Skip to main content

Serpentinization

  • Living reference work entry
  • First Online:
Encyclopedia of Marine Geosciences
  • 610 Accesses

Synonyms

Abyssal peridotite; Abyssal serpentinite; Bastite; Mesh texture; Serpentine minerals; Serpentinite

Definition

“Serpentinization” is the process leading to the formation of serpentinites, metamorphic rocks derived from hydrous alteration of olivine-rich ultramafic rocks and consisting mainly of serpentine group minerals.

Introduction

Serpentinization denotes the hydrous alteration of olivine-rich ultramafic rocks, which can occur everywhere, where these rocks and aqueous solutions react under suitable pressure and temperature conditions. In the oceanic realm, seawater-derived fluids are abundant; however, ultramafic rocks (peridotites) are typically found in the Earth’s upper mantle. Serpentinization will only take place where these rocks get in contact with seawater fluids, either by deep fluid infiltration in fracture zones and bend faults or by uplift and exposure of peridotites at or near the seafloor. During serpentinization, the primary minerals contained in a peridotite...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Alt, J. C., and Shanks, W. C., 1998. Sulfur in serpentinized oceanic peridotites: serpentinization processes and microbial sulfate reduction. Journal of Geophysical Research, 103, 9917–9929.

    Article  Google Scholar 

  • Alt, J. C., and Shanks, W. C., 2006. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism. Earth and Planetary Science Letters, 242, 272–287.

    Article  Google Scholar 

  • Amend, J. P., McCollom, T. M., Hentscher, M., and Bach, W., 2011. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochimica et Cosmochimica Acta, 75, 5736–5748.

    Article  Google Scholar 

  • Andreani, M., Mével, C., Boullier, A.-M., and Escartín, J., 2007. Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. Geochemistry, Geophysics, Geosystems, 8, Q02012.

    Article  Google Scholar 

  • Andreani, M., Muñoz, M., Marcaillou, C., and Delacour, A., 2013. μXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos, doi:10.1016/j.lithos.2013.04.008.

    Google Scholar 

  • Bach, W., Banerjee, N. R., Dick, H. J. B., and Baker, E. T., 2002. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10–16°E. Geochemistry, Geophysics, Geosystems, 3, doi:10.1029/2001GC00027.

    Google Scholar 

  • Beard, J. S., and Hopkinson, L., 2000. A fossil, serpentinization-related hydrothermal vent, Ocean Drilling Program Leg 173, Site 1068 (Iberia Abyssal Plain), some aspects of mineral and fluid chemistry. Journal of Geophysical Research, 105, 16527–16539.

    Article  Google Scholar 

  • Bonatti, E., Honnorez, J., and Ferrara, G., 1971. Ultramafic rocks: Peridotite-Gabbro-Basalt complex from the equatorial mid-Atlantic ridge. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 268, 385–402.

    Article  Google Scholar 

  • Bonatti, E., Brunelli, D., Buck, W. R., Cipriani, A., Fabretti, P., Ferrante, V., Gasperini, L., and Ligi, M., 2005. Flexural uplift of a lithospheric slab near the Vema transform (Central Atlantic), timing and mechanisms. Earth and Planetary Science Letters, 240, 642–655.

    Article  Google Scholar 

  • Boschi, C., Früh-Green, G. L., Delacour, A., Karson, J. A., and Kelley, D. S., 2006. Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochemistry, Geophysics, Geosystems, 7, Q01004.

    Article  Google Scholar 

  • Butt, C. R. M., and Cluzel, D., 2013. Nickel laterite ore deposits: weathered serpentinites. Elements, 9, 123–128.

    Article  Google Scholar 

  • Cannat, M., Fontaine, F., and Escartín, J., 2010. Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. In Diversity of hydrothermal systems on slow spreading ocean ridges. Washington, DC: AGU, pp. 241–264.

    Google Scholar 

  • Dick, H. J. B., Lin, J., and Schouten, H., 2003. An ultraslow-spreading class of ocean ridge. Nature, 426, 405–412.

