Advertisement

Snake Venom Proteopeptidomics: What Lies Behind the Curtain

  • Richard Hemmi Valente
  • Carolina Alves Nicolau
  • Jonas Perales
  • Ana Gisele da Costa Neves-Ferreira
Reference work entry
Part of the Toxinology book series (TOXI)

Abstract

The study of snake venoms has led to the discovery/development of a number of pharmaceutical drugs, diagnostic kits, and research molecular tools in the last 50 years. Furthermore, a deep knowledge of snake venom protein composition is necessary for better understanding the envenomation physiopathology and to contribute to the broadening in the clinical efficacy and range of antivenom therapy. During the past 15 years, several groups have applied proteomic techniques for the determination (to different extents) of peptide and protein compositions of snake venoms from almost 200 species (mostly from Viperidae and Elapidae families). The present review details the different methodological approaches used so far, stressing that none of them has generated a comprehensive snake venom proteopeptidome, ideally defined as the quali-quantitative representation of all proteoforms (including different peptide forms) present in any given snake venom. Due to the technological advancements in high-throughput genomics and transcriptomics allied to state-of-the-art bottom-up proteomics (as well as the possibility of top-down venomics), it is proposed that the time has come to actively pursue the proteopeptidome “dream.” Several issues that should be addressed to achieve this goal are discussed. Finally, it is expected that in the next decade, snake venomics shall surpass the protein family-level-based identification and attain a proteoform-level-based one.

Keywords

Snake Venom Venom Gland Snake Species Venom Component Proteotypic Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahlf DR, Thomas PM, Kelleher NL. Developing top down proteomics to maximize proteome and sequence coverage from cells and tissues. Curr Opin Chem Biol. 2013;17(5):787–94.PubMedCrossRefGoogle Scholar
  2. Aird SD, Watanabe Y, Villar-Briones A, Roy MC, Terada K, Mikheyev AS. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis). BMC Genomics. 2013;14(1):790.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alape-Giron A, Sanz L, Escolano J, Flores-Diaz M, Madrigal M, Sasa M, Calvete JJ. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res. 2008;7(8):3556–71.PubMedCrossRefGoogle Scholar
  4. Ali SA, Yang DC, Jackson TN, Undheim EA, Koludarov I, Wood K, Jones A, Hodgson WC, McCarthy S, Ruder T, Fry BG. Venom proteomic characterization and relative antivenom neutralization of two medically important Pakistani elapid snakes (Bungarus sindanus and Naja naja). J Proteomics. 2013;89:15–23.PubMedCrossRefGoogle Scholar
  5. Angulo Y, Escolano J, Lomonte B, Gutierrez JM, Sanz L, Calvete JJ. Snake venomics of Central American pitvipers: clues for rationalizing the distinct envenomation profiles of Atropoides nummifer and Atropoides picadoi. J Proteome Res. 2008;7(2):708–19.PubMedCrossRefGoogle Scholar
  6. Antunez J, Fernandez J, Lomonte B, Angulo Y, Sanz L, Perez A, Calvete JJ, Gutierrez JM. Antivenomics of Atropoides mexicanus and Atropoides picadoi snake venoms: relationship to the neutralization of toxic and enzymatic activities. J Venom Res. 2010;1:8–17.PubMedPubMedCentralGoogle Scholar
  7. Bazaa A, Marrakchi N, El Ayeb M, Sanz L, Calvete JJ. Snake venomics: comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina. Proteomics. 2005;5(16):4223–35.PubMedCrossRefGoogle Scholar
  8. Bernardes CP, Menaldo DL, Camacho E, Rosa JC, Escalante T, Rucavado A, Lomonte B, Gutierrez JM, Sampaio SV. Proteomic analysis of Bothrops pirajai snake venom and characterization of BpirMP, a new P-I metalloproteinase. J Proteomics. 2013;80:250–67.PubMedCrossRefGoogle Scholar
  9. Birrell GW, Earl S, Masci PP, de Jersey J, Wallis TP, Gorman JJ, Lavin MF. Molecular diversity in venom from the Australian Brown snake, Pseudonaja textilis. Mol Cell Proteomics. 2006;5(2):379–89.PubMedCrossRefGoogle Scholar
  10. Birrell GW, Earl ST, Wallis TP, Masci PP, de Jersey J, Gorman JJ, Lavin MF. The diversity of bioactive proteins in Australian snake venoms. Mol Cell Proteomics. 2007;6(6):973–86.PubMedCrossRefGoogle Scholar
  11. Boldrini-Franca J, Correa-Netto C, Silva MM, Rodrigues RS, De La Torre P, Perez A, Soares AM, Zingali RB, Nogueira RA, Rodrigues VM, Sanz L, Calvete JJ. Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management. J Proteomics. 2010;73(9):1758–76.PubMedCrossRefGoogle Scholar
  12. Calmette A. L’immunisation artificielle des animaux contre le venin des Serpents et de la thérapeutique des morsures venimeuses. C R Seances Soc Biol Fil. 1894;XLVI:120–4.Google Scholar
