Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Serpentinization

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_119-1

Synonyms

Definition

“Serpentinization” is the process leading to the formation of serpentinites, metamorphic rocks derived from hydrous alteration of olivine-rich ultramafic rocks and consisting mainly of serpentine group minerals.

Introduction

Serpentinization denotes the hydrous alteration of olivine-rich ultramafic rocks, which can occur everywhere, where these rocks and aqueous solutions react under suitable pressure and temperature conditions. In the oceanic realm, seawater-derived fluids are abundant; however, ultramafic rocks (peridotites) are typically found in the Earth’s upper mantle. Serpentinization will only take place where these rocks get in contact with seawater fluids, either by deep fluid infiltration in fracture zones and bend faults or by uplift and exposure of peridotites at or near the seafloor. During serpentinization, the primary minerals contained in a peridotite...

Keywords

Lithospheric Mantle Ultramafic Rock Mantle Wedge Mantle Rock Detachment Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

Bibliography

  1. Alt, J. C., and Shanks, W. C., 1998. Sulfur in serpentinized oceanic peridotites: serpentinization processes and microbial sulfate reduction. Journal of Geophysical Research, 103, 9917–9929.CrossRefGoogle Scholar
  2. Alt, J. C., and Shanks, W. C., 2006. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism. Earth and Planetary Science Letters, 242, 272–287.CrossRefGoogle Scholar
  3. Amend, J. P., McCollom, T. M., Hentscher, M., and Bach, W., 2011. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochimica et Cosmochimica Acta, 75, 5736–5748.CrossRefGoogle Scholar
  4. Andreani, M., Mével, C., Boullier, A.-M., and Escartín, J., 2007. Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. Geochemistry, Geophysics, Geosystems, 8, Q02012.CrossRefGoogle Scholar
  5. Andreani, M., Muñoz, M., Marcaillou, C., and Delacour, A., 2013. μXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos, doi:10.1016/j.lithos.2013.04.008.Google Scholar
  6. Bach, W., Banerjee, N. R., Dick, H. J. B., and Baker, E. T., 2002. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10–16°E. Geochemistry, Geophysics, Geosystems, 3, doi:10.1029/2001GC00027.Google Scholar
  7. Beard, J. S., and Hopkinson, L., 2000. A fossil, serpentinization-related hydrothermal vent, Ocean Drilling Program Leg 173, Site 1068 (Iberia Abyssal Plain), some aspects of mineral and fluid chemistry. Journal of Geophysical Research, 105, 16527–16539.CrossRefGoogle Scholar
  8. Bonatti, E., Honnorez, J., and Ferrara, G., 1971. Ultramafic rocks: Peridotite-Gabbro-Basalt complex from the equatorial mid-Atlantic ridge. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 268, 385–402.CrossRefGoogle Scholar
  9. Bonatti, E., Brunelli, D., Buck, W. R., Cipriani, A., Fabretti, P., Ferrante, V., Gasperini, L., and Ligi, M., 2005. Flexural uplift of a lithospheric slab near the Vema transform (Central Atlantic), timing and mechanisms. Earth and Planetary Science Letters, 240, 642–655.CrossRefGoogle Scholar
  10. Boschi, C., Früh-Green, G. L., Delacour, A., Karson, J. A., and Kelley, D. S., 2006. Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochemistry, Geophysics, Geosystems, 7, Q01004.CrossRefGoogle Scholar
  11. Butt, C. R. M., and Cluzel, D., 2013. Nickel laterite ore deposits: weathered serpentinites. Elements, 9, 123–128.CrossRefGoogle Scholar
  12. Cannat, M., Fontaine, F., and Escartín, J., 2010. Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. In Diversity of hydrothermal systems on slow spreading ocean ridges. Washington, DC: AGU, pp. 241–264.Google Scholar
