Transform Fault
Latest version View entry history
Synonyms
Definition
A transform fault is a plate boundary along which plate motion is parallel with the strike of the boundary. Along such a boundary, ideally, crust is neither generated nor destroyed, and that is why they are also called conservative plate boundaries. In real life, the thermal and mechanical properties of the crust and upper mantle and the time-averaged behaviour of the spreading centre and subduction zones in the oceans impose a finite width on transform faults in which deformation is complex, forming a fault zone rather than a single clean fault. Large, active, continental transform faults, such as the San Andreas Fault system in California, the North Anatolian Fault system in northern Turkey, the Alpine Fault in New Zealand, and the Altyn Tagh Fault in northern Tibetan Plateau, constitute veritable keirogens. In this entry, the emphasis is on the oceanic transform faults, in keeping with the theme of the volume.
Introduction
Keywords
Subduction Zone Fracture Zone Oceanic Crust Tarim Basin Plate BoundaryBibliography
- Abbate, E., Passerini, P., and Zan, L., 1995. Strike-slip faults in a rift area: a transect in the Afar triangle, East Africa. Tectonophysics, 241, 67–97.CrossRefGoogle Scholar
- Ahlgren, S. G., 2001. The nucleation and evolution of Riedel shear zones as deformation bands in porous sandstone. Journal of Structural Geology, 23, 1203–1214.CrossRefGoogle Scholar
- Allerton, S., 1989. Distortions, rotations, and crustal thinning at ridge-transform intersections. Nature, 340, 626–632.CrossRefGoogle Scholar
- Anderson, E. M., 1951. The Dynamics of Faulting and Dyke Formation with Applications to Britain, 2nd revised edn. Edinburgh: Oliver and Boyd, x + 206 pp.Google Scholar
- Atwater, T., 1970. Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geological Society of America Bulletin, 81, 3513–3536.CrossRefGoogle Scholar
- Baes, M., Govers, R., and Wortel, R., 2011. Subduction initiation along the inherited weakness zone at the edge of a slab: insights from numerical models. Geophysical Journal International, 184, 991–1008.CrossRefGoogle Scholar
- Behn, M. D., Boettcher, M. S., and Hirth, G., 2007. Thermal structure of oceanic transform faults. Geology, 35, 307–310.CrossRefGoogle Scholar
- Bercovici, D., 2003. The generation of plate tectonics from mantle convection. Earth and Planetary Science Letters, 205, 107–121.CrossRefGoogle Scholar
- Bernoulli, D., and Weissert, H., 1985. Sedimentary fabrics in Alpine ophicalcites, South Pennine Arosa zone, Switzerland. Geology, 13, 755–758.CrossRefGoogle Scholar
- Beutel, E. K., and Okal, E. M., 2003. Strength asperities along oceanic transform faults: a model for the origin of extensional earthquakes on the Eltanin transform system. Earth and Planetary Science Letters, 216, 27–41.CrossRefGoogle Scholar
- Bonatti, E., 1978. Vertical tectonism in oceanic fracture zones. Earth and Planetary Science Letters, 37, 249–251.CrossRefGoogle Scholar
- Bonatti, E., and Crane, K., 1984. Oceanic fracture zones. Scientific American, 250(5), 36–47.CrossRefGoogle Scholar
- Bonatti, E., and Hamlyn, P. R., 1978. Mantle uplifted block in the western Indian Ocean. Science, 201, 249–251.CrossRefGoogle Scholar
- Bonatti, E., Chermak, A., and Honnorez, J., 1979. Tectonic and igneous emplacement of crust in oceanic transform zones. In Talwani, M., Harrison, C. G., and Hayes, D. E. (eds.), Deep Drilling Results in the Atlantic Ocean: Ocean Crust. Washington: American Geophysical Union. Maurice Ewing Series, Vol. 2, pp. 239–248.CrossRefGoogle Scholar
- Burke, K. C. A., and Dewey, J. F., 1973. Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks. Journal of Geology, 81, 406–433.CrossRefGoogle Scholar
