Skip to main content

Evolution of Resistance to Toxins in Prey

  • Reference work entry
  • First Online:
Evolution of Venomous Animals and Their Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Venoms, as simple to complex mixtures of toxic components, are well understood to be used as trophic weapons by a range of predator species. Ecological predictions obviate the response of putative prey species against predator attacks, such as the development of biochemical defenses that allow prey species to evade predation, namely, resistance. Current hypothetical predictions indicate that venom toxicity and resistance form an antagonistic dyad that may be described as a coevolutionary chemical arms race. The development of resistance in prey populations is expected to drive the evolution of novel toxicities in predator populations and vice versa, given that predator-prey pairs are stably associated through evolutionary time. The utility of a chemical arms race model to describe toxicity-resistance systems as well as known information about natural resistance mechanisms derived against venomous predators are discussed across prey species of a wide range of venomous predators. The efficacy of resistance, mechanism(s) of resistance, phylogenetic breadth of resistance, and phylogeographic distribution of resistance are provided where information is available. For many predator groups, known prey resistance is not well described, and we discuss the cause(s) of such a gap in understanding, as well as future directions for resistance research and application of known resistance information for practical and theoretical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akahoshi M, Song CH, Piliponsky AM, Metz M, Guzzetta A, Abrink M, Schlenner SM, Feyerabend TB, Rodewald HR, Pejler G, Tsai M, Galli SJ. Mast cell chymase reduces the toxicity of gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice. J Clin Invest. 2011;121(10):4180–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asher O, Lupu-Meiri M, Jensen BS, Paperna T, Fuchs S, Oron Y. Functional characterization of mongoose nicotinic acetylcholine receptor α-subunit: resistance to α-bungarotoxin and high sensitivity to acetylcholine. FEBS Lett. 1998;431(3):411–4.

    Article  CAS  PubMed  Google Scholar 

  • Barchan D, Kachalsky S, Neumann D, Vogel Z, Ovadia M, Kochva E, Fuchs S. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proc Natl Acad Sci U S A. 1992;89(16):7717–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow A, Pook CE, Harrison RA, Wüster W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc R Soc Lond Ser B Biol Sci. 2009;276(1666):2443–9.

    Article  CAS  Google Scholar 

  • Bende NS, Dziemborowicz S, Mobli M, Herzig V, Gilchrist J, Wagner J, Nicholson GM, King GF, Bosmans F. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a. Nat Commun. 2014;5:4350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biardi JE, Coss RG. Rock Squirrel (Spermophilus variegatus) blood sera affects proteolytic and hemolytic activities of rattlesnake venoms. Toxicon. 2011;57(2):323–31.

    Article  CAS  PubMed  Google Scholar 

  • Biardi JE, Ho CYL, Marcinczyk J, Nambiar KP. Isolation and identification of a snake venom metalloprotease inhibitor from California Ground Squirrel (Spermophilus beecheyi) blood sera. Toxicon. 2011;58(6–7):486–93.

    Article  CAS  PubMed  Google Scholar 

  • Cardoso KC, Da Silva MJ, Costa GGL, Torres TT, Del Bem LEV, Vidal RO, Menossi M, Hyslop S. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu). BMC Genomics. 2010;11(605):1–22.

    Google Scholar 

  • Chippaux JP, Goyffon M. Venoms, antivenoms, and immunotherapy. Toxicon. 1998;36(6):823–46.

    Article  CAS  PubMed  Google Scholar 

  • Clucas B, Rowe MP, Owings DH, Arrowood PC. Snake scent application in ground squirrels, Spermophilus spp.: a novel form of antipredator behavior? Anim Behav. 2008;75:299–307.

    Article  Google Scholar 

  • Dawkins R, Krebs JR. Arms races between and within species. Proc R Soc Lond Ser B Biol Sci. 1979;205(1161):489–511.

    Article  CAS  Google Scholar 

  • de Wit CA. Resistance of the prairie vole (Microtus ochrogaster) and the woodrat (Neotoma floridana), in Kansas, to venom of the osage copperhead (Agkistrodon contortrix phaeogaster). Toxicon. 1982;20(4):709–14.

