Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Transform Fault

  • A. M. Celâl Şengör
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-94-007-6644-0_121-2



A transform fault is a plate boundary along which plate motion is parallel with the strike of the boundary. Along such a boundary, ideally, crust is neither generated nor destroyed, and that is why they are also called conservative plate boundaries. In real life, the thermal and mechanical properties of the crust and upper mantle and the time-averaged behaviour of the spreading centre and subduction zones in the oceans impose a finite width on transform faults in which deformation is complex, forming a fault zone rather than a single clean fault. Large, active, continental transform faults, such as the San Andreas Fault system in California, the North Anatolian Fault system in northern Turkey, the Alpine Fault in New Zealand, and the Altyn Tagh Fault in northern Tibetan Plateau, constitute veritable keirogens. In this entry, the emphasis is on the oceanic transform faults, in keeping with the theme of the volume.


The concept...


Subduction Zone Fracture Zone Oceanic Crust Tarim Basin Plate Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Abbate, E., Passerini, P., and Zan, L., 1995. Strike-slip faults in a rift area: a transect in the Afar triangle, East Africa. Tectonophysics, 241, 67–97.CrossRefGoogle Scholar
  2. Ahlgren, S. G., 2001. The nucleation and evolution of Riedel shear zones as deformation bands in porous sandstone. Journal of Structural Geology, 23, 1203–1214.CrossRefGoogle Scholar
  3. Allerton, S., 1989. Distortions, rotations, and crustal thinning at ridge-transform intersections. Nature, 340, 626–632.CrossRefGoogle Scholar
  4. Anderson, E. M., 1951. The Dynamics of Faulting and Dyke Formation with Applications to Britain, 2nd revised edn. Edinburgh: Oliver and Boyd, x + 206 pp.Google Scholar
  5. Atwater, T., 1970. Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geological Society of America Bulletin, 81, 3513–3536.CrossRefGoogle Scholar
  6. Baes, M., Govers, R., and Wortel, R., 2011. Subduction initiation along the inherited weakness zone at the edge of a slab: insights from numerical models. Geophysical Journal International, 184, 991–1008.CrossRefGoogle Scholar
  7. Behn, M. D., Boettcher, M. S., and Hirth, G., 2007. Thermal structure of oceanic transform faults. Geology, 35, 307–310.CrossRefGoogle Scholar
  8. Bercovici, D., 2003. The generation of plate tectonics from mantle convection. Earth and Planetary Science Letters, 205, 107–121.CrossRefGoogle Scholar
  9. Bernoulli, D., and Weissert, H., 1985. Sedimentary fabrics in Alpine ophicalcites, South Pennine Arosa zone, Switzerland. Geology, 13, 755–758.CrossRefGoogle Scholar
  10. Beutel, E. K., and Okal, E. M., 2003. Strength asperities along oceanic transform faults: a model for the origin of extensional earthquakes on the Eltanin transform system. Earth and Planetary Science Letters, 216, 27–41.CrossRefGoogle Scholar
  11. Bonatti, E., 1978. Vertical tectonism in oceanic fracture zones. Earth and Planetary Science Letters, 37, 249–251.CrossRefGoogle Scholar
  12. Bonatti, E., and Crane, K., 1984. Oceanic fracture zones. Scientific American, 250(5), 36–47.CrossRefGoogle Scholar
  13. Bonatti, E., and Hamlyn, P. R., 1978. Mantle uplifted block in the western Indian Ocean. Science, 201, 249–251.CrossRefGoogle Scholar
  14. Bonatti, E., Chermak, A., and Honnorez, J., 1979. Tectonic and igneous emplacement of crust in oceanic transform zones. In Talwani, M., Harrison, C. G., and Hayes, D. E. (eds.), Deep Drilling Results in the Atlantic Ocean: Ocean Crust. Washington: American Geophysical Union. Maurice Ewing Series, Vol. 2, pp. 239–248.CrossRefGoogle Scholar