- Casey, J. F., and Dewey, J. F., 1984. Initiation of subduction zones along transform and accreting plate boundaries, triple junction evolution, and forearc spreading centres – implications for ophiolite geology and obduction. In Gass, I. G., Lippard, S. J., and Shelton, A. W. (eds.), Ophiolites and Oceanic Lithosphere, London: Geological Society Special Publication 13, pp. 269–290.Google Scholar
- Casey, J. F., Dewey, J. F., Fox, P. J., Karson, J. A., and Rosenkrantz, E., 1981. Heterogeneous nature of oceanic crust and upper mantle: a perspective from the Bay of Islands ophiolite complex. In Emiliani, C. (ed.), The Oceanic Lithosphere, The Sea. New York: John Wiley & Sons, Vol. 7, pp. 305–338.Google Scholar
- Cloetingh, S. A. P. L., Wortel, M. J. R., and Vlaar, N. J., 1984. Passive margin evolution, initiation of subduction and the Wilson Cycle. Tectonophysics, 109, 147–163.CrossRefGoogle Scholar
- Collette, B. J., 1974. Thermal contraction joints in a spreading seafloor as origin of fracture zones. Nature, 251, 299–300.CrossRefGoogle Scholar
- CYAGOR II Group, 1984. Intraoceanic tectonism on the Gorringe Bank: observations by submersible. In Gass, I. G., Lippard, S. J., and Shelton, A. W. (eds.), Ophiolites and Oceanic Lithosphere, London: Geological Society Special Publication 13, pp. 113–130.Google Scholar
- DeLong, S. E., Hodges, F. N., and Arculus, R. J., 1975. Ultramafic and mafic inclusions, Kanaga Island, Alaska, and the occurrence of alkaline rocks in island arcs. Journal of Geology, 83, 721–736.CrossRefGoogle Scholar
- DeLong, S. E., Dewey, J. F., and Fox, P. J., 1977. Displacement history of oceanic fracture zones. Geology, 5, 199–202.CrossRefGoogle Scholar
- DeLong, S. E., Dewey, J. F., and Fox, P. J., 1979. Topographic and geologic evolution of fracture zones. Journal of the Geological Society of London, 136, 303–310.CrossRefGoogle Scholar
- Dewey, J. F., 1975. Finite plate evolution: some implications for the evolution of rock masses at plate margins. American Journal of Science, 275-A(John Rodgers volume), 260–284.Google Scholar
- Dewey, J. F., 1976. Ancient plate margins: some observations. Tectonophysics, 33, 379–385.CrossRefGoogle Scholar
- Dewey, J. F., 2002. Transtension in arcs and orogens. International Geology Review, 44, 402–438.CrossRefGoogle Scholar
- Dewey, J. F., and Casey, J. F., 2011. The origin of obducted large-slab ophiolite complexes. In Brown, D., and Ryan, P. D. (eds.), Arc Continent Collision. Heidelberg: Springer. Frontiers in Earth Sciences, pp. 431–444.CrossRefGoogle Scholar
- Dickinson, W. R., 1996. Kinematics of transrotational tectonism in the California transverse ranges and its contribution to cumulative slip along the San Andreas transform fault system, Boulder Colorado: Geological Society of America Special Paper 305, iv + 46 pp.Google Scholar
- Einarsson, T., 1967. The Icelandic fracture system and the inferred crustal stress field. In Björnsson, S. (ed.), Iceland and Mid-Ocean Ridges, Vísindafélag. Íslendinga (Societas Scientiarum Islandica). Reykjavik: Prentsmiđjan Leiftur, pp. 128–141.Google Scholar
- Folk, R. L., and McBride, E. F., 1976. Possible pedogenic origin of Ligurian ophicalcite: a Mesozoic calichified serpentinite. Geology, 4, 327–332.CrossRefGoogle Scholar
- Fox, P. J., and Gallo, D. G., 1984. A tectonic model for ridge-transform-ridge plate boundaries: implications for the structure of oceanic lithosphere. Tectonophysics, 104, 205–242.CrossRefGoogle Scholar
- Fox, P. J., Detrick, R. S., and Purdy, G. M., 1980. Evidence for crustal thinning near fracture zones: implications for ophiolites. In Proceedings International Ophiolite Symposium Cyprus 1979. Nicosia: Cyprus Geological Survey Department, pp. 161–168.Google Scholar