    Article  PubMed  Google Scholar 

  • Diaz JH. The global epidemiology, syndromic classification, management, and prevention of spider bites. Am J Trop Med Hyg. 2004;71(2):239–50.

    PubMed  Google Scholar 

  • Feldman CR, Brodie Jr ED, Brodie III ED, Pfrender ME. Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes. Proc Natl Acad Sci USA. 2012;109(12):4556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipiak A, ZajÄ…c K, Kübler D, Kramarz P. Coevolution of host-parasite associations and methods for studying their cophylogeny. Invertebr Surviv J. 2016;13:56–65.

    Google Scholar 

  • Frazão B, Vasconcelos V, Antunes A. Sea anemone (Cnidaria, Anthozoa, Antiniaria) toxins: an overview. Mar Drugs. 2012;10:1812–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fry BG, Casewell NR, Wüster W, Vidal N, Young B, Jackson TN. The structural and functional diversification of the Toxicofera reptile venom system. Toxicon. 2012;60(4):434–48.

    Article  CAS  PubMed  Google Scholar 

  • Futuyma DJ, Slatkin M. Introduction. In: Futuyma DJ, Slatkin M, editors. Coevolution. Sunderland: Sinauer Associates Inc.; 1983.

    Google Scholar 

  • Garcia VE, Perez JC. The purification and characterization of an antihemorrhagic factor in woodrat (Neotoma micropus) serum. Toxicon. 1984;22(1):129–38.

    Article  CAS  PubMed  Google Scholar 

  • Gasparini S, Gilquin B, Ménez A. Comparison of sea anemone and scorpion toxins binding to Kv1 channels: an example of convergent evolution. Toxicon. 2004;43(8):901–8.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs HL, Mackessy SP. Functional basis of a molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes. Toxicon. 2009;53(6):672–9.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs HL, Sanz L, Calvete JJ. Snake population venomics: proteomics-based analyses of individual variation reveals significant gene regulation effects on venom protein expression in Sistrurus rattlesnakes. J Mol Evol. 2009;68(2):113–25.

    Article  CAS  PubMed  Google Scholar 

  • Goldthwaite RO, Coss RG, Owings DH. Evolutionary dissipation of an antisnake system: differential behavior by California and Arctic ground squirrels in above- and below-ground contexts. Behaviour. 1990;112:246–69.

    Article  Google Scholar 

  • Hayes WK, Herbert SS, Reeling GC, Gennaro JF. Factors that influence venom expenditure by vipers and other snakes during predatory and defensive contexts. In: Schuett GW, Höggren M, Greene HW, editors. Biology of the Vipers. Eagle Mountain: Eagle Mountain Publishing; 2002.

    Google Scholar 

  • Heyborne W, Mackessy S. Identification and characterization of a taxon-specific three-finger toxin from the venom of the green vinesnake (Oxybelis fulgidus; family Colubridae). Biochimie. 2013;95(10):1923–32.

    Article  CAS  PubMed  Google Scholar 

  • Holding ML, Biardi JE, Gibb HL. Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proc R Soc Lond Ser B Biol Sci. 2016;283:20152841.

    Article  Google Scholar 

  • Huang SY, Perez JC. A comparative electron microscopic study of micronecrosis induced by Crotalus atrox (Western diamondback rattlesnake) in gray woodrats and mice. Toxicon. 1982;20(2):443–9.

    Article  CAS  PubMed  Google Scholar 

  • Israeli-Zindel I, Zlotkin E, Shulov A. The resistance of insects to the venom of the yellow scorpion Leiurus quinquestriatus. In: de Vries A, Kochva E, editors. Toxins of animal and plant origin. 3 New York: Gordon and Breach Science Publishers; 1973.

    Google Scholar 

  • Jansa SA, Voss RS. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers. PLoS One. 2011;6(6):1–9.

    Article  Google Scholar 

  • Kamon E, Shulov A. Immune responses of locusts to venom of the scorpion. J Invertebr Pathol. 1965;7(2):192–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Wang M, Herzig V, Liu Z, Hu W, Zhou G, Duan Z. Venom from the spider Araneus ventricosus is lethal to insects but inactive in vertebrates. Toxicon. 2016;115:63–9.