  15. Burke, K. C. A., and Dewey, J. F., 1973. Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks. Journal of Geology, 81, 406–433.CrossRefGoogle Scholar
  16. Casey, J. F., and Dewey, J. F., 1984. Initiation of subduction zones along transform and accreting plate boundaries, triple junction evolution, and forearc spreading centres – implications for ophiolite geology and obduction. In Gass, I. G., Lippard, S. J., and Shelton, A. W. (eds.), Ophiolites and Oceanic Lithosphere, London: Geological Society Special Publication 13, pp. 269–290.Google Scholar
  17. Casey, J. F., Dewey, J. F., Fox, P. J., Karson, J. A., and Rosenkrantz, E., 1981. Heterogeneous nature of oceanic crust and upper mantle: a perspective from the Bay of Islands ophiolite complex. In Emiliani, C. (ed.), The Oceanic Lithosphere, The Sea. New York: John Wiley & Sons, Vol. 7, pp. 305–338.Google Scholar
  18. Cloetingh, S. A. P. L., Wortel, M. J. R., and Vlaar, N. J., 1984. Passive margin evolution, initiation of subduction and the Wilson Cycle. Tectonophysics, 109, 147–163.CrossRefGoogle Scholar
  19. Collette, B. J., 1974. Thermal contraction joints in a spreading seafloor as origin of fracture zones. Nature, 251, 299–300.CrossRefGoogle Scholar
  20. CYAGOR II Group, 1984. Intraoceanic tectonism on the Gorringe Bank: observations by submersible. In Gass, I. G., Lippard, S. J., and Shelton, A. W. (eds.), Ophiolites and Oceanic Lithosphere, London: Geological Society Special Publication 13, pp. 113–130.Google Scholar
  21. DeLong, S. E., Hodges, F. N., and Arculus, R. J., 1975. Ultramafic and mafic inclusions, Kanaga Island, Alaska, and the occurrence of alkaline rocks in island arcs. Journal of Geology, 83, 721–736.CrossRefGoogle Scholar
  22. DeLong, S. E., Dewey, J. F., and Fox, P. J., 1977. Displacement history of oceanic fracture zones. Geology, 5, 199–202.CrossRefGoogle Scholar
  23. DeLong, S. E., Dewey, J. F., and Fox, P. J., 1979. Topographic and geologic evolution of fracture zones. Journal of the Geological Society of London, 136, 303–310.CrossRefGoogle Scholar
  24. Dewey, J. F., 1975. Finite plate evolution: some implications for the evolution of rock masses at plate margins. American Journal of Science, 275-A(John Rodgers volume), 260–284.Google Scholar
  25. Dewey, J. F., 1976. Ancient plate margins: some observations. Tectonophysics, 33, 379–385.CrossRefGoogle Scholar
  26. Dewey, J. F., 2002. Transtension in arcs and orogens. International Geology Review, 44, 402–438.CrossRefGoogle Scholar
  27. Dewey, J. F., and Casey, J. F., 2011. The origin of obducted large-slab ophiolite complexes. In Brown, D., and Ryan, P. D. (eds.), Arc Continent Collision. Heidelberg: Springer. Frontiers in Earth Sciences, pp. 431–444.CrossRefGoogle Scholar
  28. Dickinson, W. R., 1996. Kinematics of transrotational tectonism in the California transverse ranges and its contribution to cumulative slip along the San Andreas transform fault system, Boulder Colorado: Geological Society of America Special Paper 305, iv + 46 pp.Google Scholar
  29. Einarsson, T., 1967. The Icelandic fracture system and the inferred crustal stress field. In Björnsson, S. (ed.), Iceland and Mid-Ocean Ridges, Vísindafélag. Íslendinga (Societas Scientiarum Islandica). Reykjavik: Prentsmiđjan Leiftur, pp. 128–141.Google Scholar
  30. Folk, R. L., and McBride, E. F., 1976. Possible pedogenic origin of Ligurian ophicalcite: a Mesozoic calichified serpentinite. Geology, 4, 327–332.CrossRefGoogle Scholar
  31. Fox, P. J., and Gallo, D. G., 1984. A tectonic model for ridge-transform-ridge plate boundaries: implications for the structure of oceanic lithosphere. Tectonophysics, 104, 205–242.CrossRefGoogle Scholar