    Article  Google Scholar 

  • Edmonds, H. N., Michael, P. J., Baker, E. T., Connelly, D. P., Snow, J. E., Langmuir, C. H., Dick, H. J. B., Mühe, R., German, C. R., and Graham, D. W., 2003. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature, 421, 252–256.

    Article  Google Scholar 

  • Evans, B. W., Kuehner, S. M., and Chopelas, A., 2009. Magnetite-free, yellow lizardite serpentinization of olivine websterite, Canyon Mountain complex, N.E. Oregon. American Mineralogist, 94, 1731–1744.

    Article  Google Scholar 

  • Frost, B. R., 1985. On the stability of sulfides, oxides, and native metals in serpentinite. Journal of Petrology, 26, 31–63.

    Article  Google Scholar 

  • Frost, B. R., and Beard, J. S., 2007. On silica activity and serpentinization. Journal of Petrology, 48, 1351–1368.

    Article  Google Scholar 

  • Früh-Green, G. L., Kelley, D. S., Bernasconi, S. M., Karson, J. A., Ludwig, K. A., Butterfield, D. A., Boschi, C., and Proskurowski, G., 2003. 30,000 years of hydrothermal activity at the Lost City vent field. Science, 301, 495–498.

    Article  Google Scholar 

  • Fryer, P., 2002. Recent studies of serpentinite occurrences in the oceans: mantle-ocean interactions in the plate tectonic cycle. Chemie der Erde – Gechemistry, 62, 257–302.

    Article  Google Scholar 

  • German, C. R., Bowen, A., Coleman, M. L., Honig, D. L., Huber, J. A., Jakuba, M. V., Kinsey, J. C., Kurz, M. D., Leroy, S., McDermott, J. M., de Lépinay, B. M., Nakamura, K., Seewald, J. S., Smith, J. L., Sylva, S. P., Van Dover, C. L., Whitcomb, L. L., and Yoerger, D. R., 2010. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proceedings of the National Academy of Sciences, 107, 14020–14025.

    Article  Google Scholar 

  • Grevemeyer, I., Kaul, N., Diaz-Naveas, J. L., Villinger, H. W., Ranero, C. R., and Reichert, C., 2005. Heat flow and bending-related faulting at subduction trenches: case studies offshore of Nicaragua and Central Chile. Earth and Planetary Science Letters, 236, 238–248.

    Article  Google Scholar 

  • Harper, G. D., Bowman, J. R., Kuhns, R 1988. A field, chemical, and stable isotope study of subseafloor metamorphism of the Josephine ophiolite, California-Oregon. J Geophys Res, 93, 4625–4656.

    Article  Google Scholar 

  • Ildefonse, B., Blackman, D. K., John, B. E., Ohara, Y., Miller, D. J., MacLeod, C. J., and Integrated Ocean Drilling Program Expeditions 304/305 Science Party, 2007. Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology, 35, 623–626.

    Article  Google Scholar 

  • Jöns, N., Bach, W., and Schroeder, T., 2009. Formation and alteration of plagiogranites in an ultramafic-hosted detachment fault at the Mid-Atlantic Ridge (ODP Leg 209). Contributions to Mineralogy and Petrology, 157, 625–639.

    Article  Google Scholar 

  • Kelemen, P. B., and Matter, J. M., 2008. In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences, 105, 17295–17300.

    Article  Google Scholar 

  • Kelley, D. S., Karson, J. A., Blackman, D. K., Früh-Green, G. L., Butterfield, D. A., Lilley, M. D., Olson, E. J., Schrenk, M. O., Roe, K. K., Lebon, G. T., Rivizzigno, P., and AT3-60 Shipboard Party, 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, 412, 145–149.

    Article  Google Scholar 

  • Klein, F., and Bach, W., 2009. Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. Journal of Petrology, 50, 37–59.

    Article  Google Scholar 

  • Klein, F., and Garrido, C. J., 2011. Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos, 126, 147–160.

    Article  Google Scholar 

  • Klein, F., Bach, W., Jöns, N., McCollom, T. M., Moskowitz, B., and Berquó, T., 2009. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 73, 6868–6893.

    Article  Google Scholar 

  • Klein, F., Bach, W., and McCollom, T. M., 2013. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos, doi:10.1016/j.lithos.2013.03.008.

    Google Scholar 

  • Lang, S. Q., Butterfield, D. A., Schulte, M., Kelley, D. S., and Lilley, M. D., 2010. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochimica et Cosmochimica Acta, 74, 941–952.

    Article  Google Scholar 

  • Lavier, L. L., Manatschal, G., 2006. A mechanism to thin the continental lithosphere at magma-poor margins. Nature, 440, 324–328.

    Article  Google Scholar 

  • Martin, W., Baross, J. A., Kelley, D. S., and Russell, M. J., 2008. Hydrothermal vents and the origin of life. Nature Review Microbiology, 6, 805–814.

    Google Scholar 

  • McCaig, A. M., Cliff, R. A., Escartín, J., Fallick, A. E., and MacLeod, C. J., 2007. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology, 35, 935–938.

    Article  Google Scholar 

  • McCollom, T. M., and Bach, W., 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica Acta, 73, 856–875.

    Article  Google Scholar 

  • Melson, W. G., and Thompson, G., 1971. Petrology of a transform fault zone and adjacent ridge segments. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 268, 423–441.

    Article  Google Scholar 

  • Mottl, M. J., Wheat, C. G., Fryer, P., Gharib, J., and Martin, J. B., 2004. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochimica et Cosmochimica Acta, 68, 4915–4933.

    Article  Google Scholar 

  • Neal, C., and Stanger, G., 1985. Past and present serpentinisation of ultramafic rocks; An example from the Semail Ophiolite Nappe of Northern Oman. In Drever, J. I. (ed.), Chemistry of weathering. Dordrecht/Boston: Riedel Publishing Company, pp. 249–276.

    Chapter  Google Scholar 

  • Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post melting processes beneath Mid-Ocean ridges. Journal of Petrology, 45, 2423–2458.

    Article  Google Scholar 

  • Perner, M., Kuever, J., Seifert, R., Pape, T., Koschinsky, A., Schmidt, K., Strauss, H., and Imhoff, J. F., 2007. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15°N on the Mid-Atlantic Ridge. FEMS Microbiology Ecology, 61, 97–109.

    Article  Google Scholar 

  • Petersen, J. M., Zielinski, F. U., Pape, T., Seifert, R., Moraru, C., Amann, R., Hourdez, S., Girguis, P. R., Wankel, S. D., Barbe, V., Pelletier, E., Fink, D., Borowski, C., Bach, W., and Dubilier, N., 2011. Hydrogen is an energy source for hydrothermal vent symbioses. Nature, 476, 176–180.

    Article  Google Scholar 

  • Proskurowski, G., Lilley, M. D., Seewald, J. S., Früh-Green, G. L., Olson, E. J., Lupton, J. E., Sylva, S. P., and Kelley, D. S., 2008. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319, 604–607.

    Article  Google Scholar 

  • Ranero, C. R., Morgan, J. P., McIntosh, K., and Reichert, C., 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425, 367–373.

    Article  Google Scholar 

  • Rüpke, L. H., Phipps Morgan, J., Hort, M., and Connolly, J. A. D., 2004. Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223, 17–34.

    Article  Google Scholar 

  • Sharp, Z. D., and Barnes, J. D., 2004. Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. Earth and Planetary Science Letters, 226, 243–256.

    Article  Google Scholar 

  • Smith, D. K., Cann, J. R., and Escartín, J., 2006. Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge. Nature, 442, 440–443.

    Article  Google Scholar 

  • Takai, K., Moyer, C. L., Miyazaki, M., Nogi, Y., Hirayama, H., Nealson, K. H., and Horikoshi, K., 2005. Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200 at South Chamorro Seamount, Mariana Forearc. Extremophiles, 9, 17–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Jöns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Jöns, N., Bach, W. (2014). Serpentinization. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6644-0_119-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6644-0_119-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6644-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics