Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Push-Up Block

  • Alper Gürbüz
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_117-1

Synonyms

Definition

Push-up blocks are topographic uplifts that localize on the geometric irregularities along strike-slip faults where fault segments form a compressive stepover or bend.

Introduction

Push-up blocks are an integral part of intraplate and interplate strike-slip fault zones (e.g., Sylvester and Smith, 1976; Christie-Blick and Biddle, 1985; Sylvester, 1988) and are very important structures for hydrocarbon accumulations. They represent structural traps as en échelon anticlines in places combined with stratigraphic traps (Harding, 1974, 1990; McClay and Bonora, 2001). Many large strike-slip fault zones commonly have large-scale push-up blocks associated with overstepping and bending both in marine and terrestrial environments (e.g., Angelier et al., 2004...

Keywords

Fault Zone North Anatolian Fault Structural Trap Compressional Regime Master Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Angelier, J., Bergerat, F., Bellou, M., and Homberg, C., 2004. Co-seismic strike-slip fault displacement determined from push-up structures: the Selsund Fault case, South Iceland. Journal of Structural Geology, 26, 709–724.CrossRefGoogle Scholar
  2. Aydın, A., and Nur, A., 1982. Evolution of pull-apart basins and their scale independence. Tectonics, 1, 91–105.CrossRefGoogle Scholar
  3. Bahat, D., 1983. New aspects of rhomb structures. Journal of Structural Geology, 5, 591–601.CrossRefGoogle Scholar
  4. Brown, N. N., Fuller, M. D., and Sibson, R. H., 1991. Paleomagnetism of the Ocotillo Badlands, southern California, and implications for slip transfer through an antidilational fault jog. Earth and Planetary Science Letters, 102, 277–288.CrossRefGoogle Scholar
  5. Christie-Blick, N., and Biddle, K. T., 1985. Deformation and basin formation along strike-slip faults. In Biddle, K. T., and Christie-Blick, N. (eds.), Strike-Slip Deformation, Basin Formation, and Sedimentation. Tulsa (Oklahoma): SEPM (Society of Economic Paleontologists and Mineralogists). SEPM Special Publication, No 37, pp. 1–35.CrossRefGoogle Scholar
  6. Dickinson, W. R., 1996. Kinematics of transrotational tectonism in the California tranverse ranges and ıts contribution to cumulative slip along the san andreas transform fault system. Geological Society of America Special Papers, 305, 1–14.Google Scholar
  7. Dooley, T. P., and Schreurs, G., 2012. Analogue modelling of intraplate strike-slip tectonics: a review and new experimental results. Tectonophysics, 574–575, 1–71.CrossRefGoogle Scholar
  8. Gürbüz, A., 2010. Geometric characteristics of pull-apart basins. Lithosphere, 2, 199–206.CrossRefGoogle Scholar
  9. Harding, T. P., 1974. Petroleum traps associated with wrench faults. AAPG Bulletin, 58, 1290–1304.Google Scholar
  10. Harding, T. P., 1990. Identification of wrench faults using subsurface structural data: criteria and pitfalls. AAPG Bulletin, 74, 1590–1609.Google Scholar
  11. Hempton, M. R., and Dunne, L. A., 1984. Sedimentation in pull-apart basins. Active example in eastern Turkey. The Journal of Geology, 92, 513–530.CrossRefGoogle Scholar
  12. Herece. E., and Akay, E., 2003. Atlas of North Anatolian Fault (NAF). General Directorate of Mineral Research and Exploration. Special Publication series-2, Ankara, 61 p and 13 appendices as separate maps.Google Scholar
  13. Luyendyk, B. P., 1991. A model for Neogene crustal rotations, transtension, and transpression in Southern California. Geological Society of America Bulletin, 103, 1528–1536.CrossRefGoogle Scholar
  14. Mann, P., 2007. Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault systems. In Cunningham, W. D., and Mann, P. (eds.), Tectonics of Strike-Slip Restraining and Releasing Bends. London: Geological Society. Special Publication 290, pp. 13–142.Google Scholar
  15. Mann, P., and Gordon, M. B., 1996. Tectonic uplift and exhumation of blueschist belts along transpressional strike-slip fault zones. In Bebout, G. E., Scholl, D. W., Kirby, S. H., and Platt, J. P. (eds.), Subduction Top to Bottom. Washington, DC: AGU. American Geophysical Union, Geophysical Monograph Series, 96, pp. 143–154.CrossRefGoogle Scholar
  16. Mann, P., Hempton, M. R., Bradley, D. C., and Burke, K., 1983. Development of pull-apart basins. The Journal of Geology, 91, 529–554.CrossRefGoogle Scholar
  17. McClay, K., and Bonora, M., 2001. Analog models of restraining stepovers in strike-slip fault systems. AAPG Bulletin, 85, 233–260.Google Scholar
  18. Mitra, S., and Paul, D., 2011. Structural geometry and evolution of releasing and restraining bends: insights from laser-scanned experimental models. AAPG Bulletin, 95, 1147–1180.CrossRefGoogle Scholar
  19. Powell, R. E., Weldon, R. J., and Matti, J. C., 1993. The San Andreas fault system: displacement, palinspastic reconstruction and geologic evolution. Boulder, CO: Geological Society of America. Geological Society of America Memoir, 178, 332 p.Google Scholar
  20. Reches, Z., 1987. Mechanical aspects of pull-apart basins and push-up swells with application to the Dead Sea transform. Tectonophysics, 141, 75–88.CrossRefGoogle Scholar
  21. Ron, H., Freund, R., Garfunkel, Z., and Nur, A., 1984. Block rotation by strike-slip faulting; structural and paleomagnetic evidence. Journal of Geophysical Research B, 89, 6256–6270.CrossRefGoogle Scholar
  22. Sarıbudak, M., Sanver, M., Şengör, A. M. C., and Görür, N., 1990. Paleomagnetic evidence for substantial rotation of the Almacik flake within the North Anatolian Fault zone, NW Turkey. Geophysical Journal International, 102, 563–568.CrossRefGoogle Scholar
  23. Segall, P., and Pollard, D. O., 1980. Mechanics of discontinuous faults. Journal of Geophysical Research, 85, 4337–4350.CrossRefGoogle Scholar
  24. Şengör, A. M. C., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X., and Rangin, C., 2005. The North Anatolian fault: a new look. Annual Review of Earth and Planetary Sciences, 33, 1–75.CrossRefGoogle Scholar
  25. Swanson, M. T., 1989. Sidewall ripouts in strike-slip faults. Journal of Structural Geology, 11, 933–948.CrossRefGoogle Scholar
  26. Sylvester, A. G., 1988. Strike-slip faults. Geological Society of America Bulletin, 100, 1666–1703.CrossRefGoogle Scholar
  27. Sylvester, A. G., and Smith, R. R., 1976. Tectonic transpression and basement-controlled deformation in the San Andreas fault zone, Salton trough, California. AAPG Bulletin, 60, 74–96.Google Scholar
  28. Trevisan, L., 1939. II Gruppo di Brenta. Memorie degli Istituti di Geologia e Mineralogia dell’Università di Padova, 13, 1–128.Google Scholar
  29. Wakabayashi, J., Hengesh, J. V., and Sawyer, T. L., 2004. Four-dimensional transform fault processes: progressive evolution of step-overs and bends. Tectonophysics, 392, 279–301.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Ankara Üniversitesi, Mühendislik Fakültesi, Jeoloji Mühendisliği BölümüTandoğanTurkey
  2. 2.Niğde Üniversitesi, Mühendislik Fakültesi, Jeoloji Mühendisliği BölümüNiğdeTurkey