Skip to main content

Sediment Transport Models

  • Living reference work entry
  • First Online:
Encyclopedia of Marine Geosciences
  • 554 Accesses

Synonyms

Morphodynamic models

Definition

Sediment transport models refer to numerical models that describe mobilization, migration, and settling of sediment in fluids (e.g., water and air).

Introduction

Sediment transport is a dynamic process occurring persistently in the earth system wherever there is moving water or air. Its direct consequence is a gradual change of the earth surface landform, which may significantly affect the habitats not only for human but also for large ecosystems. In shallow water, sediment transport is caused mainly by a combined action of surface gravity waves and currents, while in deep sea it is mainly controlled by dense water circulations and internal waves. Benefited from a continuous development of computational facilities, sediment transport modeling has become a popular tool for addressing many environmental and engineering problems.

Sediment transport in natural waters can be divided into two major modes, namely bed-load and suspended-load transport...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Amoudry, L. O., and Souza, A. J., 2011. Deterministic coastal morphological and sediment transport modeling: a review and discussion. Review of Geophysics, 49, RG2002, doi:10.1029/ 2010RG000341.

    Article  Google Scholar 

  • Döös, K., Kjellsson, J., and Jönsson, B., 2013. TRACMASS – A lagrangian trajectory model. In Soomere, T., and Quak, E. (eds.), Preventive Methods for Coastal Protection: Towards the Use of Ocean Dynamics for Pollution Control. Heidelberg: Springer, pp. 225–249.

    Chapter  Google Scholar 

  • Einstein, H. A., 1942. Formula for the transportation of bed load. Transportation ASCE, 107, 561–597.

    Google Scholar 

  • Engelund, F., and Fredsoe, J., 1976. A sediment transport model for straight alluvial channels. Nordic Hydrology, 125(5), 293–306.

    Google Scholar 

  • Fonstad, M. A., 2013. Cellular automata in geomorphology. In Shroder, J. (Editor in chief), Baas, A. C. W. (ed.), Treatise on Geomorphology. San Diego, CA: Academic Press, Vol. 2, Quantitative Modeling of Geomorphology, pp. 117–134.

    Google Scholar 

  • Fredsøe, J., and Deigaard, R., 1992. Mechanics of Coastal Sediment Transport. World Scientific, Singapore, pp. 369.

    Google Scholar 

  • Hardy, R. J., 2013. Process-based sediment transport modeling. In Shroder, J. (Editor in chief), Baas, A. C. W. (ed.), Treatise on Geomorphology. San Diego, CA: Academic Press, Vol. 2, Quantitative Modeling of Geomorphology, pp. 147–159.

    Google Scholar 

  • Herrmann, H. J., Andrade, J. S., Araujo, A. D., and Almeida, M. P., 2007. Particles in fluids. European Physical Journal, 143, 181–189 -Special Topics.

    Google Scholar 

  • Hunter, J. R., Crais, P. D., and Phillips, H. E., 1993. On the use of random walk models with spatially variable diffusivity. Journal of Computational Physics, 106, 366–376.

    Article  Google Scholar 

  • Kalinske, A., 1947. Movement of sediment as bed load in rivers. American Geophysical Union, 28(4), 615–620.

    Article  Google Scholar 

  • Ladd, A. J. C., and Verberg, R., 2001. Lattice-Boltzmann simulations of particle fluid suspensions. Journal of Statistical Physics, 104, 1191–1251.

    Article  Google Scholar 

  • Lahoz, W., Khattatov, B., and Ménard, R., 2010. Data Assimilation: Making Sense of Observations. Springer-Verlag, Berlin.

    Google Scholar 

  • Nelson, J. M., Shreve, R. L., McLean, S. R., and Drake, T. G., 1995. Role of near-bed turbulence structure in bed load transport and bed form mechanics. Water Resources Research, 31(8), 2071–2086.

    Article  Google Scholar 

  • Papanicolaou, A., Elhakeem, M., Krallis, G., and Edinger, S. J., 2008. Sediment transport modeling review – current and future developments. Journal of Hydraulic Engineering, 134(1), 1–14.

    Google Scholar 

  • Pilotti, M., and Menduni, G., 1997. Application of lattice gas techniques to the study of sediment erosion and transport caused by laminar sheetflow. Earth Surface Processes and Landforms, 22, 885–893.

    Article  Google Scholar 

  • Roelvink, J. A., 2006. Coastal morphodynamic evolution techniques. Coastal Engineering, 53, 277–287.

    Article  Google Scholar 

  • Rouse, H. 1937. Nomogram for the Settling Velocity of Spheres. Division of Geology and Geography, Exhibit D of the Report of the Commission on Sedimentation, 1936–37, Washington, D.C.: National Research Council, pp. 57–64.

    Google Scholar 

  • Schmelter, M. L., Hooten, M. B., and Stevens, D. K., 2011. Bayesian sediment transport model for unisize bed load. Water Resources Research, 47, W11514, doi:10.1029/2011WR010754.

    Article  Google Scholar 

  • Shields, A., 1936. Anwendung der Ahnlichkeitsmechanik und Turbulenz forschung auf die Geschiebebewegung, Mitt. Preuss. Vers. Wasserbau Schiffbau, 26, 5–24.

    Google Scholar 

  • Spotz, W., and Carey, G. F., 2001. Extension of high-order compact schemes to time-dependent problems. Numerical Methods for Partial Differential Equations, 17, 657–672.

    Article  Google Scholar 

  • van Dongeren, A., Plant, N., Cohen, A., Roelvink, D., Haller, M. C., and Catalan, P., 2008. Beach wizard: nearshore bathymetry estimation through assimilation of model computations and remote observations. Coastal Engineering, 55, 1016–1027.

    Article  Google Scholar 

  • van Rijn, L. C., 1984. Sediment pick-up function. Journal of Hydraulic Engineering ASCE, 110(10), 1494–1502.

    Article  Google Scholar 

  • Wang, X. H., and Andutta, F. P., 2013. Sediment transport dynamics in ports, estuaries and other coastal environments. In Manning, A. J. (ed.), Sediment Transport Processes and Their Modelling Application. InTech, Croatia, pp. 3–35, http://dx.doi.org/10.5772/51022.

  • Werner, B. T., 1995. Eolian dunes: computer simulation and attractor interpretation. Geology, 23, 1107–1110.

    Article  Google Scholar 

  • Yang, C. T., 1996. Sediment Transport, Theory and Practice. New York: McGraw-Hill, pp. 211–266.

    Google Scholar 

  • Zhang, W. Y., Schneider, R., and Harff, J., 2012. A multi-scale hybrid long-term morphodynamic model for wave-dominated coasts. Geomorphology, 149–150, 49–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Zhang, W. (2014). Sediment Transport Models. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6644-0_176-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6644-0_176-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6644-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics