Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Hot Spots and Mantle Plumes

  • William M. White
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_14-1


Hot Spot. Persistent volcanism over many millions or tens of millions of years at fixed location on the Earth’s surface in an absolute reference frame. This leads to a chain of volcanic islands and seamounts that get progressively older in the direction of lithospheric plate motion. The Hawaiian Islands provide the classic example.

Mantle Plume. Mantle plumes are relatively narrow columns of hot, buoyant rock rising from the deep mantle, probably the core–mantle boundary in many cases, and partially melting in the uppermost mantle. The magma produced in this way is responsible for hot spot volcanism and oceanic volcanic islands and seamounts.


Wilson (1963) pointed out the existence of chains of volcanic islands in the Pacific whose alignment was nearly parallel and whose age increased with distance from the East Pacific Rise. He proposed that the volcanoes formed as convection currents in the shallow mantle dragged oceanic floor over a fixed melting region in...


Mantle Plume Lower Mantle Mantle Convection Buoyancy Flux Oceanic Island Basalt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Abouchami, W., Hofmann, A. W., Galer, S. J. G., Frey, F. A., Eisele, J., and Feigenson, M., 2005. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature, 434(7035), 851–856.Google Scholar
  2. Allègre, C. J., and Turcotte, D. L., 1986. Implications of a two component marble-cake mantle. Nature, 323, 123–127.Google Scholar
  3. Anderson, D. L., 2000. The thermal state of the upper mantle; No role for mantle plumes. Geophysical Research Letters, 27(22), 3623–3626, doi:10.1029/2000gl011533.Google Scholar
  4. Ballmer, M. D., van Hunen, J., Ito, G., Tackley, P. J., and Bianco, T. A., 2007. Non-hotspot volcano chains originating from small-scale sublithospheric convection. Geophysical Research Letters, 34(23), L23310, doi:10.1029/2007gl031636.Google Scholar
  5. Bianco, T. A., Ito, G., Becker, J. M., and Garcia, M. O., 2005. Secondary Hawaiian volcanism formed by flexural arch decompression. Geochemistry, Geophysics, Geosystems, 6(8), Q08009, doi:10.1029/2005gc000945.Google Scholar
  6. Blichert-Toft, J., Frey, F., and Albarede, F., 1999. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science, 285, 879–882.Google Scholar
  7. Bourdon, B., Ribe, N., Stracke, A., Saal, A., and Turner, S. P., 2006. Insights into the dynamics of mantle plumes from uranium-series geochemistry. Nature, 444, 713–717, doi:10.1038/nature05341.Google Scholar
  8. Bryce, J. C., DePaolo, D. J., and Lassiter, J. C., 2005. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of the Mauna Kea volcano. Geochemistry, Geophysics, Geosystems, 6, doi:10.1029/2004GC000809.Google Scholar
  9. Cabral, R. A., Jackson, M. G., Rose-Koga, E. F., Koga, K. T., Whitehouse, M. J., Antonelli, M. A., Farquhar, J., Day, J. M. D., and Hauri, E. H., 2013. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature, 496(7446), 490–493, doi:10.1038/nature12020.Google Scholar
  10. Campbell, I. H., 2007. Testing the plume theory. Chemical Geology, 241(3–4), 153–176, doi:10.1016/j.chemgeo.2007.01.024.Google Scholar
  11. Campbell, I. H., and Griffiths, R. W., 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99, 79–93.Google Scholar
  12. Caro, G., and Bourdon, B., 2010. Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle crust system. Geochimica et Cosmochimica Acta, 74(11), 3333–3349.Google Scholar
  13. Chabaux, F., and Allegre, C., 1994. 238U-230Th-226Ra disequilibrium in volcanics: a new insight into melting conditions. Earth and Planetary Science Letters, 126, 61–74.Google Scholar
  14. Chauvel, C., Maury, R. C., Blais, S., Lewin, E., Guillou, H., Guille, G., Rossi, P., and Gutscher, M. A., 2012. The size of plume heterogeneities constrained by Marquesas isotopic stripes. Geochemistry, Geophysics, Geosystems, 13(7), Q07005, doi:10.1029/2012gc004123.Google Scholar
  15. Chen, C.-Y., and Frey, F. A., 1983. Origin of Hawaiian tholeiite and alkalic basalt. Nature, 302, 785–789, doi:10.1038/302785a0.Google Scholar
  16. Conrad, C. P., Wu, B., Smith, E. I., Bianco, T. A., and Tibbetts, A., 2010. Shear-driven upwelling induced by lateral viscosity variations and asthenospheric shear: a mechanism for intraplate volcanism. Physics of the Earth and Planetary Interiors, 178(3‚4), 162–175, doi:10.1016/j.pepi.2009.10.001.Google Scholar
  17. Corgne, A., Liebske, C., Wood, B. J., Rubie, D. C., and Frost, D. J., 2005. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochimica et Cosmochimica Acta, 69(2), 485–496.Google Scholar
  18. Courtier, A. M., Jackson, M. G., Lawrence, J. F., Wang, Z., Lee, C.-T. A., Halama, R., Warren, J. M., Workman, R., Xu, W., Hirschmann, M. M., Larson, A. M., Hart, S. R., Lithgow-Bertelloni, C., Stixrude, L., and Chen, W.-P., 2007. Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots. Earth and Planetary Science Letters, 264(1–2), 308–316, doi:10.1016/j.epsl.2007.10.003.Google Scholar
  19. Courtillot, V., Davaille, A., Besse, J., Stock, J., 2003. Three distinct types of hotspots in the Earth’s mantle. Earth and Planetary Science Letters, 205, 295–308, doi:10.1016/S0012-821X(02)01048-8.Google Scholar
  20. Davies, G. F., 1988. Ocean bathymetry and mantle convection, 1, large-scale flow and hotspots. Journal of Geophysical Research, 93, 10467–10480.Google Scholar
  21. Davies, J. H., and Bunge, H.-P., 2006. Are splash plumes the origin of minor hotspots? Geology, 34(5), 349–352, doi:10.1130/G22193.1.Google Scholar
  22. DePaolo, D., and Wasserburg, G., 1976. Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophysical Research Letters, 3, 743–746, doi:10.1029/GL003i012p00743.Google Scholar
  23. Desonie, D. L., Duncan, R. A., and Natland, J. H., 1993. Temporal and geochemical variability of volcanic products of the Marquesas Hotspot. Journal of Geophysical Research, Solid Earth, 98(B10), 17649–17665, doi:10.1029/93JB01562.Google Scholar
  24. Dick, H. J. B., Fisher, R. L., and Bryan, W. B., 1984. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth and Planetary Science Letters, 69, 88–106.Google Scholar
  25. Ebinger, C. J., and Sleep, N. H., 1998. Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature, 395(6704), 788–791.Google Scholar
  26. Eiler, J. M., Carr, M. J., Reagan, M., and Stolper, E., 2005. Oxygen isotope constraints on the sources of Central American arc lavas. Geochemistry, Geophysics, Geosystems, 6(7), Q07007, doi:10.1029/2004gc000804.Google Scholar
  27. Farnetani, C. G., and Samuel, H., 2005. Beyond the thermal plume paradigm. Geophysical Research Letters, 32, L0731, doi:10.1029/2005GL022360.Google Scholar
  28. Farnetani, C. G., Hofmann, A. W., and Class, C., 2012. How double volcanic chains sample geochemical anomalies from the lowermost mantle. Earth and Planetary Science Letters, 359–360(0), 240–247, doi:10.1016/j.epsl.2012.09.057.Google Scholar