  32. Fox, P. J., Detrick, R. S., and Purdy, G. M., 1980. Evidence for crustal thinning near fracture zones: implications for ophiolites. In Proceedings International Ophiolite Symposium Cyprus 1979. Nicosia: Cyprus Geological Survey Department, pp. 161–168.Google Scholar
  33. Franchateau, J., Choukroune, P., Hekinian, R., Le Pichon, X., and Needham, H. D., 1976. Oceanic fracture zones do not provide deep sections in the crust. Canadian Journal of Earth Sciences, 13, 1223–1235.CrossRefGoogle Scholar
  34. Freund, R., and Merzer, A. M., 1976. Anisotropic origin of transform faults. Science, 192, 137–138.CrossRefGoogle Scholar
  35. Garfunkel, Z., 1986. Review of oceanic transform activity and development. Journal of the Geological Society of London, 143, 775–784.CrossRefGoogle Scholar
  36. Géli, L., and Sclater, J., 2008. On the depth of oceanic earthquakes: brief comments on “The thermal structure of oceanic and continental lithosphere” by McKenzie, D., Jackson, J. and Priestley, K. Earth Plan. Sci. Let., 233, [2005], 337–349. Earth and Planetary Science Letters, 265, 769–775, http://dx.doi.org/10.1016/j.epsl.2007.08.029
  37. Gerya, T., 2010. Dynamical instability produces transform faults at mid-ocean ridges. Science, 329, 1047–1050.CrossRefGoogle Scholar
  38. Gibbs, A. E., Hein, J. R., Lewis, S. D., and McCulloch, D. S., 1993. Hydrothermal palygorskite and ferromanganese mineralization at a central California margin fracture zone. Marine Geology, 115, 47–65.CrossRefGoogle Scholar
  39. Govers, R., and Wortel, M. J. R., 2005. Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth and Planetary Science Letters, 236, 505–523.CrossRefGoogle Scholar
  40. Hall, C., and Gurnis, M., 2005. Strength of fracture zones from their bathymetric and gravitational evolution. Journal of Geophysical Research, 110, B01402, doi:10.1029/2004JB003312.CrossRefGoogle Scholar
  41. Hamlyn, P. R., and Bonatti, E., 1980. Petrology of mantle-derived ultramafics from the Owen Fracture Zone, northwest Indian Ocean: implications for the nature of the oceanic upper mantle. Earth and Planetary Science Letters, 48, 65–79.CrossRefGoogle Scholar
  42. Haxby, W. F., and Parmentiar, E. M., 1988. Thermal contraction and the state of stress in the oceanic lithosphere. Journal of Geophysical Research, 93, 6419–6429.CrossRefGoogle Scholar
  43. Hein, J. R., Koski, R. A., Embley, R. W., Reid, J., and Chang, S.-W., 1999. Diffuse-flow hydrothermal field in an oceanic fracture zone setting, Northeast Pacific: deposit composition. Exploration and Mining Geology, 8, 299–322.Google Scholar
  44. Honnorez, J., Mével, C., and Montigny, R., 1984. Occurrence and significance of gneissic amphibolites in the Vema fracture zone, equatorial Mid-Atlantic Ridge. In Gass, I. G., Lippard, S. J., and Shelton, A. W. (eds.), Ophiolites and Oceanic Lithosphere, London: Geological Society Special Publication 13, pp. 121–130.Google Scholar
  45. Houseman, G., McKenzie, D., and Molnar, P., 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. Journal of Geophysical Research, 86, 6115–6132.CrossRefGoogle Scholar
  46. Karig, D. E., 1982. Initiation of subduction zones: implications for arc evolution and ophiolite emplacement. In Leggett, J. K. (ed.), Trench-Forearc Geology: Sedimentation and Tectonics on Modern and Ancient Plate Margins, London: Geological Society Special Publication 10, pp. 563–576.Google Scholar
  47. Karson, J. A., 1990. Accommodation zones and transfer faults: integral components of Mid-Atlantic extensional systems. In Peters, T., Nicolas, A., and Coleman, R. G. (eds.), Ophiolite Genesis and Evolution of the Oceanic Lithosphere – Proceedings of the Ophiolite Conference, Held in Muscat, Oman, 7–18 January 1990. Dordrecht: Kluwer Academic Publishers, pp. 21–37.Google Scholar