  13. Calvete JJ. Antivenomics and venom phenotyping: a marriage of convenience to address the performance and range of clinical use of antivenoms. Toxicon. 2010;56(7):1284–91.PubMedCrossRefGoogle Scholar
  14. Calvete JJ. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev Proteomics. 2011;8(6):739–58.PubMedCrossRefGoogle Scholar
  15. Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon. 2013;75:44–62.PubMedCrossRefGoogle Scholar
  16. Calvete JJ, Escolano J, Sanz L. Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric taxa. J Proteome Res. 2007a;6(7):2732–45.PubMedCrossRefGoogle Scholar
  17. Calvete JJ, Juarez P, Sanz L. Snake venomics. Strategy and applications. J Mass Spectrom. 2007b;42(11):1405–14.PubMedCrossRefGoogle Scholar
  18. Calvete JJ, Marcinkiewicz C, Sanz L. Snake venomics of Bitis gabonica gabonica. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrins bitisgabonin-1 and bitisgabonin-2. J Proteome Res. 2007c;6(1):326–36.PubMedCrossRefGoogle Scholar
  19. Calvete JJ, Borges A, Segura A, Flores-Diaz M, Alape-Giron A, Gutierrez JM, Diez N, De Sousa L, Kiriakos D, Sanchez E, Faks JG, Escolano J, Sanz L. Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: contributing to its taxonomy and snakebite management. J Proteomics. 2009a;72(2):227–40.PubMedCrossRefGoogle Scholar
  20. Calvete JJ, Fasoli E, Sanz L, Boschetti E, Righetti PG. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. J Proteome Res. 2009b;8(6):3055–67.PubMedCrossRefGoogle Scholar
  21. Calvete JJ, Sanz L, Cid P, de la Torre P, Flores-Diaz M, Dos Santos MC, Borges A, Bremo A, Angulo Y, Lomonte B, Alape-Giron A, Gutierrez JM. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. J Proteome Res. 2010;9(1):528–44.PubMedCrossRefGoogle Scholar
  22. Calvete JJ, Sanz L, Perez A, Borges A, Vargas AM, Lomonte B, Angulo Y, Gutierrez JM, Chalkidis HM, Mourao RH, Furtado MF, Moura-Da-Silva AM. Snake population venomics and antivenomics of Bothrops atrox: paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. J Proteomics. 2011;74(4):510–27.PubMedCrossRefGoogle Scholar
  23. Calvete JJ, Ghezellou P, Paiva O, Matainaho T, Ghassempour A, Goudarzi H, Kraus F, Sanz L, Williams DJ. Snake venomics of two poorly known Hydrophiinae: comparative proteomics of the venoms of terrestrial Toxicocalamus longissimus and marine Hydrophis cyanocinctus. J Proteomics. 2012a;75(13):4091–101.PubMedCrossRefGoogle Scholar
  24. Calvete JJ, Perez A, Lomonte B, Sanchez EE, Sanz L. Snake venomics of Crotalus tigris: the minimalist toxin arsenal of the deadliest Neartic rattlesnake venom. Evolutionary Clues for generating a pan-specific antivenom against crotalid type II venoms. J Proteome Res. 2012b;11(2):1382–90.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Carrasco PA, Mattoni CI, Leynaud GC, Scrocchi GJ. Morphology, phylogeny and taxonomy of South American bothropoid pitvipers (Serpentes, Viperidae). Zool Scr. 2012;41(2):109–24.CrossRefGoogle Scholar
  26. Casewell NR, Wuster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28(4):219–29.PubMedCrossRefGoogle Scholar
  27. Chapman JD, Goodlett DR, Masselon CD. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom Rev. 2013. doi:10.1002/mas.21400Google Scholar
  28. Chatrath ST, Chapeaurouge A, Lin Q, Lim TK, Dunstan N, Mirtschin P, Kumar PP, Kini RM. Identification of novel proteins from the venom of a cryptic snake Drysdalia coronoides by a combined transcriptomics and proteomics approach. J Proteome Res. 2011;10(2):739–50.PubMedCrossRefGoogle Scholar
  29. Chen X, Ge Y. Ultrahigh pressure fast size exclusion chromatography for top-down proteomics. Proteomics. 2013;13(17):2563–6.PubMedCrossRefGoogle Scholar
  30. Ching AT, Rocha MM, Paes Leme AF, Pimenta DC, de Fatima DFM, Serrano SM, Ho PL, Junqueira-de-Azevedo IL. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy’s (venom) gland transcriptome. FEBS Lett. 2006;580(18):4417–22.PubMedCrossRefGoogle Scholar
  31. Ching AT, Paes Leme AF, Zelanis A, Rocha MM, Furtado Mde F, Silva DA, Trugilho MR, da Rocha SL, Perales J, Ho PL, Serrano SM, Junqueira-de-Azevedo IL. Venomics profiling of Thamnodynastes strigatus unveils matrix metalloproteinases and other novel proteins recruited to the toxin arsenal of rear-fanged snakes. J Proteome Res. 2012;11(2):1152–62.PubMedCrossRefGoogle Scholar
  32. Chippaux JP, Goyffon M. Venoms, antivenoms and immunotherapy. Toxicon. 1998;36(6):823–46.PubMedCrossRefGoogle Scholar
  33. Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon. 1991;29(11):1279–303.PubMedCrossRefGoogle Scholar