  29. Fekiacova, Z., Abouchami, W., Galer, S. J. G., Garcia, M. O., and Hofmann, A. W., 2007. Origin and temporal evolution of Koolau Volcano, Hawaii: inferences from isotope data on the Koolau Scientific Drilling Project (KSDP), the Honolulu Volcanics and ODP Site 843. Earth and Planetary Science Letters, 261(1–2), 65–83.Google Scholar
  30. Garcia, M. O., Swinnard, L., Weis, D., Greene, A. R., Tagami, T., Sano, H., Gandy, C. E., 2010. Petrology, Geochemistry and Geochronology of Kaua’i Lavas over 4.5 Myr: Implications for the Origin of Rejuvenated Volcanism and the Evolution of the Hawaiian Plume. Journal of Petrology, 51(7), 1507–1540, doi:10.1093/petrology/egq027.Google Scholar
  31. Gast, P. W., 1969. The isotopic composition of lead from St. Helena and Ascension Islands. Earth and Planetary Science Letters, 5, 253–259.Google Scholar
  32. Grand, S. P., van der Hilst, R. D., and Widiyantoro, S., 1997. Global seismic tomography: a snapshot of convection in the mantle. Geological Society of America: GSA Today, 7(4), 1–7.Google Scholar
  33. Green, D. H., Falloon, T. J., Eggins, S., and Yaxley, G., 2001. Primary magmas and mantle temperatures. European Journal of Mineralogy, 13, 437–451.Google Scholar
  34. Griffiths, R. W., and Campbell, I. H., 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99(1–2), 66–78.Google Scholar
  35. Grove, T. L., Chatterjee, N., Parman, S. W., and Médard, E., 2006. The influence of H2O on mantle wedge melting. Earth and Planetary Science Letters, 249(1–2), 74–89, doi:10.1016/j.epsl.2006.06.043.Google Scholar
  36. Gurriet, P., 1987. A thermal model for the origin of post-erosional alkalic lava, Hawaii. Earth and Planetary Science Letters, 82(1–2), 153–158, doi:10.1016/0012-821X(87)90115-4.Google Scholar
  37. Hanan, B. B., and Graham, D. W., 1996. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 272(5264), 991–995.Google Scholar
  38. Hanan, B. B., Kingsley, R. H., and Schilling, J.-G., 1986. Pb isotope evidence in the South Atlantic for migrating ridge-hotspot interactions. Nature, 322(6075), 137–144.Google Scholar
  39. Harpp, K. S, and White, W. M. 2001. Tracing a mantle plume: Isotopic and trace element variations of Galápagos seamounts. Geochemistry, Geophysics, Geosystems, 2(1042), doi:10.1029/2000GC000137.Google Scholar
  40. Harpp, K. S., Hall, P. S., and Jackson, M. G., 2014. Galápagos and Easter: a tale of two hotspots. In The Galapagos: A Natural Laboratory for the Earth Sciences. Washington, DC: AGU, Vol. 204, pp. 27–40.Google Scholar
  41. Hart, S. R., Schilling, J. G., and Powell, J. L., 1973. Basalts from Iceland and along the Reykjanes Ridge: Sr isotope geochemistry. Nature Physical Science, 246, 104–107.Google Scholar
  42. Hawkins, J. W., and Natland, J. H., 1975. Nephelinites and basanites of the Samoan linear volcanic chain: their possible tectonic significance. Earth and Planetary Science Letters, 24, 427–439.Google Scholar
  43. Hedge, C. E., 1966. Variations in radiogenic strontium found in volcanic rocks. Journal of Geophysical Research, 71, 6119–6126, doi:10.1029/JZ071i024p06119.Google Scholar
  44. Herzberg, C., and Asimow, P. D., 2008. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochemistry, Geophysics, Geosystems, 9(9), Q09001, doi:10.1029/2008GC002057.Google Scholar
  45. Herzberg, C., Asimow, P. D., Arndt, N., Niu, Y., Lesher, C. M., Fitton, J. G., Cheadle, M. J., and Saunders, A. D., 2007. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems, 8, doi:10.1029/2006gc001390.Google Scholar
  46. Hirano, N., Takahashi, E., Yamamoto, J., Abe, N., Ingle, S. P., Kaneoka, I., Hirata, T., Kimura, J.-I., Ishii, T., Ogawa, Y., Machida, S., and Suyehiro, K., 2006. Volcanism in response to plate flexure. Science, 313(5792), 1426–1428, doi:10.1126/science.1128235.Google Scholar
