Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Bottom-Simulating Seismic Reflectors (BSRs)

  • Jürgen Mienert
  • Stefan Bünz
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_133-3


A seismic reflection occurring in the upper few hundred meters of marine sediments mimicking the seafloor, crosscutting sediment layers, and showing a phase reversal is known as a “bottom-simulating reflector.” Such a gas hydrate-related BSR originates from a large impedance contrast between a layer of gas-hydrated sediment above and a free gas layer below. A diagenetic-related BSR occurs at the opal-A/opal-CT transition zone, lies often deep and outside the base of the gas hydrate stability zone, shows no phase reversal, and does not always mimic the seafloor.


The intent of this article is to describe the two most commonly observed bottom-simulating reflectors (BSRs). The term BSR stems from their principal characteristic that these reflectors mimic the seafloor topography in marine seismic reflection data thereby crosscutting sedimentary strata. BSRs are known to occur in continental margin sediments in regions of gas hydrate and free gas (Shipley et al., 1979...


Instantaneous Frequency Impedance Contrast Methane Hydrate Blake Ridge Polygonal Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Berndt, C., Bünz, S., Clayton, T., Mienert, J., and Saunders, M., 2004. Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin. Marine and Petroleum Geology, 21, 723–733.CrossRefGoogle Scholar
  2. Biastoch, A., Treude, T., Rüpke, L. H., Riebesell, U., Roth, C., Burwicz, E. B., Park, W., Latif, M., Böning, C. W., Madec, G., and Wallmann, K., 2011. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophysical Research Letters, 38, L08602.CrossRefGoogle Scholar
  3. Brekke, H., 2000. The tectonic evolution of the Norwegian Sea continental margin with emphasis on the V½ring and More basins. In Nottvedt, A. (ed.), Dynamics of the Norwegian Margin. Geological Society of London Special Publication 167. London: Geological Society, pp. 327–378.Google Scholar
  4. Bünz, S., Mienert, J., and Berndt, C., 2003. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth and Planetary Science Letters, 209(3–4), 291–307.CrossRefGoogle Scholar
  5. Cartwright, J. A., and Dewhurst, D. N., 1998. Layer-bound compaction faults in fine-grained sediments. Bulletin of the Geological Society of America, 110(10), 1242–1257.CrossRefGoogle Scholar
  6. Chand, S., Mienert, J., Andreassem, K., Knies, J., Plassen, L., and Fotland, B., 2008. Gas hydrate stability zone modelling in areas of salt tectonics and pockmarks of the Barents Sea suggest an active hydrocarbon venting system. Marine and Petroleum Geology, 25, 625–636.CrossRefGoogle Scholar
  7. Davies, R. J., and Cartwright, J. A., 2002. A fossilized opal-A to opal C/T transformation on the northeast Atlantic margin: support for a significantly elevated paleogeothermal gradient during the Neogene? Basin Research, 14, 467–486.CrossRefGoogle Scholar
  8. Depreiter, D., Poort, J., Van Rensbergen, P., and Henriet, J. P., 2005. Geophysical evidence of gas hydrates in shallow submarine mud volcanoes on the Moroccan margin. Journal of Geophysical Research, 110, B10103, doi:10.1029/2005JB003622.CrossRefGoogle Scholar
  9. Dickens, G. R., and Quinby-Hunt, M. S., 1997. Methane hydrate stability in pore water: a simple theoretical approach for geophysical applications. Journal of Geophysical Research, 102, 773–783.CrossRefGoogle Scholar
  10. Ferré, B., Mienert, J., and Feseker, T., 2012. Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales. Journal of Geophysical Research, Oceans, 117, C10017.CrossRefGoogle Scholar
  11. Grevemeyer, I., and Villinger, H., 2001. Gas hydrate stability and the assessment of heat flow through continental margins. Geophysical Journal International, 145, 647–660.CrossRefGoogle Scholar
  12. Hein, J. R., Scholl, D. W., Barron, J. A., Jones, M. G., and Miller, J. J., 1978. Diagenesis of Late Cenozoic diatomaceous deposits and formation of the bottom simulating reflector in the southern Bering Sea. Sedimentology, 25, 155–181.CrossRefGoogle Scholar