- Franchateau, J., Choukroune, P., Hekinian, R., Le Pichon, X., and Needham, H. D., 1976. Oceanic fracture zones do not provide deep sections in the crust. Canadian Journal of Earth Sciences, 13, 1223–1235.CrossRefGoogle Scholar
- Freund, R., and Merzer, A. M., 1976. Anisotropic origin of transform faults. Science, 192, 137–138.CrossRefGoogle Scholar
- Garfunkel, Z., 1986. Review of oceanic transform activity and development. Journal of the Geological Society of London, 143, 775–784.CrossRefGoogle Scholar
- Géli, L., and Sclater, J., 2008. On the depth of oceanic earthquakes: brief comments on “The thermal structure of oceanic and continental lithosphere” by McKenzie, D., Jackson, J. and Priestley, K. Earth Plan. Sci. Let., 233, [2005], 337–349. Earth and Planetary Science Letters, 265, 769–775, http://dx.doi.org/10.1016/j.epsl.2007.08.029
- Gerya, T., 2010. Dynamical instability produces transform faults at mid-ocean ridges. Science, 329, 1047–1050.CrossRefGoogle Scholar
- Gibbs, A. E., Hein, J. R., Lewis, S. D., and McCulloch, D. S., 1993. Hydrothermal palygorskite and ferromanganese mineralization at a central California margin fracture zone. Marine Geology, 115, 47–65.CrossRefGoogle Scholar
- Govers, R., and Wortel, M. J. R., 2005. Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth and Planetary Science Letters, 236, 505–523.CrossRefGoogle Scholar
- Hall, C., and Gurnis, M., 2005. Strength of fracture zones from their bathymetric and gravitational evolution. Journal of Geophysical Research, 110, B01402, doi:10.1029/2004JB003312.CrossRefGoogle Scholar
- Hamlyn, P. R., and Bonatti, E., 1980. Petrology of mantle-derived ultramafics from the Owen Fracture Zone, northwest Indian Ocean: implications for the nature of the oceanic upper mantle. Earth and Planetary Science Letters, 48, 65–79.CrossRefGoogle Scholar
- Haxby, W. F., and Parmentiar, E. M., 1988. Thermal contraction and the state of stress in the oceanic lithosphere. Journal of Geophysical Research, 93, 6419–6429.CrossRefGoogle Scholar
- Hein, J. R., Koski, R. A., Embley, R. W., Reid, J., and Chang, S.-W., 1999. Diffuse-flow hydrothermal field in an oceanic fracture zone setting, Northeast Pacific: deposit composition. Exploration and Mining Geology, 8, 299–322.Google Scholar
- Honnorez, J., Mével, C., and Montigny, R., 1984. Occurrence and significance of gneissic amphibolites in the Vema fracture zone, equatorial Mid-Atlantic Ridge. In Gass, I. G., Lippard, S. J., and Shelton, A. W. (eds.), Ophiolites and Oceanic Lithosphere, London: Geological Society Special Publication 13, pp. 121–130.Google Scholar
- Houseman, G., McKenzie, D., and Molnar, P., 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. Journal of Geophysical Research, 86, 6115–6132.CrossRefGoogle Scholar
- Karig, D. E., 1982. Initiation of subduction zones: implications for arc evolution and ophiolite emplacement. In Leggett, J. K. (ed.), Trench-Forearc Geology: Sedimentation and Tectonics on Modern and Ancient Plate Margins, London: Geological Society Special Publication 10, pp. 563–576.Google Scholar
- Karson, J. A., 1990. Accommodation zones and transfer faults: integral components of Mid-Atlantic extensional systems. In Peters, T., Nicolas, A., and Coleman, R. G. (eds.), Ophiolite Genesis and Evolution of the Oceanic Lithosphere – Proceedings of the Ophiolite Conference, Held in Muscat, Oman, 7–18 January 1990. Dordrecht: Kluwer Academic Publishers, pp. 21–37.Google Scholar
- Karson, J. A., and Dick, H. J. B., 1983. Tectonics of ridge-transform intersections at the Kane fracture zone. Marine Geophysical Researches, 6, 51–98.CrossRefGoogle Scholar