  47. Hoernle, K., Werner, R., Morgan, J. P., Garbe-Schoenberg, D., Bryce, J., and Mrazek, J., 2000. Existence of complex spatial zonation in the Galapagos Plume for at least 14 m.y. Geology, 28(5), 435–438, doi:10.1130/0091-7613(2000)28<435:EOCSZI>2.0.CO;2.Google Scholar
  48. Hofmann, A. W., and Farnetani, C. G., 2013. Two views of Hawaiian plume structure. Geochemistry, Geophysics, Geosystems, 14(12), 5308–5322, doi:10.1002/2013GC004942.Google Scholar
  49. Hofmann, A. W., and White, W. M., 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters, 57, 421–436.Google Scholar
  50. Huang, J., and Davies, G. F., 2007. Stirring in three-dimensional mantle convection models and implications for geochemistry; 2, Heavy tracers. Geochemistry, Geophysics, Geosystems, 8, Q03017, doi:10.1029/2006GC001312.Google Scholar
  51. Huang, S., Hall, P. S., and Jackson, M. G., 2011. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nature Geoscience, 4(12), 874–878, doi:10.1038/ngeo1263.Google Scholar
  52. Jackson, E. D., and Wright, T. L., 1970. Xenoliths in the Honolulu volcanic series. Journal of Petrology, 11, 405–430.Google Scholar
  53. Jackson, M. G., Hart, S. R., Koppers, A. A. P., Staudigel, H., Konter, J., Blusztajn, J., Kurz, M., and Russell, J. A., 2007. The return of subducted continental crust in Samoan lavas. Nature, 448(7154), 684–687, doi:10.1038/nature06048.Google Scholar
  54. Jacobsen, S. B., 1988. Isotopic and chemical constraints on mantle-crust evolution. Geochimica et Cosmochimica Acta, 52, 1341–1350.Google Scholar
  55. Jordan, T. H., Puster, P., Glatzmeyer, G. A., and Tackley, P. J., 1993. Comparisons between seismic earth structures and mantle flow models based on radial correlation functions. Science, 261, 1427–1431, doi:10.1126/science.261.5127.1427.Google Scholar
  56. King, S. D., 2007. Hotspots and edge-driven convection. Geology, 35(3), 223–226, doi:10.1130/g23291a.1.Google Scholar
  57. Klein, E. M., and Langmuir, C. H., 1987. Ocean ridge basalt chemistry, axial depth, crustal thickness and temperature variations in the mantle. Journal of Geophysical Research, 92, 8089–8115.Google Scholar
  58. Konter, J. G., and Jackson, M. G., 2012. Large volumes of rejuvenated volcanism in Samoa: evidence supporting a tectonic influence on late-stage volcanism. Geochemistry, Geophysics, Geosystems, 13(6), Q0AM04, doi:10.1029/2011GC003974.Google Scholar
  59. Konter, J. G., Staudigel, H., Blichert-Toft, J., Hanan, B. B., Polvé, M., Davies, G. R., Shimizu, N., and Schiffman, P., 2009. Geochemical stages at Jasper Seamount and the origin of intraplate volcanoes. Geochemistry, Geophysics, Geosystems, 10, doi:10.1029/2008gc002236.Google Scholar
  60. Koppers, A. A. P., Russell, J. A., Jackson, M. G., Konter, J., Staudigel, H., and Hart, S. R., 2008. Samoa reinstated as a primary hotspot trail. Geology, 36(6), 435–438, doi:10.1130/g24630a.1.Google Scholar
  61. Kurz, M. D., Jenkins, W. J., Schilling, J. G., and Hart, S. R., 1982. Helium isotopic variations in the mantle beneath the central North Atlantic Ocean. Earth and Planetary Science Letters, 58, 1–14.Google Scholar
  62. Liu, M., and Chase, C. G., 1991. Evolution of Hawaiian basalts: a hotspot melting model. Earth and Planetary Science Letters, 104(2‚Äì4), 151–165, doi:10.1016/0012-821X(91)90201-R.Google Scholar