    Article  CAS  PubMed  Google Scholar 

  • Mackessy SP. Venom ontogeny in the Pacific rattlesnakes Crotalus viridis helleri and Crotalus viridis oreganus. Copeia. 1988;1:92–101.

    Article  Google Scholar 

  • Mackessy SP. Biochemistry and pharmacology of colubrid snake venoms. J Toxicol Toxin Rev. 2002;21(1 & 2):43–83.

    Article  CAS  Google Scholar 

  • Mackessy SP. The field of reptile toxinology: snakes, lizards, and their venoms. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press; 2010.

    Google Scholar 

  • Mackessy SP, Saviola AJ. Understanding biological roles of venoms among the Caenophidia: the importance of rear-fanged snakes. Integr Comp Biol. 2016;56(5):1004–21.

    Article  PubMed  Google Scholar 

  • McGlothlin JW, Chuckalovcak JP, Janes DE, Edwards SV, Feldman CR, Brodie Jr ED, Pfrender ME, Brodie III ED. Parallel evolution of tetrodotoxin resistance in three voltage-gated sodium channel genes in the garter snake Thamnophis sirtalis. Mol Biol Evol. 2014;31(11):2836–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mebs D. Anemonefish symbiosis: vulnerability and resistance of fish to the toxin of the sea anemone. Toxicon. 1994;32(9):1059–68.

    Article  CAS  PubMed  Google Scholar 

  • Mebs D. Toxicity in animals: trends in evolution? Toxicon. 2001;39(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  • Mebs D. Chemical biology of the mutualistic relationships of sea anemones with fish and crustaceans. Toxicon. 2009;54(8):1071–4.

    Article  CAS  PubMed  Google Scholar 

  • Metz M, Piliponsky AM, Chen CC, Lammel V, Abrink M, Peljer G, Tsai M, Galli SJ. Mast cells can enhance resistance to snake and honeybee venoms. Science. 2006;313(5786):526–30.

    Article  CAS  PubMed  Google Scholar 

  • Nedosyko AM, Young JE, Edwards JW, Burke da Silva K. Searching for a toxic key to unlock the mystery of anemonefish and anemone symbiosis. PLoS One. 2014;9(5):e98449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann D, Barchan D, Horowitz M, Kochva E, Fuchs S. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit. Proc Natl Acad Sci USA. 1989;86(18):7255–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Njau BC, Nyindo M, Mutani A. Immunological responses and the role of the paralyzing toxin in rabbits infested with Rhipicephalus evertsi eversti. Am J Trop Med Hyg. 1986; 35(6):1248–55.

    CAS  PubMed  Google Scholar 

  • Ovadia M, Kochva E. Neutralization of Viperidae and Elapidae snake venoms by sera of different animals. Toxicon. 1977;15(6):541–7.

    Article  CAS  PubMed  Google Scholar 

  • Page RDM. Phylogeny, cospeciation, and coevolution. Chicago: The University of Chicago Press; 2002.

    Google Scholar 

  • Palm NW, Medzhitov R. Role of the inflammasome in defense against venoms. Proc Natl Acad Sci USA. 2013;110(5):1809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlak J, Mackessy SP, Fry BG, Bhatia M, Mourier G, Fruchart-Gaillard C, Servent D, Ménez R, Stura E, Ménez A, Kini RM. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J Biol Chem. 2006;281(39):29030–41.

    Article  CAS  PubMed  Google Scholar 

  • Pawlak J, Mackessy SP, Sixberry NM, Stura EA, Le Du MH, Ménez R, Foo CS, Ménez A, Nirthanan S, Kini RM. Iriditoxin, a novel covalently linked heterodimeric three-finger toxin with high taxon-specific neurotoxicity. FASEB J. 2009;23(2):534–45.

    Article  CAS  PubMed  Google Scholar 

  • Perez JC, Haws WC, Hatch CH. Resistance of woodrats (Neotoma micropus) to Crotalus atrox venom. Toxicon. 1978;16(2):198–200.