- Kastens, K., 1987. A compendium of causes and effects of processes at transform faults and fracture zones. Reviews of Geophysics, 25, 1554–1562.CrossRefGoogle Scholar
- Kastens, K., Bonatti, E., Caress, D., Carrara, G., Dauteuil, O., Frueh-Green, G., Ligi, M., and Tartarotti, P., 1998. The Vema transverse ridge (central Atlantic). Marine Geophysical Researches, 20, 533–556.CrossRefGoogle Scholar
- Katz, R. F., 2010. Porosity-driven convection and asymmetry beneath mid-ocean ridges. Geochemistry Geophysics Geosystems G 3, 11, doi:10.1029/2010GC003282.Google Scholar
- Katz, Y., Weinberger, R., and Aydın, A., 2004. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah. Journal of Structural Geology, 26, 491–501.CrossRefGoogle Scholar
- Ketin, İ., 1948. Über die tektonisch-mechanischen Folgerungen aus den grossen anatolischen Erdbeben des letzten Dezenniums. Geologische Rundschau, 36, 77–83.CrossRefGoogle Scholar
- Kohlstedt, D., Evans, B., and Mackwell, S., 1995. Strength of the lithosphere: constraints imposed by laboratory experiments. Journal of Geophysical Research, 100, 17587–17602.CrossRefGoogle Scholar
- Kumar, R. R., and Gordon, R. G., 2009. Horizontal thermal contraction of oceanic lithosphere: the ultimate limit to the rigid plate approximation. Journal of Geophysical Research, 114, B01403, doi:10.1029/2007JB005473.CrossRefGoogle Scholar
- Kusznir, N. J., and Cooper, C., 2011. The depth distribution of mantle serpentinization at magma poor rifted margins: geophysical evidence from the Iberian, Newfoundland and Nova Scotia margins. American Geophysical Union, Fall Meeting, Abstracts, Abstract #T23A-2374.Google Scholar
- Lotze, F., 1937. Zur Methodik der Forschungen über saxonische Tektonik. Geotektonische Forschungen, 1, 6–27.Google Scholar
- Loudenr, K. E., White, R. S., Potts, C. G., and Forsyth, D. W., 1986. Structure and seismotectonics of the Vema Fracture Zone, Atlantic Ocean. Journal of the Geological Society (London), 143, 795–805.CrossRefGoogle Scholar
- Mazarovich, A. O., Simonov, V. A., Peive, A. A., Kovyazin, S. V., Tret’yakov, G. A., Raznitsin, Y. N., Savel’eva, G. N., Skolotnev, S. G., Sokolov, S. Y., and Turko, N. N., 2001. Hydrothermal mineralization in the Sierra Leone Fracture Zone (Central Atlantic). Lithology and Mineral Resources, 36(5), 460–466.CrossRefGoogle Scholar
- McKenzie, D., and Parker, R., 1967. The North Pacific: an example of tectonics on a sphere. Nature, 216, 1276–1280.CrossRefGoogle Scholar
- McKenzie, D., Jackson, J., and Priestley, K., 2005. The thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters, 233, 337–349.CrossRefGoogle Scholar
- Morgan, W. P., 1968. Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research, 73, 1959–1982.CrossRefGoogle Scholar
- Morris, A., Andereson, M. W., Inwood, J., and Robertson, A. H. F., 2006. Palaeomegnetic insights into the evolution of Neotethyan oceanic crust in the eastern Mediterranean. In Robertson, A. H. F., and Mountrakis, D. (eds.), Tectonic Development of the Eastern Mediterranean Region, London: Geological Society (London) Special Publication 260, pp. 351–372.Google Scholar
- Müller, R. D., and Roest, W. R., 1992. Fracture zones in the North Atlantic from combined Geosat and Seasat data. Journal of Geophysical Research, 97, 3337–3350.CrossRefGoogle Scholar
- Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry Geophysics Geosystems G 3, 9, doi:10.1029/2007GC001743.Google Scholar
- Nicolas, A., 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Dordrecht: Kluwer Academic Publishers. Petrology and Structural Geology, Vol. 4, xiii+367 pp.Google Scholar
- Ohnenstetter, M., Bechon, F., and Ohnenstetter, D., 1990. Geochemistry and mineralogy of lavas from the Arakapas Fault Belt, Cyprus: consequences for magma chamber evolution. Mineralogy and Petrology, 41, 105–124.CrossRefGoogle Scholar