  63. MacDonald, G. A., 1968. Composition and origin of Hawaiian lavas. In Coats, R. R., Hay, R. N., and Anderson, C. A. (eds.), Studies in Volcanology. Boulder: GSA, Vol. 116, pp. 82–133.Google Scholar
  64. Michael, P. J., and Bonatti, E., 1985. Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting. Earth and Planetary Science Letters, 73, 91–104.Google Scholar
  65. Molnar, P., and Stock, J., 1987. Relative motions of hotspots in the Pacific, Atlantic and Indian oceans since late Cretaceous time. Nature, 327, 587–591.Google Scholar
  66. Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, R., and Hung, S.-H., 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303(5656), 338–343, doi:10.1126/science.1092485.Google Scholar
  67. Montelli, R., Nolet, G., Dahlen, F. A., and Masters, G., 2006. A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochemistry, Geophysics, Geosystems, 7(11), Q11007, doi:10.1029/2006gc001248.Google Scholar
  68. Moore, J., White, W. M., Paul, D., Duncan, R. A., Abouchami, W., Galer, S. J. G., 2011. Evolution of shield-building and rejuvenescent volcanism of Mauritius. Journal of Volcanology and Geothermal Research, 207(1–2), 47–66, doi:10.1016/j.jvolgeores.2011.07.005.Google Scholar
  69. Morgan, W. J., 1971. Convection plumes in the lower mantle. Nature, 230, 42–43.Google Scholar
  70. Morgan, W. J., 1972. Plate motions and deep mantle convection. In Shagam, R., Hargraves, R. B., Morgan, W. J., Van Houten, F. B., Burk, C. A., Holland, H. D., and Hollister, L. C. (eds.), Studies in Earth and Space Sciences. Boulder: Geological Society of America, Vol. 132, pp. 7–22.Google Scholar
  71. Mukhopadhyay, S., 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature, 486(7401), 101–104.Google Scholar
  72. Natland, J. H., 1980. The progression of volcanism in the Samoan linear volcanic chain. American Journal of Science, 280-A(Part 2), 709–735.Google Scholar
  73. O’Hara, M. J., 1973. Non-primary magmas and dubious mantle plume beneath Iceland. Nature, 243(5409), 507–508, doi:10.1038/243507a0.Google Scholar
  74. O’Nions, R. K., Evensen, N. M., and Hamilton, P. J., 1979. Geochemical modelling of mantle differentiation and crustal growth. Journal of Geophysical Research, 84, 6091–6101.Google Scholar
  75. Olsen, P., 1990. Hot spots, swells and mantle plumes. In Ryan, M. P. (ed.), Magma Transport and Storage. New York: Wiley, pp. 33–51.Google Scholar
  76. Paul, D., White, W. M., and Blichert-Toft, J., 2005. Geochemistry of Mauritius and the origin of rejuvenescent volcanism on oceanic island volcanoes. Geochemistry, Geophysics, Geosystems, 6, doi:10.1029/2004gc000883.Google Scholar
  77. Payne, J. A., Jackson, M. G., and Hall, P. S., 2013. Parallel volcano trends and geochemical asymmetry of the Society Islands hotspot track. Geology, 41(1), 19–22, doi:10.1130/g33273.1.Google Scholar
  78. Porcelli, D., and Elliott, T., 2008. The evolution of He Isotopes in the convecting mantle and the preservation of high 3He/4He ratios. Earth and Planetary Science Letters, 269(1‚2), 175–185, doi:10.1016/j.epsl.2008.02.002.Google Scholar
  79. Putirka, K. D., Perfit, M., Ryerson, F. J., and Jackson, M. G., 2007. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology, 241(3–4), 177–206, doi:10.1016/j.chemgeo.2007.01.014.Google Scholar
  80. Putirka, K., Ryerson, F. J., Perfit, M., and Ridley, W. I., 2011. Mineralogy and composition of the oceanic mantle. Journal of Petrology, 52(2), 279–313, doi:10.1093/petrology/egq080.Google Scholar
  81. Reiners, P. W., 2002. Temporal-compositional trends in intraplate basalt eruptions: implications for mantle heterogeneity and melting processes. Geochemistry, Geophysics, Geosystems, 3(2), 1–30, doi:10.1029/2001GC000250.Google Scholar