    Article  CAS  PubMed  Google Scholar 

  • Perez JC, Pichyangkul S, Garcia VE. The resistance of three species of warm-blooded animals to Western diamondback rattlesnake (Crotalus atrox) venom. Toxicon. 1979;17(6):601–7.

    Article  CAS  PubMed  Google Scholar 

  • Pough FH, Groves JD. Specializations of the body form and food habits of snakes. Am Zool. 1983;23:443–54.

    Article  Google Scholar 

  • Putman BJ, Clark RW. The fear of unseen predators: ground squirrel tail flagging in the absence of snakes signals vigilance. Behav Ecol. 2014;26(1):185–193.

    Google Scholar 

  • Reck Jr J, Berger M, Marks FS, Zingali RB, Canal CW, Ferreira CA, Guimarães JA, Termignoni C. Pharmacological action of tick saliva upon haemostasis and the neutralization ability of sera from repeatedly infested hosts. Parasitology. 2009;136(11):1339–49.

    Article  CAS  PubMed  Google Scholar 

  • Rhoads J. Epidemiology of the brown recluse spider bite. J Am Acad Nurse Pract. 2007;19(2):79–85.

    Article  PubMed  Google Scholar 

  • Rowe A, Rowe M. Physiological resistance of grasshopper mice (Onychomys spp.) to Arizona bark scorpion (Centruroides exilicauda) venom. Toxicon. 2008;52(5):597–605.

    Article  CAS  PubMed  Google Scholar 

  • Sanz L, Gibbs HL, Mackessy SP, Calvete JJ. Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets. J Proteome Res. 2006;5(9):2098–112.

    Article  CAS  PubMed  Google Scholar 

  • Sasa M. Diet and snake venom evolution: can local selection explain intraspecific venom variation? Toxicon. 1999;37(2):249–52.

    Article  CAS  PubMed  Google Scholar 

  • Saviola AJ, Chiszar D, Busch C, Mackessy SP. Molecular basis for prey relocation in viperid snakes. BMC Biol. 2013;11:20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenone H, Courtin L, Knierim F. Resistencia inducida del conejo a dosis elevadas de veneno de Loxosceles laeta. Toxicon. 1970;8(4):285–8 . Spanish.

    Article  CAS  PubMed  Google Scholar 

  • Suchan T, Alvarez N. Fifty years after Erlich and Raven, is there support for plant-insect coevolution as a major driver of species diversification? Entomol Exp Appl. 2015;57:98–112.

    Article  Google Scholar 

  • Sunagar K, Moran Y. The rise and fall of an evolutionary innovation: contrasting strategies of venom evolution in ancient and young animals. PLoS Genet. 2015;11(10):e1005596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thwin MM, Samy RP, Satyanarayanajois SD, Gopalakrishnakone P. Venom neutralization by purified bioactive molecules: synthetic peptide derivatives of the endogenous PLA2 inhibitory protein PIP (a mini review). Toxicon. 2010;56(7):1275–83.

    Article  CAS  PubMed  Google Scholar 

  • Van Valen L. A new evolutionary law. Evol Theory. 1973;1:1–30.

    Google Scholar 

  • Voss RS. Opossums (Mammalia: Didelphidae) in the diets of neotropical pitvipers (Serpentes: Crotalinae): evidence for alternative coevolutionary outcomes? Toxicon. 2013;66:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Voss RS, Jansa SA. Snake-venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials. Biol Rev Camb Philos Soc. 2012;87(4):822–37.

    Article  PubMed  Google Scholar 

  • World Health Organization. Rabies and envenomings: a neglected public health issue [Internet]. Report of a Consultative Meeting. Geneva: World Health Organization; 2007 [cited 2016 May]. Available from: http://www.who.int/bloodproducts/animal_sera/Rabies.pdf?ua=1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. McCabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

McCabe, T.M., Mackessy, S.P. (2017). Evolution of Resistance to Toxins in Prey. In: Malhotra, A. (eds) Evolution of Venomous Animals and Their Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6458-3_6

Download citation

Publish with us

Policies and ethics