- Okal, E. A., and Langenhorst, A. R., 2000. Seismic properties of the Eltanin Transform System, South Pacific. Physics of the Earth and Planetary Interiors, 119, 185–208.CrossRefGoogle Scholar
- Özbakır, A. D., Şengör, A. M. C., Wortel, M.J.R, Gover, R., 2013. The Pliny-Strabo trench region: A large scale shear zone resulting from slab tearing: Earth and Planetary Science Letters, 375, pp. 188–195Google Scholar
- Priestley, K., and McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters, 244, 285–301.CrossRefGoogle Scholar
- Rutter, E. H., and Brodie, K. H., 1987. On the mechanical properties of oceanic transform faults. Annales Tectonicae, 1, 87–96.Google Scholar
- Sage, F., Basile, C., Mascle, J., Pontoise, B., and Whitmarsh, R. B., 2000. Crustal structure of the continent-ocean transition off the Côte d’Ivoire-Ghana transform margin: implications for thermal exchanges across the palaeotransform boundary. Geophysical Journal International, 143, 662–678.CrossRefGoogle Scholar
- Sandwell, D. T., 1986. Thermal stress and the spacings of transform faults. Journal of Geophysical Research, 91, 6405–6417.CrossRefGoogle Scholar
- Schouten, H., and White, R. S., 1980. Zero-offset fracture zones. Geology, 8, 175–179.CrossRefGoogle Scholar
- Schouten, H., Karson, J. A., and Dick, H., 1980. Geometry of transform zones. Nature, 288, 470–473.CrossRefGoogle Scholar
- Scrutton, R. A., 1979. On sheared passive continental margins. Tectonophysics, 59, 293–305 (reprinted in Keen, C. E. (ed.), Crustal Properties Across Passive Margin. Developments in Geotectonics 15. Amsterdam: Elsevier).Google Scholar
- Scrutton, R. A., 1982. Crustal structure and development of sheared passive continental margins. In Scrutton, R. A. (ed.), Dynamics of Passive Margins. Washington, DC/Boulder: American Geophysical Union/Geological Society of America. Geodynamics Series, Vol. 6, pp. 133–140.CrossRefGoogle Scholar
- Searle, R. C., 1983. Multiple, closely spaced faults in fast-slipping fracture zones. Geology, 11, 607–610.CrossRefGoogle Scholar
- Şengör, A. M. C., 1983. Transform faylar – Genel. In Canıtez, N. (ed.), Levha Tektoniği. İstanbul: İTÜ Maden Fakültesi/Ofset Baskı Atölyesi, pp. 547–569.Google Scholar
- Şengör, A. M. C., 1990. Plate tectonics and orogenic research after 25 years: a Tethyan perspective. Earth Science Reviews, 27, 1–201.CrossRefGoogle Scholar
- Şengör, A. M. C., 1995. Sedimentation and tectonics of fossil rifts. In Busby, C. J., and Ingersoll, R. V. (eds.), Tectonics of Sedimentary Basins. Oxford: Blackwell, pp. 53–117.Google Scholar
- Şengör, A. M. C., 1999. Continental interiors and cratons: any relation? Tectonophysics, 305, 1–42.CrossRefGoogle Scholar
- Şengör, A. M. C., 2001. Elevation as indicator of mantle plume activity. In Ernst, R., and Buchan, K. (eds.), Mantle Plumes: Their Identification Through Time; Colorado: Geological Society of America Special Paper 352, pp. 183–225.Google Scholar
- Şengör, A. M. C., and Natal’in, B. A., 1996. Palaeotectonics of Asia: fragments of a synthesis. In Yin, A., and Harrison, M. (eds.), The Tectonic Evolution of Asia, Rubey Colloquium. Cambridge: Cambridge University Press, pp. 486–640.Google Scholar
- Şengör, A. M. C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X. and Rangin, C., 2005. The North Anatolian Fault: A new look: Annual Review of Earth and Planetary Sciences, 33, pp. 37–112.Google Scholar
- Sigmundsson, F., 2006. Iceland Geodynamics – Crustal Deformation and Divergent Plate Tectonics. Heidelberg/Chichester: Springer/Praxis, xxiv+209 pp. +plates in the back.Google Scholar