  34. Cidade DA, Simao TA, Davila AM, Wagner G, Junqueira-de-Azevedo IL, Ho PL, Bon C, Zingali RB, Albano RM. Bothrops jararaca venom gland transcriptome: analysis of the gene expression pattern. Toxicon. 2006;48(4):437–61.PubMedCrossRefGoogle Scholar
  35. Ciscotto PH, Rates B, Silva DA, Richardson M, Silva LP, Andrade H, Donato MF, Cotta GA, Maria WS, Rodrigues RJ, Sanchez E, De Lima ME, Pimenta AM. Venomic analysis and evaluation of antivenom cross-reactivity of South American Micrurus species. J Proteomics. 2011;74(9):1810–25.PubMedCrossRefGoogle Scholar
  36. Correa-Netto C, Teixeira-Araujo R, Aguiar AS, Melgarejo AR, De-Simone SG, Soares MR, Foguel D, Zingali RB. Immunome and venome of Bothrops jararacussu: a proteomic approach to study the molecular immunology of snake toxins. Toxicon. 2010;55(7):1222–35.PubMedCrossRefGoogle Scholar
  37. Correa-Netto C, Junqueira-de-Azevedo Ide L, Silva DA, Ho PL, Leitao-de-Araujo M, Alves ML, Sanz L, Foguel D, Zingali RB, Calvete JJ. Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallinus. J Proteomics. 2011;74(9):1795–809.PubMedCrossRefGoogle Scholar
  38. Durban J, Perez A, Sanz L, Gomez A, Bonilla F, Rodriguez S, Chacon D, Sasa M, Angulo Y, Gutierrez JM, Calvete JJ. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics. 2013;14:234.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Earl ST, Birrell GW, Wallis TP, St Pierre LD, Masci PP, de Jersey J, Gorman JJ, Lavin MF. Post-translational modification accounts for the presence of varied forms of nerve growth factor in Australian elapid snake venoms. Proteomics. 2006;6(24):6554–65.PubMedCrossRefGoogle Scholar
  40. Fahmi L, Makran B, Pla D, Sanz L, Oukkache N, Lkhider M, Harrison RA, Ghalim N, Calvete JJ. Venomics and antivenomics profiles of North African Cerastes cerastes and C. vipera populations reveals a potentially important therapeutic weakness. J Proteomics. 2012;75(8):2442–53.PubMedCrossRefGoogle Scholar
  41. Fasoli E, Sanz L, Wagstaff S, Harrison RA, Righetti PG, Calvete JJ. Exploring the venom proteome of the African puff adder, Bitis arietans, using a combinatorial peptide ligand library approach at different pHs. J Proteomics. 2010;73(5):932–42.PubMedCrossRefGoogle Scholar
  42. Favreau P, Cheneval O, Menin L, Michalet S, Gaertner H, Principaud F, Thai R, Menez A, Bulet P, Stocklin R. The venom of the snake genus Atheris contains a new class of peptides with clusters of histidine and glycine residues. Rapid Commun Mass Spectrom. 2007;21(3):406–12.PubMedCrossRefGoogle Scholar
  43. Fernandez J, Lomonte B, Sanz L, Angulo Y, Gutierrez JM, Calvete JJ. Snake venomics of Bothriechis nigroviridis reveals extreme variability among palm pitviper venoms: different evolutionary solutions for the same trophic purpose. J Proteome Res. 2010;9(8):4234–41.PubMedCrossRefGoogle Scholar
  44. Fernandez J, Alape-Giron A, Angulo Y, Sanz L, Gutierrez JM, Calvete JJ, Lomonte B. Venomic and antivenomic analyses of the Central American coral snake, Micrurus nigrocinctus (Elapidae). J Proteome Res. 2011;10(4):1816–27.PubMedCrossRefGoogle Scholar
  45. Fox JW, Serrano SM. Approaching the golden age of natural product pharmaceuticals from venom libraries: an overview of toxins and toxin-derivatives currently involved in therapeutic or diagnostic applications. Curr Pharm Des. 2007;13(28):2927–34.PubMedCrossRefGoogle Scholar
  46. Fox JW, Serrano SM. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures. Proteomics. 2008;8(4):909–20.PubMedCrossRefGoogle Scholar
  47. Fox JW, Shannon JD, Stefansson B, Kamiguti AS, Theakston RDG, Serrano SMT, Camargo ACM, Sherman N. Role of discovery science in toxinology: examples in venom proteomics. In: Ménez A, editor. Perspectives in molecular toxinology. Chichester: Wiley; 2002. p. 97–105.Google Scholar
  48. Fox JW, Ma L, Nelson K, Sherman NE, Serrano SM. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes. Toxicon. 2006;47(6):700–14.PubMedCrossRefGoogle Scholar
  49. Fry BG, Wuster W, Ryan Ramjan SF, Jackson T, Martelli P, Kini RM. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications. Rapid Commun Mass Spectrom. 2003;17(18):2047–62.PubMedCrossRefGoogle Scholar
  50. Gao JF, Qu YF, Zhang XQ, He Y, Ji X. Neonate-to-adult transition of snake venomics in the short-tailed pit viper, Gloydius brevicaudus. J Proteomics. 2013;84:148–57.PubMedCrossRefGoogle Scholar
  51. Georgieva D, Risch M, Kardas A, Buck F, von Bergen M, Betzel C. Comparative analysis of the venom proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis. J Proteome Res. 2008;7(3):866–86.PubMedCrossRefGoogle Scholar
  52. Georgieva D, Ohler M, Seifert J, von Bergen M, Arni RK, Genov N, Betzel C. Snake venomic of Crotalus durissus terrificus–correlation with pharmacological activities. J Proteome Res. 2010;9(5):2302–16.PubMedCrossRefGoogle Scholar