  48. Karson, J. A., and Dick, H. J. B., 1983. Tectonics of ridge-transform intersections at the Kane fracture zone. Marine Geophysical Researches, 6, 51–98.CrossRefGoogle Scholar
  49. Kastens, K., 1987. A compendium of causes and effects of processes at transform faults and fracture zones. Reviews of Geophysics, 25, 1554–1562.CrossRefGoogle Scholar
  50. Kastens, K., Bonatti, E., Caress, D., Carrara, G., Dauteuil, O., Frueh-Green, G., Ligi, M., and Tartarotti, P., 1998. The Vema transverse ridge (central Atlantic). Marine Geophysical Researches, 20, 533–556.CrossRefGoogle Scholar
  51. Katz, R. F., 2010. Porosity-driven convection and asymmetry beneath mid-ocean ridges. Geochemistry Geophysics Geosystems G 3, 11, doi:10.1029/2010GC003282.Google Scholar
  52. Katz, Y., Weinberger, R., and Aydın, A., 2004. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah. Journal of Structural Geology, 26, 491–501.CrossRefGoogle Scholar
  53. Ketin, İ., 1948. Über die tektonisch-mechanischen Folgerungen aus den grossen anatolischen Erdbeben des letzten Dezenniums. Geologische Rundschau, 36, 77–83.CrossRefGoogle Scholar
  54. Kohlstedt, D., Evans, B., and Mackwell, S., 1995. Strength of the lithosphere: constraints imposed by laboratory experiments. Journal of Geophysical Research, 100, 17587–17602.CrossRefGoogle Scholar
  55. Kumar, R. R., and Gordon, R. G., 2009. Horizontal thermal contraction of oceanic lithosphere: the ultimate limit to the rigid plate approximation. Journal of Geophysical Research, 114, B01403, doi:10.1029/2007JB005473.CrossRefGoogle Scholar
  56. Kusznir, N. J., and Cooper, C., 2011. The depth distribution of mantle serpentinization at magma poor rifted margins: geophysical evidence from the Iberian, Newfoundland and Nova Scotia margins. American Geophysical Union, Fall Meeting, Abstracts, Abstract #T23A-2374.Google Scholar
  57. Lotze, F., 1937. Zur Methodik der Forschungen über saxonische Tektonik. Geotektonische Forschungen, 1, 6–27.Google Scholar
  58. Loudenr, K. E., White, R. S., Potts, C. G., and Forsyth, D. W., 1986. Structure and seismotectonics of the Vema Fracture Zone, Atlantic Ocean. Journal of the Geological Society (London), 143, 795–805.CrossRefGoogle Scholar
  59. Mazarovich, A. O., Simonov, V. A., Peive, A. A., Kovyazin, S. V., Tret’yakov, G. A., Raznitsin, Y. N., Savel’eva, G. N., Skolotnev, S. G., Sokolov, S. Y., and Turko, N. N., 2001. Hydrothermal mineralization in the Sierra Leone Fracture Zone (Central Atlantic). Lithology and Mineral Resources, 36(5), 460–466.CrossRefGoogle Scholar
  60. McKenzie, D., and Parker, R., 1967. The North Pacific: an example of tectonics on a sphere. Nature, 216, 1276–1280.CrossRefGoogle Scholar
  61. McKenzie, D., Jackson, J., and Priestley, K., 2005. The thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters, 233, 337–349.CrossRefGoogle Scholar
  62. Morgan, W. P., 1968. Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research, 73, 1959–1982.CrossRefGoogle Scholar
  63. Morris, A., Andereson, M. W., Inwood, J., and Robertson, A. H. F., 2006. Palaeomegnetic insights into the evolution of Neotethyan oceanic crust in the eastern Mediterranean. In Robertson, A. H. F., and Mountrakis, D. (eds.), Tectonic Development of the Eastern Mediterranean Region, London: Geological Society (London) Special Publication 260, pp. 351–372.Google Scholar
  64. Müller, R. D., and Roest, W. R., 1992. Fracture zones in the North Atlantic from combined Geosat and Seasat data. Journal of Geophysical Research, 97, 3337–3350.CrossRefGoogle Scholar
  65. Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry Geophysics Geosystems G 3, 9, doi:10.1029/2007GC001743.Google Scholar
  66. Nicolas, A., 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Dordrecht: Kluwer Academic Publishers. Petrology and Structural Geology, Vol. 4, xiii+367 pp.Google Scholar