- Sigurdsson, H., 1967. Dykes, fractures and folds in the basalt plateau of Western Iceland: Einarsson, T., 1967, The Icelandic fracture system and the inferred crustal stress field. In Björnsson, S. (ed.), Iceland and Mid-Ocean Ridges, Vísindafélag. Íslendinga (Societas Scientiarum Islandica). Reykjavik: Prentsmiđjan Leiftur, pp. 162–169.Google Scholar
- Smoot, N. C., 1989. North Atlantic fracture-zone distribution and patterns shown by multibeam sonar. Geology, 17, 1119–1122.CrossRefGoogle Scholar
- Sørensen, M. B., Ottemöller, L., Havzkov, J., Atakan, K., Hellevang, B., and Pedersen, R. B., 2007. Tectonic processes in the Jan Mayen Fracture Zone based on earthquake occurrence and bathymetry. Bulletin of the Seismological Society of America, 97, 772–779.CrossRefGoogle Scholar
- Stein, C. A., and Cochran, J. R., 1985. The transition between the Sheba Ridge and Owen Basin: rifting of old oceanic lithosphere. Geophysical Journal of the Royal Astronomical Society, 81, 47–74.CrossRefGoogle Scholar
- Sykes, L., 1967. Mechanism of earthquakes and nature of faulting on the mid-oceanic ridges. Journal of Geophysical Research, 72, 2131–2153.CrossRefGoogle Scholar
- Tamsett, D., and Searle, R., 1990. Structure of the Alula-Fartak Fracture Zone, Gulf of Aden. Journal of Geophysical Research, 95, 1239–1254.CrossRefGoogle Scholar
- Tapponnier, P., Armijo, R., Manighetti, I., and Courtillot, V., 1990. Bookshelf faulting and horizontal block rotations between overlapping rifts in southern Afar. Geophysical Research Letters, 17, 1–4.CrossRefGoogle Scholar
- Tchalenko, J. S., 1970. Similarities between shear zones of different magnitudes. Geological Society of America Bulletin, 81, 1625–1640.CrossRefGoogle Scholar
- Teichert, C., 1979. Spherical cap tectonics. Geotimes, October issue.Google Scholar
- Tucholke, B. E., and Lin, J., 1994. A geological model for the structure of ridge segments in a slow spreading ocean crust. Journal of Geophysical Research, 99, 11937–11958.CrossRefGoogle Scholar
- Turcotte, D. L., 1974. Are transform faults thermal contraction cracks? Journal of Geophysical Research, 79, 2573–2577.CrossRefGoogle Scholar
- Wilson, J. T., 1954. The development and structure of the crust. In Kuiper, G. P. (ed.), The Earth as a Planet: The Solar System. Chicago: The University of Chicago Press, Vol. II, pp. 138–214.Google Scholar
- Wilson, J. T., 1965. A new class of faults and their bearing on continental drift. Nature, 207, 343–347.CrossRefGoogle Scholar
- Wolin, E., Stein, S., Pazzaglia, F., Meltzer, A., Kafka, A., and Berti, C., 2012. Mineral, Virginia, earthquake illustrates seismicity of a passive-aggressive margin. Geophysical Research Letters, 39, doi:10.1029/2011GL050310.Google Scholar
- Zoback, M. L., 1992. First and second-order patterns of stress in the lithosphere: the World Stress Map Project. Journal of Geophysical Research, 97, 11703–11728 + coloured foldout map.CrossRefGoogle Scholar
Some Complementary Web Sites for School and Elementary University Levels
- http://plateboundary.rice.edu/. Last visited on 22 March 2013.
- http://web.viu.ca/earle/transform-model/. Last visited on 22 March 2013.
- http://www.bioygeo.info/Animaciones/TransformFaultsV2.swf. Last visited on 22 March 2013.
- http://www.earthds.info/pdfs/EDS_20.PDF. Last visited on 22 March 2013.
- http://www.earthlearningidea.com/PDF/84_Transform_faults.pdf. Last visited on 22 March 2013.
- http://www.open.edu/openlearn/science-maths-technology/science/geology/plate-tectonics/content-section-3.8. Last visited on 22 March 2013.
- http://www.wwnorton.com/college/geo/oceansci/animations.asp#ch4. Last visited on 22 March 2013.
Advanced Undergraduate and Postgraduate Levels
- http://geoscience.wisc.edu/~chuck/MORVEL/trf_flts.html. Last visited on 22 March 2013.