  53. Georgieva D, Seifert J, Ohler M, von Bergen M, Spencer P, Arni RK, Genov N, Betzel C. Pseudechis australis venomics: adaptation for a defense against microbial pathogens and recruitment of body transferrin. J Proteome Res. 2011;10(5):2440–64.PubMedCrossRefGoogle Scholar
  54. Gibbs HL, Sanz L, Calvete JJ. Snake population venomics: proteomics-based analyses of individual variation reveals significant gene regulation effects on venom protein expression in Sistrurus rattlesnakes. J Mol Evol. 2009;68(2):113–25.PubMedCrossRefGoogle Scholar
  55. Gibbs HL, Sanz L, Chiucchi JE, Farrell TM, Calvete JJ. Proteomic analysis of ontogenetic and diet-related changes in venom composition of juvenile and adult Dusky Pigmy rattlesnakes (Sistrurus miliarius barbouri). J Proteomics. 2011;74(10):2169–79.PubMedCrossRefGoogle Scholar
  56. Gibbs HL, Sanz L, Sovic MG, Calvete JJ. Phylogeny-based comparative analysis of venom proteome variation in a clade of rattlesnakes (Sistrurus sp.). PLoS One. 2013;8(6):e67220.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Guercio RA, Shevchenko A, Shevchenko A, Lopez-Lozano JL, Paba J, Sousa MV, Ricart CA. Ontogenetic variations in the venom proteome of the Amazonian snake Bothrops atrox. Proteome Sci. 2006;4:11.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gutierrez JM. Improving antivenom availability and accessibility: science, technology, and beyond. Toxicon. 2012;60(4):676–87.PubMedCrossRefGoogle Scholar
  59. Gutierrez JM, Theakston RD, Warrell DA. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med. 2006;3(6):e150.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gutierrez JM, Lomonte B, Leon G, Rucavado A, Chaves F, Angulo Y. Trends in snakebite envenomation therapy: scientific, technological and public health considerations. Curr Pharm Des. 2007;13(28):2935–50.PubMedCrossRefGoogle Scholar
  61. Gutierrez JM, Sanz L, Escolano J, Fernandez J, Lomonte B, Angulo Y, Rucavado A, Warrell DA, Calvete JJ. Snake venomics of the Lesser Antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: correlation with toxicological activities and immunoreactivity of a heterologous antivenom. J Proteome Res. 2008;7(10):4396–408.PubMedCrossRefGoogle Scholar
  62. Gutierrez JM, Lomonte B, Leon G, Alape-Giron A, Flores-Diaz M, Sanz L, Angulo Y, Calvete JJ. Snake venomics and antivenomics: proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J Proteomics. 2009;72(2):165–82.PubMedCrossRefGoogle Scholar
  63. Han X, Aslanian A, Yates 3rd JR. Mass spectrometry for proteomics. Curr Opin Chem Biol. 2008;12(5):483–90.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Herrera M, Fernandez J, Vargas M, Villalta M, Segura A, Leon G, Angulo Y, Paiva O, Matainaho T, Jensen SD, Winkel KD, Calvete JJ, Williams DJ, Gutierrez JM. Comparative proteomic analysis of the venom of the taipan snake, Oxyuranus scutellatus, from Papua New Guinea and Australia: role of neurotoxic and procoagulant effects in venom toxicity. J Proteomics. 2012;75(7):2128–40.PubMedCrossRefGoogle Scholar
  65. Horth P, Miller CA, Preckel T, Wenz C. Efficient fractionation and improved protein identification by peptide OFFGEL electrophoresis. Mol Cell Proteomics. 2006;5(10):1968–74.PubMedCrossRefGoogle Scholar
  66. Ianzer D, Konno K, Marques-Porto R, Vieira Portaro FC, Stocklin R, Martins de Camargo AC, Pimenta DC. Identification of five new bradykinin potentiating peptides (BPPs) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two-step liquid chromatography. Peptides. 2004;25(7):1085–92.PubMedCrossRefGoogle Scholar
  67. Juarez P, Sanz L, Calvete JJ. Snake venomics: characterization of protein families in Sistrurus barbouri venom by cysteine mapping, N-terminal sequencing, and tandem mass spectrometry analysis. Proteomics. 2004;4(2):327–38.PubMedCrossRefGoogle Scholar
  68. Juarez P, Wagstaff SC, Oliver J, Sanz L, Harrison RA, Calvete JJ. Molecular cloning of disintegrin-like transcript BA-5A from a Bitis arietans venom gland cDNA library: a putative intermediate in the evolution of the long-chain disintegrin bitistatin. J Mol Evol. 2006a;63(1):142–52.PubMedCrossRefGoogle Scholar
  69. Juarez P, Wagstaff SC, Sanz L, Harrison RA, Calvete JJ. Molecular cloning of Echis ocellatus disintegrins reveals non-venom-secreted proteins and a pathway for the evolution of ocellatusin. J Mol Evol. 2006b;63(2):183–93.PubMedCrossRefGoogle Scholar
  70. Jurado JD, Rael ED, Lieb CS, Nakayasu E, Hayes WK, Bush SP, Ross JA. Complement inactivating proteins and intraspecies venom variation in Crotalus oreganus helleri. Toxicon. 2007;49(3):339–50.PubMedCrossRefGoogle Scholar