  67. Ohnenstetter, M., Bechon, F., and Ohnenstetter, D., 1990. Geochemistry and mineralogy of lavas from the Arakapas Fault Belt, Cyprus: consequences for magma chamber evolution. Mineralogy and Petrology, 41, 105–124.CrossRefGoogle Scholar
  68. Okal, E. A., and Langenhorst, A. R., 2000. Seismic properties of the Eltanin Transform System, South Pacific. Physics of the Earth and Planetary Interiors, 119, 185–208.CrossRefGoogle Scholar
  69. Özbakır, A. D., Şengör, A. M. C., Wortel, M.J.R, Gover, R., 2013. The Pliny-Strabo trench region: A large scale shear zone resulting from slab tearing: Earth and Planetary Science Letters, 375, pp. 188–195Google Scholar
  70. Priestley, K., and McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters, 244, 285–301.CrossRefGoogle Scholar
  71. Rutter, E. H., and Brodie, K. H., 1987. On the mechanical properties of oceanic transform faults. Annales Tectonicae, 1, 87–96.Google Scholar
  72. Sage, F., Basile, C., Mascle, J., Pontoise, B., and Whitmarsh, R. B., 2000. Crustal structure of the continent-ocean transition off the Côte d’Ivoire-Ghana transform margin: implications for thermal exchanges across the palaeotransform boundary. Geophysical Journal International, 143, 662–678.CrossRefGoogle Scholar
  73. Sandwell, D. T., 1986. Thermal stress and the spacings of transform faults. Journal of Geophysical Research, 91, 6405–6417.CrossRefGoogle Scholar
  74. Schouten, H., and White, R. S., 1980. Zero-offset fracture zones. Geology, 8, 175–179.CrossRefGoogle Scholar
  75. Schouten, H., Karson, J. A., and Dick, H., 1980. Geometry of transform zones. Nature, 288, 470–473.CrossRefGoogle Scholar
  76. Scrutton, R. A., 1979. On sheared passive continental margins. Tectonophysics, 59, 293–305 (reprinted in Keen, C. E. (ed.), Crustal Properties Across Passive Margin. Developments in Geotectonics 15. Amsterdam: Elsevier).Google Scholar
  77. Scrutton, R. A., 1982. Crustal structure and development of sheared passive continental margins. In Scrutton, R. A. (ed.), Dynamics of Passive Margins. Washington, DC/Boulder: American Geophysical Union/Geological Society of America. Geodynamics Series, Vol. 6, pp. 133–140.CrossRefGoogle Scholar
  78. Searle, R. C., 1983. Multiple, closely spaced faults in fast-slipping fracture zones. Geology, 11, 607–610.CrossRefGoogle Scholar
  79. Şengör, A. M. C., 1983. Transform faylar – Genel. In Canıtez, N. (ed.), Levha Tektoniği. İstanbul: İTÜ Maden Fakültesi/Ofset Baskı Atölyesi, pp. 547–569.Google Scholar
  80. Şengör, A. M. C., 1990. Plate tectonics and orogenic research after 25 years: a Tethyan perspective. Earth Science Reviews, 27, 1–201.CrossRefGoogle Scholar
  81. Şengör, A. M. C., 1995. Sedimentation and tectonics of fossil rifts. In Busby, C. J., and Ingersoll, R. V. (eds.), Tectonics of Sedimentary Basins. Oxford: Blackwell, pp. 53–117.Google Scholar
  82. Şengör, A. M. C., 1999. Continental interiors and cratons: any relation? Tectonophysics, 305, 1–42.CrossRefGoogle Scholar
  83. Şengör, A. M. C., 2001. Elevation as indicator of mantle plume activity. In Ernst, R., and Buchan, K. (eds.), Mantle Plumes: Their Identification Through Time; Colorado: Geological Society of America Special Paper 352, pp. 183–225.Google Scholar
  84. Şengör, A. M. C., and Natal’in, B. A., 1996. Palaeotectonics of Asia: fragments of a synthesis. In Yin, A., and Harrison, M. (eds.), The Tectonic Evolution of Asia, Rubey Colloquium. Cambridge: Cambridge University Press, pp. 486–640.Google Scholar
  85. Şengör, A. M. C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X. and Rangin, C., 2005. The North Anatolian Fault: A new look: Annual Review of Earth and Planetary Sciences, 33, pp. 37–112.Google Scholar