  13. Dick, H. J. B., Lin, J., and Schouten, H., 2003. An ultraslow-spreading class of ocean ridge. Nature, 426, 405–412.CrossRefGoogle Scholar
  14. Edmonds, H. N., Michael, P. J., Baker, E. T., Connelly, D. P., Snow, J. E., Langmuir, C. H., Dick, H. J. B., Mühe, R., German, C. R., and Graham, D. W., 2003. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature, 421, 252–256.CrossRefGoogle Scholar
  15. Evans, B. W., Kuehner, S. M., and Chopelas, A., 2009. Magnetite-free, yellow lizardite serpentinization of olivine websterite, Canyon Mountain complex, N.E. Oregon. American Mineralogist, 94, 1731–1744.CrossRefGoogle Scholar
  16. Frost, B. R., 1985. On the stability of sulfides, oxides, and native metals in serpentinite. Journal of Petrology, 26, 31–63.CrossRefGoogle Scholar
  17. Frost, B. R., and Beard, J. S., 2007. On silica activity and serpentinization. Journal of Petrology, 48, 1351–1368.CrossRefGoogle Scholar
  18. Früh-Green, G. L., Kelley, D. S., Bernasconi, S. M., Karson, J. A., Ludwig, K. A., Butterfield, D. A., Boschi, C., and Proskurowski, G., 2003. 30,000 years of hydrothermal activity at the Lost City vent field. Science, 301, 495–498.CrossRefGoogle Scholar
  19. Fryer, P., 2002. Recent studies of serpentinite occurrences in the oceans: mantle-ocean interactions in the plate tectonic cycle. Chemie der Erde – Gechemistry, 62, 257–302.CrossRefGoogle Scholar
  20. German, C. R., Bowen, A., Coleman, M. L., Honig, D. L., Huber, J. A., Jakuba, M. V., Kinsey, J. C., Kurz, M. D., Leroy, S., McDermott, J. M., de Lépinay, B. M., Nakamura, K., Seewald, J. S., Smith, J. L., Sylva, S. P., Van Dover, C. L., Whitcomb, L. L., and Yoerger, D. R., 2010. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proceedings of the National Academy of Sciences, 107, 14020–14025.CrossRefGoogle Scholar
  21. Grevemeyer, I., Kaul, N., Diaz-Naveas, J. L., Villinger, H. W., Ranero, C. R., and Reichert, C., 2005. Heat flow and bending-related faulting at subduction trenches: case studies offshore of Nicaragua and Central Chile. Earth and Planetary Science Letters, 236, 238–248.CrossRefGoogle Scholar
  22. Harper, G. D., Bowman, J. R., Kuhns, R 1988. A field, chemical, and stable isotope study of subseafloor metamorphism of the Josephine ophiolite, California-Oregon. J Geophys Res, 93, 4625–4656.CrossRefGoogle Scholar
  23. Ildefonse, B., Blackman, D. K., John, B. E., Ohara, Y., Miller, D. J., MacLeod, C. J., and Integrated Ocean Drilling Program Expeditions 304/305 Science Party, 2007. Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology, 35, 623–626.CrossRefGoogle Scholar
  24. Jöns, N., Bach, W., and Schroeder, T., 2009. Formation and alteration of plagiogranites in an ultramafic-hosted detachment fault at the Mid-Atlantic Ridge (ODP Leg 209). Contributions to Mineralogy and Petrology, 157, 625–639.CrossRefGoogle Scholar
  25. Kelemen, P. B., and Matter, J. M., 2008. In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences, 105, 17295–17300.CrossRefGoogle Scholar
  26. Kelley, D. S., Karson, J. A., Blackman, D. K., Früh-Green, G. L., Butterfield, D. A., Lilley, M. D., Olson, E. J., Schrenk, M. O., Roe, K. K., Lebon, G. T., Rivizzigno, P., and AT3-60 Shipboard Party, 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, 412, 145–149.CrossRefGoogle Scholar
  27. Klein, F., and Bach, W., 2009. Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. Journal of Petrology, 50, 37–59.CrossRefGoogle Scholar
  28. Klein, F., and Garrido, C. J., 2011. Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos, 126, 147–160.CrossRefGoogle Scholar
  29. Klein, F., Bach, W., Jöns, N., McCollom, T. M., Moskowitz, B., and Berquó, T., 2009. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 73, 6868–6893.CrossRefGoogle Scholar