  71. Kamiguti AS, Theakston RD, Sherman N, Fox JW. Mass spectrophotometric evidence for P-III/P-IV metalloproteinases in the venom of the Boomslang (Dispholidus typus). Toxicon. 2000;38(11):1613–20.PubMedCrossRefGoogle Scholar
  72. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5(11):e218.PubMedPubMedCentralCrossRefGoogle Scholar
  73. King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther. 2011;11(11):1469–84.PubMedCrossRefGoogle Scholar
  74. Kohlhoff M, Borges MH, Yarleque A, Cabezas C, Richardson M, Sanchez EF. Exploring the proteomes of the venoms of the Peruvian pit vipers Bothrops atrox, B. barnetti and B. pictus. J Proteomics. 2012;75(7):2181–95.PubMedCrossRefGoogle Scholar
  75. Kulkeaw K, Chaicumpa W, Sakolvaree Y, Tongtawe P, Tapchaisri P. Proteome and immunome of the venom of the Thai cobra. Naja kaouthia Toxicon. 2007;49(7):1026–41.PubMedCrossRefGoogle Scholar
  76. Kuster B, Mann M. Identifying proteins and post-translational modifications by mass spectrometry. Curr Opin Struct Biol. 1998;8(3):393–400.PubMedCrossRefGoogle Scholar
  77. Leprevost FV, Valente RH, Borges DL, Perales J, Melani R, Yates JR 3rd, Barbosa VC, Junqueira M, Carvalho PC. PepExplorer: a similarity-driven tool for analyzing de novo sequencing results. Mol Cell Proteomics 2014; in press.Google Scholar
  78. Li S, Wang J, Zhang X, Ren Y, Wang N, Zhao K, Chen X, Zhao C, Li X, Shao J, Yin J, West MB, Xu N, Liu S. Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys. Biochem J. 2004;384(Pt 1):119–27.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liu S, Yang F, Zhang Q, Sun MZ, Gao Y, Shao S. “Anatomical” view of the protein composition and protein characteristics for Gloydius shedaoensis snake venom via proteomics approach. Anat Rec (Hoboken). 2011;294(2):273–82.CrossRefGoogle Scholar
  80. Lomonte B, Escolano J, Fernandez J, Sanz L, Angulo Y, Gutierrez JM, Calvete JJ. Snake venomics and antivenomics of the arboreal neotropical pitvipers Bothriechis lateralis and Bothriechis schlegelii. J Proteome Res. 2008;7(6):2445–57.PubMedCrossRefGoogle Scholar
  81. Lomonte B, Rey-Suarez P, Tsai WC, Angulo Y, Sasa M, Gutierrez JM, Calvete JJ. Snake venomics of the pit vipers Porthidium nasutum, Porthidium ophryomegas, and Cerrophidion godmani from Costa Rica: toxicological and taxonomical insights. J Proteomics. 2012a;75(5):1675–89.PubMedCrossRefGoogle Scholar
  82. Lomonte B, Tsai WC, Bonilla F, Solorzano A, Solano G, Angulo Y, Gutierrez JM, Calvete JJ. Snake venomics and toxicological profiling of the arboreal pitviper Bothriechis supraciliaris from Costa Rica. Toxicon. 2012b;59(5):592–9.PubMedCrossRefGoogle Scholar
  83. Lomonte B, Tsai WC, Urena-Diaz JM, Sanz L, Mora-Obando D, Sanchez EE, Fry BG, Gutierrez JM, Gibbs HL, Sovic MG, Calvete JJ. Venomics of new world pit vipers: genus-wide comparisons of venom proteomes across Agkistrodon. J Proteomics. 2013;96C:103–16.Google Scholar
  84. Ma B, Johnson R. De novo sequencing and homology searching. Mol Cell Proteomics. 2012;11(2):O111 014902.PubMedCrossRefGoogle Scholar
  85. Madrigal M, Sanz L, Flores-Diaz M, Sasa M, Nunez V, Alape-Giron A, Calvete JJ. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda. J Proteomics. 2012;77:280–97.PubMedCrossRefGoogle Scholar
  86. Makran B, Fahmi L, Pla D, Sanz L, Oukkache N, Lkhider M, Ghalim N, Calvete JJ. Snake venomics of Macrovipera mauritanica from Morocco, and assessment of the para-specific immunoreactivity of an experimental monospecific and a commercial antivenoms. J Proteomics. 2012;75(8):2431–41.PubMedCrossRefGoogle Scholar
  87. Malih I, Ahmad Rusmili MR, Tee TY, Saile R, Ghalim N, Othman I. Proteomic analysis of Moroccan cobra Naja haje legionis venom using tandem mass spectrometry. J Proteomics. 2013;96C:240–52.Google Scholar
  88. Margres MJ, McGivern JJ, Wray KP, Seavy M, Calvin K, Rokyta DR. Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus). J Proteomics. 2013;96C:145–58.Google Scholar
  89. Markland FS. Snake venoms and the hemostatic system. Toxicon. 1998;36(12):1749–800.PubMedCrossRefGoogle Scholar
  90. Massey DJ, Calvete JJ, Sanchez EE, Sanz L, Richards K, Curtis R, Boesen K. Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona. J Proteomics. 2012;75(9):2576–87.PubMedCrossRefGoogle Scholar
  91. McCleary RJ, Kini RM. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon. 2013;62:56–74.PubMedCrossRefGoogle Scholar
  92. Menin L, Perchuc A, Favreau P, Perret F, Michalet S, Schoni R, Wilmer M, Stocklin R. High throughput screening of bradykinin-potentiating peptides in Bothrops moojeni snake venom using precursor ion mass spectrometry. Toxicon. 2008;51(7):1288–302.PubMedCrossRefGoogle Scholar
