Wegener, G., Schmid, M., Lieberwirth, I., Wagner, M., Widdel, F., and Kuypers, M. M. M., 2012. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 491, 541–546.CrossRefGoogle Scholar
  14. Niemann, H., Lösekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E. J., Schlüter, M., Klages, M., Foucher, J. P., and Boetius, A., 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as methane sink. Nature, 443, 854–858.CrossRefGoogle Scholar
  15. Reeburgh, W. S., 2007. Oceanic methane biogeochemistry. Chemical Reviews, 107, 486–513.CrossRefGoogle Scholar
  16. Römer, M., Sahling, H., Pape, T., Spieß, V., and Bohrmann, G., 2012. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). Journal of Geophysical Research, Oceans, 117, C10015, doi:10.1029/2011JC007424.CrossRefGoogle Scholar
  17. Schoell, M., 1988. Multiple origins of methane in the Earth. Chemical Geology, 71(1–3), 1–10.CrossRefGoogle Scholar
  18. Sommer, S., Pfannkuche, O., Linke, P., Luff, R., Greinert, J., Drews, M., Gubsch, S., Pieper, M., Poser, M., and Viergutz, T., 2006. Efficiency of benthic filter: biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge. Global Biogeochemical Cycles, 20, doi:10.1029/2004GB002389.Google Scholar
  19. Suess, E., 1980. Particulate organic carbon flux in the oceans – surface productivity and oxygen utilization. Nature, 288, 260–263.CrossRefGoogle Scholar
  20. Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., et al., 2008. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences of the United States of America, 105, 10949–10954.CrossRefGoogle Scholar
  21. Valentine, D. L., 2011. Emerging topics in marine methane biogeochemistry. Annual Review of Marine Science, 3, 147–171.CrossRefGoogle Scholar
  22. Valentine, D. L., Blanton, D. C., Reeburgh, W. S., and Kastner, M., 2001. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin. Geochimica et Cosmochimica Acta, 65, 2633–2640.CrossRefGoogle Scholar
  23. Wellsbury, P., Goodman, K., Cragg, B.A., and Parkes, R.J., 2000. The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (Sites 994, 995 and 997). In Paull, C., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (eds.), Proceeding of ODP, Vol. 164, pp. 379–391.Google Scholar
  24. Whiticar, M. J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161, 291–314.CrossRefGoogle Scholar
  25. Whiticar, M. J., Faber, E., and Schoell, M., 1986. Biogenic methane formation in marine and freshwater environments. CO2 reduction vs. Acetate fermentation – Isotope evidence. Geochimica et Cosmochimica Acta, 50, 693–709.CrossRefGoogle Scholar
  26. Wilhelms, A., Larter, S. R., Head, I., Farrimond, P., di Primio, R., and Zwach, C., 2001. Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature, 411, 1034–1037.CrossRefGoogle Scholar
  27. Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K. C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., Middelburg, J. J., Mollenhauer, G., Prahl, F., Rethemeyer, J., and Wakeham, S., 2010. Selective preservation of organic matter in marine environments; processes and impact on the fossil record. Biogeosciences, 7, 483–511.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Fachbereich GeowissenschaftenUniversity of Bremen, MARUM – Center for Marine Environmental SciencesBremenGermany
  2. 2.College of Earth, Ocean, and Atmospheric SciencesOregon State UniversityCorvallisUSA