  82. Ribe, N., and Christensen, U., 1999. The dynamical origin of Hawaiian volcanism. Earth and Planetary Science Letters, 171, 517–531, doi:10.1016/S0012-821X(99)00179-X.Google Scholar
  83. Richards, M. A., Duncan, R. A., and Courtillot, V. E., 1989. Flood basalts and hot-spot tracks: plume heads and tails. Science, 246, 103–107.Google Scholar
  84. Roeder, P. L., and Emslie, R. F., 1970. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29, 275–289.Google Scholar
  85. Rohde, J., Hoernle, K., Hauff, F., Werner, R., O’Connor, J., Class, C., Garbe-Schönberg, D., and Jokat, W., 2013. 70 Ma chemical zonation of the Tristan-Gough hotspot track. Geology, 41(3), 335–338, doi:10.1130/g33790.1.Google Scholar
  86. Schilling, J.-G., 1973. Iceland mantle plume: geochemical study of the Reykjanes Ridge. Nature, 242, 565–571.Google Scholar
  87. Schilling, J.-G., 1991. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature, 352, 397–403.Google Scholar
  88. Schilling, J.-G., Anderson, R. N., and Vogt, P., 1976. Rare earth, Fe and Ti variations along the Galapagos spreading centre, and their relationship to the Galapagos mantle plume. Nature, 261, 108–113.Google Scholar
  89. Schilling, J.-G., Kingsley, R. H., and Devine, J. D., 1982. Galapagos hot spot-spreading center system 1. spatial petrological and geochemical variations (83 W-101 W). Journal of Geophysical Research, 87, 5593–5610.Google Scholar
  90. Schilling, J.-G., Kingsley, R. H., Hanan, B. B., and McCully, B. L., 1992. Nd-Sr-Pb isotopic variations along the Gulf of Aden: evidence for Afar mantle plume-continental lithosphere interaction. Journal of Geophysical Research, 97, 10927–10996.Google Scholar
  91. Sleep, N. H., 1990. Hotspots and Mantle Plumes: some phenomenology. Journal of Geophysical Research, 95, 6715–6736.Google Scholar
  92. Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., and Nikogosian, I. K., 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033), 590–597, doi:10.1038/nature03411.Google Scholar
  93. Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., Yaxley, G. M., Arndt, N. T., Chung, S.-L., Danyushevsky, L. V., Elliott, T., Frey, F. A., Garcia, M. O., Gurenko, A. A., Kamenetsky, V. S., Kerr, A. C., Krivolutskaya, N. A., Matvienkov, V. V., Nikogosian, I. K., Rocholl, A., Sigurdsson, I. A., Sushchevskaya, N. M., and Teklay, M., 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823), 412–417, doi:10.1126/science. 1138113.Google Scholar
  94. Spiegelman, M., and Elliot, T., 1993. Consequences of melt transport for uranium series disequilibrium in young lavas. Earth and Planetary Science Letters, 118, 1–20.Google Scholar
  95. Steinberger, B., Sutherland, R., and O’Connell, R. J., 2004. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature, 430(6996), 167–173.Google Scholar
  96. Sterns, H. T., 1946. Geology of the Hawaiian Islands. Honolulu: Hawaii Division of Hydrology.Google Scholar
  97. Stille, P., Unruh, D. M., and Tatsumoto, M., 1986. Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source. Geochimica et Cosmochimica Acta, 50, 2303–2320.Google Scholar
  98. Stracke, A., Salters, V. J. M., and Sims, K. W. W., 1999. Assessing the presence of garnet-pyroxenite in the mantle sources of basalts through combined hafnium-neodymium-thorium isotope systematics. Geochemistry, Geophysics, Geosystems, 1, doi:10.1029/1999gc000013.Google Scholar
  99. Tatsumoto, M., 1978. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth and Planetary Science Letters, 38, 63–87.Google Scholar