  93. Meyer B, Papasotiriou DG, Karas M. 100 % protein sequence coverage: a modern form of surrealism in proteomics. Amino Acids. 2011;41(2):291–310.PubMedCrossRefGoogle Scholar
  94. Mora-Obando D, Guerrero-Vargas JA, Prieto-Sanchez R, Beltran J, Rucavado A, Sasa M, Gutierrez JM, Ayerbe S, Lomonte B. Proteomic and functional profiling of the venom of Bothrops ayerbei from Cauca, Colombia, reveals striking interspecific variation with Bothrops asper venom. J Proteomics. 2013;96C:159–72.Google Scholar
  95. Munawar A, Trusch M, Georgieva D, Spencer P, Frochaux V, Harder S, Arni RK, Duhalov D, Genov N, Schluter H, Betzel C. Venom peptide analysis of Vipera ammodytes meridionalis (Viperinae) and Bothrops jararacussu (Crotalinae) demonstrates subfamily-specificity of the peptidome in the family Viperidae. Mol Biosyst. 2011;7(12):3298–307.PubMedCrossRefGoogle Scholar
  96. Nawarak J, Sinchaikul S, Wu CY, Liau MY, Phutrakul S, Chen ST. Proteomics of snake venoms from Elapidae and Viperidae families by multidimensional chromatographic methods. Electrophoresis. 2003;24(16):2838–54.PubMedCrossRefGoogle Scholar
  97. Nawarak J, Phutrakul S, Chen ST. Analysis of lectin-bound glycoproteins in snake venom from the Elapidae and Viperidae families. J Proteome Res. 2004;3(3):383–92.PubMedCrossRefGoogle Scholar
  98. Neves-Ferreira AG, Perales J, Fox JW, Shannon JD, Makino DL, Garratt RC, Domont GB. Structural and functional analyses of DM43, a snake venom metalloproteinase inhibitor from Didelphis marsupialis serum. J Biol Chem. 2002;277(15):13129–37.PubMedCrossRefGoogle Scholar
  99. Nunez V, Cid P, Sanz L, De La Torre P, Angulo Y, Lomonte B, Gutierrez JM, Calvete JJ. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Peru and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. J Proteomics. 2009;73(1):57–78.PubMedCrossRefGoogle Scholar
  100. Ohler M, Georgieva D, Seifert J, von Bergen M, Arni RK, Genov N, Betzel C. The venomics of Bothrops alternatus is a pool of acidic proteins with predominant hemorrhagic and coagulopathic activities. J Proteome Res. 2010;9(5):2422–37.PubMedCrossRefGoogle Scholar
  101. Olamendi-Portugal T, Batista CV, Restano-Cassulini R, Pando V, Villa-Hernandez O, Zavaleta-Martinez-Vargas A, Salas-Arruz MC, Rodriguez de la Vega RC, Becerril B, Possani LD. Proteomic analysis of the venom from the fish eating coral snake Micrurus surinamensis: novel toxins, their function and phylogeny. Proteomics. 2008;8(9):1919–32.PubMedCrossRefGoogle Scholar
  102. Olsen JV, Mann M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics. 2013;12(12):3444–52.PubMedPubMedCentralCrossRefGoogle Scholar
  103. OmPraba G, Chapeaurouge A, Doley R, Devi KR, Padmanaban P, Venkatraman C, Velmurugan D, Lin Q, Kini RM. Identification of a novel family of snake venom proteins Veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach. J Proteome Res. 2010;9(4):1882–93.PubMedCrossRefGoogle Scholar
  104. Paes Leme AF, Prezoto BC, Yamashiro ET, Bertholim L, Tashima AK, Klitzke CF, Camargo AC, Serrano SM. Bothrops protease A, a unique highly glycosylated serine proteinase, is a potent, specific fibrinogenolytic agent. J Thromb Haemost. 2008;6(8):1363–72.PubMedCrossRefGoogle Scholar
  105. Paes Leme AF, Kitano ES, Furtado MF, Valente RH, Camargo AC, Ho PL, Fox JW, Serrano SM. Analysis of the subproteomes of proteinases and heparin-binding toxins of eight Bothrops venoms. Proteomics. 2009;9(3):733–45.PubMedCrossRefGoogle Scholar
  106. Petras D, Sanz L, Segura A, Herrera M, Villalta M, Solano D, Vargas M, Leon G, Warrell DA, Theakston RD, Harrison RA, Durfa N, Nasidi A, Gutierrez JM, Calvete JJ. Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J Proteome Res. 2011;10(3):1266–80.PubMedCrossRefGoogle Scholar
  107. Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9(6):555–66.PubMedCrossRefGoogle Scholar
  108. Pimenta DC, Prezoto BC, Konno K, Melo RL, Furtado MF, Camargo AC, Serrano SM. Mass spectrometric analysis of the individual variability of Bothrops jararaca venom peptide fraction. Evidence for sex-based variation among the bradykinin-potentiating peptides. Rapid Commun Mass Spectrom. 2007;21(6):1034–42.PubMedCrossRefGoogle Scholar
  109. Pla D, Gutierrez JM, Calvete JJ. Second generation snake antivenomics: comparing immunoaffinity and immunodepletion protocols. Toxicon. 2012;60(4):688–99.PubMedCrossRefGoogle Scholar
  110. Pla D, Sanz L, Molina-Sanchez P, Zorita V, Madrigal M, Flores-Diaz M, Alape-Giron A, Nunez V, Andres V, Gutierrez JM, Calvete JJ. Snake venomics of Lachesis muta rhombeata and genus-wide antivenomics assessment of the paraspecific immunoreactivity of two antivenoms evidence the high compositional and immunological conservation across Lachesis. J Proteomics. 2013;89:112–23.PubMedCrossRefGoogle Scholar