  13. Hesse, R., 1989. Silica diagenesis: origin of inorganic and replacement cherts. Earth-Science Reviews, 26, 253–284.CrossRefGoogle Scholar
  14. Holland, H. D., and Turekian, K. K., 2003. Treatise on Geochemistry. Elsevier Pergamon, Elsevier Ltd. The Boulevard, Langford Lane, Kidlington, Oxford, QX5 IGB, UK, ISBN 978-0-08-043751-4.Google Scholar
  15. Hornbach, M. J., Holbrook, W. S., Gorman, A. R., Hackwith, K. L., Lizarralde, D., and Pecher, I., 2003. Direct seismic detection of methane hydrate on the Blake Ridge. Geophysics, 68(1), 92–100.CrossRefGoogle Scholar
  16. Hurd, D. C., and Birdwhistell, S., 1983. On producing a more general model for biogenic silica dissolution. American Journal of Science, 283, 1–28.CrossRefGoogle Scholar
  17. Hyndman, R. D., and Spence, G. D., 1992. A seismic study of methane hydrate marine bottom simulating reflectors. Journal of Geophysical Research – Solid Earth, 97, 6683–6698.CrossRefGoogle Scholar
  18. Knauth, L. P., 1994. Petrogenesis of chert. Reviews of Mineralogy, 29, 233–258.Google Scholar
  19. Kotelnikova, S., 2002. Microbial production and oxidation of methane in deep subsurface. Earth-Science Reviews, 58, 367–395.CrossRefGoogle Scholar
  20. Kvenvolden, K. A., 1993. Gas hydrates – geological perspective and global change. Reviews of Geophysics, 31, 173–187.CrossRefGoogle Scholar
  21. Mienert, J., Vanneste, M., Bunz, S., Andreassen, K., Haflidason, H., and Sejrup, H. P., 2005. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Marine and Petroleum Geology, 22, 233–244.CrossRefGoogle Scholar
  22. Nouzé, H., Cosquer, E., Collot, J., Foucher, L. P., Klingelhoefer, F., Lafoy, Y., and Géli, L., 2009. Geophysical characterization of bottom simulating reflectors in the Fairway Basin (off New Caledonia, Southwest Pacific), based on high resolution seismic profiles and heat flow data. Marine Geology, 266(1–4), 80–90.CrossRefGoogle Scholar
  23. Phrampus, B. J., and Hornbach, M. J., 2012. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Nature, 490(7421), 527–530.CrossRefGoogle Scholar
  24. Rajan, A., Bünz, S., Mienert, J., and Smith, A. J., 2013. Gas hydrate in petroleum provinces of the SW-Barents Sea. Marine and Petroleum Geology, 46, 92–106.CrossRefGoogle Scholar
  25. Rempel, A. W., and Buffett, B. A., 1997. Formation and accumulation of gas hydrate in porous media. Journal of Geophysical Research, 102, 10151–10164.CrossRefGoogle Scholar
  26. Shipley, T. H., Houston, M. H., Buffler, R. T., Shaub, F. J., McMillen, K. J., Ladd, J. W., and Worzel, J. L., 1979. Seismic reflection evidence for the widespread occurrence of possible gas-hydrate horizons on continental slopes and rises. American Association of Petroleum Geologists Bulletin, 63, 2204–2213.Google Scholar
  27. Sloan, D. R., 2003. Fundamental principles and applications of natural gas hydrates. Nature, 426, 353–359.CrossRefGoogle Scholar
  28. Tribble, J. S., Mackenzie, F. T., Urmos, J., O’Brien, D. K., and Manghnani, M. H., 1992. Effects of biogenic silica on acoustic and physical properties of clay-rich marine sediments. American Association of Petroleum Geologists Bulletin, 76, 792–804.Google Scholar
  29. Vogt, P. R., and Jung, W. Y., 2002. Holocene mass wasting on upper non-Polar continental slopes – due to post-Glacial ocean warming and hydrate dissociation? Geophysical Research Letters, 29, 55-1–55-4.Google Scholar
  30. Wood, W. T., Gettrust, J. F., Chapman, N. R., Spence, G. D., and Hyndman, R. D., 2002. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness. Nature, 420, 656–660.CrossRefGoogle Scholar
  31. Zatsepina, O. Y., and Buffett, B. A., 1998. Thermodynamic conditions for the stability of gas hydrate in the seafloor. Journal of Geophysical Research, 103, 24127–24139.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Centre for Arctic Gas Hydrate, Environment and Climate (CAGE), UiT The Arctic University of NorwayTromsøNorway