  30. Klein, F., Bach, W., and McCollom, T. M., 2013. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos, doi:10.1016/j.lithos.2013.03.008.Google Scholar
  31. Lang, S. Q., Butterfield, D. A., Schulte, M., Kelley, D. S., and Lilley, M. D., 2010. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochimica et Cosmochimica Acta, 74, 941–952.CrossRefGoogle Scholar
  32. Lavier, L. L., Manatschal, G., 2006. A mechanism to thin the continental lithosphere at magma-poor margins. Nature, 440, 324–328.CrossRefGoogle Scholar
  33. Martin, W., Baross, J. A., Kelley, D. S., and Russell, M. J., 2008. Hydrothermal vents and the origin of life. Nature Review Microbiology, 6, 805–814.Google Scholar
  34. McCaig, A. M., Cliff, R. A., Escartín, J., Fallick, A. E., and MacLeod, C. J., 2007. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology, 35, 935–938.CrossRefGoogle Scholar
  35. McCollom, T. M., and Bach, W., 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica Acta, 73, 856–875.CrossRefGoogle Scholar
  36. Melson, W. G., and Thompson, G., 1971. Petrology of a transform fault zone and adjacent ridge segments. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 268, 423–441.CrossRefGoogle Scholar
  37. Mottl, M. J., Wheat, C. G., Fryer, P., Gharib, J., and Martin, J. B., 2004. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochimica et Cosmochimica Acta, 68, 4915–4933.CrossRefGoogle Scholar
  38. Neal, C., and Stanger, G., 1985. Past and present serpentinisation of ultramafic rocks; An example from the Semail Ophiolite Nappe of Northern Oman. In Drever, J. I. (ed.), Chemistry of weathering. Dordrecht/Boston: Riedel Publishing Company, pp. 249–276.CrossRefGoogle Scholar
  39. Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post melting processes beneath Mid-Ocean ridges. Journal of Petrology, 45, 2423–2458.CrossRefGoogle Scholar
  40. Perner, M., Kuever, J., Seifert, R., Pape, T., Koschinsky, A., Schmidt, K., Strauss, H., and Imhoff, J. F., 2007. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15°N on the Mid-Atlantic Ridge. FEMS Microbiology Ecology, 61, 97–109.CrossRefGoogle Scholar
  41. Petersen, J. M., Zielinski, F. U., Pape, T., Seifert, R., Moraru, C., Amann, R., Hourdez, S., Girguis, P. R., Wankel, S. D., Barbe, V., Pelletier, E., Fink, D., Borowski, C., Bach, W., and Dubilier, N., 2011. Hydrogen is an energy source for hydrothermal vent symbioses. Nature, 476, 176–180.CrossRefGoogle Scholar
  42. Proskurowski, G., Lilley, M. D., Seewald, J. S., Früh-Green, G. L., Olson, E. J., Lupton, J. E., Sylva, S. P., and Kelley, D. S., 2008. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319, 604–607.CrossRefGoogle Scholar
  43. Ranero, C. R., Morgan, J. P., McIntosh, K., and Reichert, C., 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425, 367–373.CrossRefGoogle Scholar
  44. Rüpke, L. H., Phipps Morgan, J., Hort, M., and Connolly, J. A. D., 2004. Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223, 17–34.CrossRefGoogle Scholar
  45. Sharp, Z. D., and Barnes, J. D., 2004. Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. Earth and Planetary Science Letters, 226, 243–256.CrossRefGoogle Scholar
  46. Smith, D. K., Cann, J. R., and Escartín, J., 2006. Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge. Nature, 442, 440–443.CrossRefGoogle Scholar
  47. Takai, K., Moyer, C. L., Miyazaki, M., Nogi, Y., Hirayama, H., Nealson, K. H., and Horikoshi, K., 2005. Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200 at South Chamorro Seamount, Mariana Forearc. Extremophiles, 9, 17–27.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Geology, Mineralogy and GeophysicsRuhr-Universität BochumBochumGermany
  2. 2.Department of Geosciences and MarumUniversity of BremenBremenGermany