  111. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK. UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom. 2006;20(13):1989–94.PubMedCrossRefGoogle Scholar
  112. Pyron RA, Burbrink FT, Wiens JJ. A phylogeny and revised classification of Squamata, including 4,161 species of lizards and snakes. BMC Evol Biol. 2013;13:93.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Quinton L, Le Caer JP, Phan G, Ligny-Lemaire C, Bourdais-Jomaron J, Ducancel F, Chamot-Rooke J. Characterization of toxins within crude venoms by combined use of Fourier transform mass spectrometry and cloning. Anal Chem. 2005;77(20):6630–9.PubMedCrossRefGoogle Scholar
  114. Rey-Suarez P, Nunez V, Gutierrez JM, Lomonte B. Proteomic and biological characterization of the venom of the redtail coral snake, Micrurus mipartitus (Elapidae), from Colombia and Costa Rica. J Proteomics. 2011;75(2):655–67.PubMedCrossRefGoogle Scholar
  115. Righetti PG, Boschetti E, Lomas L, Citterio A. Protein equalizer technology: the quest for a “democratic proteome”. Proteomics. 2006;6(14):3980–92.PubMedCrossRefGoogle Scholar
  116. Rioux V, Gerbod MC, Bouet F, Menez A, Galat A. Divergent and common groups of proteins in glands of venomous snakes. Electrophoresis. 1998;19(5):788–96.PubMedCrossRefGoogle Scholar
  117. Risch M, Georgieva D, von Bergen M, Jehmlich N, Genov N, Arni RK, Betzel C. Snake venomics of the Siamese Russell’s viper (Daboia russelli siamensis): relation to pharmacological activities. J Proteomics. 2009;72(2):256–69.PubMedCrossRefGoogle Scholar
  118. Rocha SL, Neves-Ferreira AG, Trugilho MR, Chapeaurouge A, Leon IR, Valente RH, Domont GB, Perales J. Crotalid snake venom subproteomes unraveled by the antiophidic protein DM43. J Proteome Res. 2009;8(5):2351–60.PubMedCrossRefGoogle Scholar
  119. Rodrigues RS, Boldrini-Franca J, Fonseca FP, de la Torre P, Henrique-Silva F, Sanz L, Calvete JJ, Rodrigues VM. Combined snake venomics and venom gland transcriptomic analysis of Bothropoides pauloensis. J Proteomics. 2012;75(9):2707–20.PubMedCrossRefGoogle Scholar
  120. Rokyta DR, Lemmon AR, Margres MJ, Aronow K. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus). BMC Genomics. 2012;13:312.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3(12):1154–69.PubMedCrossRefGoogle Scholar
  122. Sanz L, Gibbs HL, Mackessy SP, Calvete JJ. Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets. J Proteome Res. 2006;5(9):2098–112.PubMedCrossRefGoogle Scholar
  123. Sanz L, Ayvazyan N, Calvete JJ. Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J Proteomics. 2008a;71(2):198–209.PubMedCrossRefGoogle Scholar
  124. Sanz L, Escolano J, Ferretti M, Biscoglio MJ, Rivera E, Crescenti EJ, Angulo Y, Lomonte B, Gutierrez JM, Calvete JJ. Snake venomics of the South and Central American Bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis. J Proteomics. 2008b;71(1):46–60.PubMedCrossRefGoogle Scholar
  125. Serrano SM, Shannon JD, Wang D, Camargo AC, Fox JW. A multifaceted analysis of viperid snake venoms by two-dimensional gel electrophoresis: an approach to understanding venom proteomics. Proteomics. 2005;5(2):501–10.PubMedCrossRefGoogle Scholar
  126. Sheynkman GM, Shortreed MR, Frey BL, Smith LM. Discovery and mass spectrometric analysis of novel splice-junction peptides using RNA-seq. Mol Cell Proteomics. 2013;12(8):2341–53.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sheynkman GM, Shortreed MR, Frey BL, Scalf M, Smith LM. Large-scale mass spectrometric detection of variant peptides resulting from nonsynonymous nucleotide differences. J Proteome Res. 2014;13(1):228–40.PubMedCrossRefGoogle Scholar
  128. Shteynberg D, Nesvizhskii AI, Moritz RL, Deutsch EW. Combining results of multiple search engines in proteomics. Mol Cell Proteomics. 2013;12(9):2383–93.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Smith LM, Kelleher NL, Consortium for Top Down Proteomics. Proteoform: a single term describing protein complexity. Nat Methods. 2013;10(3):186–7.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Sousa LF, Nicolau CA, Peixoto PS, Bernardoni JL, Oliveira SS, Portes-Junior JA, Mourao RH, Lima-dos-Santos I, Sano-Martins IS, Chalkidis HM, Valente RH, Moura-da-Silva AM. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of Bothrops complex. PLoS Negl Trop Dis. 2013;7(9):e2442.PubMedPubMedCentralCrossRefGoogle Scholar
  131. St Pierre L, Birrell GW, Earl ST, Wallis TP, Gorman JJ, de Jersey J, Masci PP, Lavin MF. Diversity of toxic components from the venom of the evolutionarily distinct black whip snake, Demansia vestigiata. J Proteome Res. 2007;6(8):3093–107.PubMedCrossRefGoogle Scholar