  100. ten Brink, U. S., and Brocher, T. M., 1987. Multichannel seismic evidence for a subscrustal intrusive complex under Oahu and a model for Hawaiian volcanism. Journal of Geohysical Research, 92(B13), 13687–13707.Google Scholar
  101. Falloon, T. J., Danyushevsky, L. V. A. A., Green, D. H., and Ford, C. E., 2007. The application of olivine geothermometry to infer crystallization temperatures of parental liquids; implications for the temperature of MORB magmas. Chemical Geology, 241(3–4), 207–233, doi:10.1016/j.chemgeo.2007.01.015.Google Scholar
  102. Van Wijk, J. W., and Blackman, D. K., 2005. Dynamics of continental rift propagation: the end-member modes. Earth and Planetary Science Letters, 229(3‚4), 247–258, doi:10.1016/j.epsl.2004.10.039.Google Scholar
  103. Watson, S., and Mckenzie, D., 1991. Melt generation in plumes: a study of Hawaiian volcanism. Journal of Petrology, 32, 501–537.Google Scholar
  104. Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M., and Scoates, J. S., 2011. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nature Geoscience, 4(12), 831–838, doi:10.1038/ngeo1328.Google Scholar
  105. White, W. M., 1985. The sources of ocean basalts: radiogenic isotopic evidence. Geology, 13, 115–118.Google Scholar
  106. White, W. M., 2010. Oceanic Island basalts and mantle plumes: the geochemical perspective. Annual Review of Earth and Planetary Sciences, 38(1), 133–160, doi:10.1146/annurev-earth-040809-152450.Google Scholar
  107. White, W. M., 2013. Geochemistry. Oxford: Wiley-Blackwell.Google Scholar
  108. White, W. M., and Duncan, R. A., 1996. Geochemistry and geochronology of the Society Islands: new evidence for deep mantle recycling. In Hart, S. R., and Basu, A. (eds.), Earth Processes: Reading the Isotope Code. Washington, DC: AGU, Vol. 95, pp. 183–206.Google Scholar
  109. White, W. M., and Hofmann, A. W., 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, 296, 821–825.Google Scholar
  110. White, W. M., Schilling, J.-G., and Hart, S. R., 1976. Evidence for the Azores mantle plume from strontium isotope geochemistry of the Central North Atlantic. Nature, 263, 659–663.Google Scholar
  111. White, W. M., McBirney, A. R., and Duncan, R. A., 1993. Petrology and geochemistry of the Galapagos: portrait of a pathological mantle plume. Journal of Geophysical Research, 98(B11), 19533–19563.Google Scholar
  112. Whitehead, J. A., and Luther, D. S., 1975. Dynamics of laboratory diapir and plume models. Journal of Geophysical Research, 80(5), 705–717.Google Scholar
  113. Willbold, M., and Stracke, A., 2010. Formation of enriched mantle components by recycling of upper and lower continental crust. Chemical Geology, 276(3‚4), 188–197, doi:10.1016/j.chemgeo.2010.06.005.Google Scholar
  114. Wilson, J. T., 1963. A possible origin of the Hawaiian Islands. Canadian Journal of Physics, 41, 863–870.Google Scholar
  115. Wright, E., and White, W. M., 1987. The origin of Samoa: new evidence from Sr, Nd, and Pb isotopes. Earth and Planetary Science Letters, 81(2–3), 151–162, doi:10.1016/0012-821X(87)90152-X.Google Scholar
  116. Yang, H. J., Frey, F. A., and Clague, D. A., 2003. Constraints on the source components of lavas forming the Hawaiian North Arch and Honolulu Volcanics. Journal of Petrology, 44(4), 603–627.Google Scholar
  117. Zindler, A., and Hart, S. R., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493–571.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Earth and Atmospheric SciencesCornell UniversityIthacaUSA