  86. Sigmundsson, F., 2006. Iceland Geodynamics – Crustal Deformation and Divergent Plate Tectonics. Heidelberg/Chichester: Springer/Praxis, xxiv+209 pp. +plates in the back.Google Scholar
  87. Sigurdsson, H., 1967. Dykes, fractures and folds in the basalt plateau of Western Iceland: Einarsson, T., 1967, The Icelandic fracture system and the inferred crustal stress field. In Björnsson, S. (ed.), Iceland and Mid-Ocean Ridges, Vísindafélag. Íslendinga (Societas Scientiarum Islandica). Reykjavik: Prentsmiđjan Leiftur, pp. 162–169.Google Scholar
  88. Smoot, N. C., 1989. North Atlantic fracture-zone distribution and patterns shown by multibeam sonar. Geology, 17, 1119–1122.CrossRefGoogle Scholar
  89. Sørensen, M. B., Ottemöller, L., Havzkov, J., Atakan, K., Hellevang, B., and Pedersen, R. B., 2007. Tectonic processes in the Jan Mayen Fracture Zone based on earthquake occurrence and bathymetry. Bulletin of the Seismological Society of America, 97, 772–779.CrossRefGoogle Scholar
  90. Stein, C. A., and Cochran, J. R., 1985. The transition between the Sheba Ridge and Owen Basin: rifting of old oceanic lithosphere. Geophysical Journal of the Royal Astronomical Society, 81, 47–74.CrossRefGoogle Scholar
  91. Sykes, L., 1967. Mechanism of earthquakes and nature of faulting on the mid-oceanic ridges. Journal of Geophysical Research, 72, 2131–2153.CrossRefGoogle Scholar
  92. Tamsett, D., and Searle, R., 1990. Structure of the Alula-Fartak Fracture Zone, Gulf of Aden. Journal of Geophysical Research, 95, 1239–1254.CrossRefGoogle Scholar
  93. Tapponnier, P., Armijo, R., Manighetti, I., and Courtillot, V., 1990. Bookshelf faulting and horizontal block rotations between overlapping rifts in southern Afar. Geophysical Research Letters, 17, 1–4.CrossRefGoogle Scholar
  94. Tchalenko, J. S., 1970. Similarities between shear zones of different magnitudes. Geological Society of America Bulletin, 81, 1625–1640.CrossRefGoogle Scholar
  95. Teichert, C., 1979. Spherical cap tectonics. Geotimes, October issue.Google Scholar
  96. Tucholke, B. E., and Lin, J., 1994. A geological model for the structure of ridge segments in a slow spreading ocean crust. Journal of Geophysical Research, 99, 11937–11958.CrossRefGoogle Scholar
  97. Turcotte, D. L., 1974. Are transform faults thermal contraction cracks? Journal of Geophysical Research, 79, 2573–2577.CrossRefGoogle Scholar
  98. Wilson, J. T., 1954. The development and structure of the crust. In Kuiper, G. P. (ed.), The Earth as a Planet: The Solar System. Chicago: The University of Chicago Press, Vol. II, pp. 138–214.Google Scholar
  99. Wilson, J. T., 1965. A new class of faults and their bearing on continental drift. Nature, 207, 343–347.CrossRefGoogle Scholar
  100. Wolin, E., Stein, S., Pazzaglia, F., Meltzer, A., Kafka, A., and Berti, C., 2012. Mineral, Virginia, earthquake illustrates seismicity of a passive-aggressive margin. Geophysical Research Letters, 39, doi:10.1029/2011GL050310.Google Scholar
  101. Zoback, M. L., 1992. First and second-order patterns of stress in the lithosphere: the World Stress Map Project. Journal of Geophysical Research, 97, 11703–11728 + coloured foldout map.CrossRefGoogle Scholar

Some Complementary Web Sites for School and Elementary University Levels

  1. http://plateboundary.rice.edu/. Last visited on 22 March 2013.
  2. http://web.viu.ca/earle/transform-model/. Last visited on 22 March 2013.
  3. http://www.earthds.info/pdfs/EDS_20.PDF. Last visited on 22 March 2013.

Advanced Undergraduate and Postgraduate Levels

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Faculty of Mines, Department of Geology and Eurasia Institute of Earth SciencesIstanbul Technical UniversityAyazaga, IstanbulTurkey