  132. Stead DA, Preece A, Brown AJ. Universal metrics for quality assessment of protein identifications by mass spectrometry. Mol Cell Proteomics. 2006;5(7):1205–11.PubMedCrossRefGoogle Scholar
  133. Stein DR, Hu X, McCorrister SJ, Westmacott GR, Plummer FA, Ball TB, Carpenter MS. High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis. Proteomics. 2013;13(20):2956–66.PubMedGoogle Scholar
  134. Swaney DL, Wenger CD, Coon JJ. Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res. 2010;9(3):1323–9.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Tashima AK, Sanz L, Camargo AC, Serrano SM, Calvete JJ. Snake venomics of the Brazilian pitvipers Bothrops cotiara and Bothrops fonsecai, Identification of taxonomy markers. J Proteomics. 2008;71(4):473–85.PubMedCrossRefGoogle Scholar
  136. Tashima AK, Zelanis A, Kitano ES, Ianzer D, Melo RL, Rioli V, Sant’anna SS, Schenberg AC, Camargo AC, Serrano SM. Peptidomics of three Bothrops snake venoms: insights into the molecular diversification of proteomes and peptidomes. Mol Cell Proteomics. 2012;11(11):1245–62.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Theakston RD, Warrell DA, Griffiths E. Report of a WHO workshop on the standardization and control of antivenoms. Toxicon. 2003;41(5):541–57.PubMedCrossRefGoogle Scholar
  138. Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 1997;18(11):2071–7.PubMedCrossRefGoogle Scholar
  139. Valente RH, Guimaraes PR, Junqueira M, Neves-Ferreira AG, Soares MR, Chapeaurouge A, Trugilho MR, Leon IR, Rocha SL, Oliveira-Carvalho AL, Wermelinger LS, Dutra DL, Leao LI, Junqueira-de-Azevedo IL, Ho PL, Zingali RB, Perales J, Domont GB. Bothrops insularis venomics: a proteomic analysis supported by transcriptomic-generated sequence data. J Proteomics. 2009;72(2):241–55.PubMedCrossRefGoogle Scholar
  140. Villalta M, Pla D, Yang SL, Sanz L, Segura A, Vargas M, Chen PY, Herrera M, Estrada R, Cheng YF, Lee CD, Cerdas M, Chiang JR, Angulo Y, Leon G, Calvete JJ, Gutierrez JM. Snake venomics and antivenomics of Protobothrops mucrosquamatus and Viridovipera stejnegeri from Taiwan: keys to understand the variable immune response in horses. J Proteomics. 2012;75(18):5628–45.PubMedCrossRefGoogle Scholar
  141. Wagstaff SC, Sanz L, Juarez P, Harrison RA, Calvete JJ. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus. J Proteomics. 2009;71(6):609–23.PubMedCrossRefGoogle Scholar
  142. Wermelinger LS, Dutra DL, Oliveira-Carvalho AL, Soares MR, Bloch Jr C, Zingali RB. Fast analysis of low molecular mass compounds present in snake venom: identification of ten new pyroglutamate-containing peptides. Rapid Commun Mass Spectrom. 2005;19(12):1703–8.PubMedCrossRefGoogle Scholar
  143. Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y). 1996;14(1):61–5.CrossRefGoogle Scholar
  144. Yanes O, Aviles FX, Wenzel R, Nazabal A, Zenobi R, Calvete JJ. Proteomic profiling of a snake venom using high mass detection MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom. 2007;18(4):600–6.PubMedCrossRefGoogle Scholar
  145. Zelanis A, Tashima AK, Rocha MM, Furtado MF, Camargo AC, Ho PL, Serrano SM. Analysis of the ontogenetic variation in the venom proteome/peptidome of Bothrops jararaca reveals different strategies to deal with prey. J Proteome Res. 2010;9(5):2278–91.PubMedCrossRefGoogle Scholar
  146. Zelanis A, Tashima AK, Pinto AF, Leme AF, Stuginski DR, Furtado MF, Sherman NE, Ho PL, Fox JW, Serrano SM. Bothrops jararaca venom proteome rearrangement upon neonate to adult transition. Proteomics. 2011;11(21):4218–28.PubMedCrossRefGoogle Scholar
  147. Zelanis A, Andrade-Silva D, Rocha MM, Furtado MF, Serrano SM, Junqueira-de-Azevedo IL, Ho PL. A transcriptomic view of the proteome variability of newborn and adult Bothrops jararaca snake venoms. PLoS Negl Trop Dis. 2012a;6(3):e1554.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zelanis A, Serrano SM, Reinhold VN. N-glycome profiling of Bothrops jararaca newborn and adult venoms. J Proteomics. 2012b;75(3):774–82.PubMedCrossRefGoogle Scholar
  149. Zhang Y, Fonslow BR, Shan B, Baek MC, Yates 3rd JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113(4):2343–94.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Zhu Z, Liang Z, Zhang T, Zhu Z, Xu W, Teng M, Niu L. Crystal structures and amidolytic activities of two glycosylated snake venom serine proteinases. J Biol Chem. 2005;280(11):10524–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Richard Hemmi Valente
    • 1
  • Carolina Alves Nicolau
    • 1
  • Jonas Perales
    • 1
  • Ana Gisele da Costa Neves-Ferreira
    • 1
  1. 1.Laboratório de ToxinologiaInstituto Oswaldo Cruz / FIOCRUZRio de JaneiroBrazil

Personalised recommendations