Advertisement

Shotgun Approaches for Venom Analysis

  • Rafael Donadelli Melani
  • Livia Goto-Silva
  • Fábio César Sousa Nogueira
  • Magno Junqueira
  • Gilberto Barbosa Domont
Reference work entry
Part of the Toxinology book series (TOXI)

Abstract

Shotgun proteomics relies on the identification, quantification, and characterization of proteins in complex samples. Recent advances in instrumentation allow for sensitive and comprehensive shotgun protein analysis in a high-throughput manner. Combination of shotgun techniques to novel analytical strategies opens interesting possibilities for the implementation of new approaches and methodologies in the frontiers of venom biology. Examples are (i) identification of proteins in low abundance, using combinatorial ligand peptide libraries; (ii) relative and absolute protein quantitation ; and (iii) identification of posttranslational modifications. The full potential of shotgun analysis in venomics is yet to be explored. Some of the pioneer works in the field will be reviewed.

Keywords

Snake Venom Immobilize Metal Affinity Chromatography Sequence Similarity Search Shotgun Proteomics Venom Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aird SD, Watanabe Y, Villar-Briones A, Roy MC, Terada K, Mikheyev AS. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis). BMC Genomics. 2013;14:790.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bandeira N, Clauser KR, Pevzner PA. Shotgun protein sequencing: assembly of peptide tandem mass spectra from mixtures of modified proteins. Mol Cell Proteomics. 2007;6:1123–34.CrossRefPubMedGoogle Scholar
  3. Birrell GW, Earl S, Masci PP, Jersey JD, Wallis TP, Gorman JJ, Lavin MF. Molecular diversity in venom from the Australian brown snake, Pseudonaja textilis. Mol Cell Proteomics. 2006;5(2):379–89.CrossRefPubMedGoogle Scholar
  4. Birrell GW, Earl STH, Wallis TP, Masci PP, Jersey JD, Gorman JJ, Lavin MF. The diversity of bioactive proteins in Australian snake venoms. Mol Cell Proteomics. 2007;6(6):973–86.CrossRefPubMedGoogle Scholar
  5. Buczek O, Bulaj G, Olivera BM. Conotoxins and the posttranslational modification of secreted gene products. Cell Mol Life Sci. 2005;62:3067–79.CrossRefPubMedGoogle Scholar
  6. Calvete JJ. Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation. Expert Rev Proteomics. 2014;11(3):315–29.CrossRefPubMedGoogle Scholar
  7. Calvete JJ, Juárez P, Sanz L. Snake venomics. Strategy Appl J Mass Spectrom. 2007;42:1405–14.CrossRefGoogle Scholar
  8. Calvete JJ, Fasoli E, Sanz L, Boschetti E, Righetti PG. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. J Proteome Res. 2009;8:3055–67.CrossRefPubMedGoogle Scholar
  9. Castoe TA, de Koning AP, Hall KT, Card DC, Schield DR, Fujita MK, Ruggiero RP, Degner JF, Daza JM, Gu W, et al. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci U S A. 2013;110:20645–50.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Duan Z, Cao R, Jiang L, Liang S. A combined de novo protein sequencing and cDNA library approach to the venomic analysis of Chinese spider Araneus ventricosus. J Proteomics. 2013;78:416–27.CrossRefPubMedGoogle Scholar
  11. Fox JW, Ma L, Nelson K., Sherman NE, Serrano SMT. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes. Toxicon. 2006; 47: 700–14.CrossRefPubMedGoogle Scholar
  12. Fry BG, Wickramaratna JC, Hodgson WC, Alewood PF, Kini RM, Ho H, Wüster W. Electrospray liquid chromatography/mass spectrometry fingerprinting of Acanthophis (death adder) venoms: taxonomic and toxinological implications. Rapid Commun Mass Spectrom. 2002;16:600–8.CrossRefPubMedGoogle Scholar
  13. Galan JA, Guo M, Sanchez EE, Cantu E, Rodriguez-Acosta A, Perez JC, Tao WA. Quantitative analysis of snake venoms using soluble polymer-based isotope labeling. Mol Cell Proteomics. 2008;7:785–99.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gelpí E. From large analogical instruments to small digital black boxes: 40 years of progress in mass spectrometry and its role in proteomics. Part I 1965–1984. J Mass Spectrom. 2008;43:419–35.CrossRefPubMedGoogle Scholar
  15. Gelpí E. From large analogical instruments to small digital black boxes: 40 years of progress in mass spectrometry and its role in proteomics. Part II 1985–2000. J Mass Spectrom. 2009;44:1137–61.CrossRefPubMedGoogle Scholar
  16. Guercio RA, Shevchenko A, Lopez-Lozano JL, Paba J, Sousa MV, Ricart CA. Ontogenetic variations in the venom proteome of the Amazonian snake Bothrops atrox. Proc Natl Acad Sci U S A. 2006;4:11.Google Scholar
  17. Guthals A, Clauser KR, Frank AM, Bandeira N. Sequencing-grade De novo analysis of MS/MS triplets (CID/HCD/ETD) from overlapping peptides. J Proteome Res. 2013;12:2846–57.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17:994–9.CrossRefPubMedGoogle Scholar
  19. Haney RA, Ayoub NA, Clarke TH, Hayashi CY, Garb JE. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genomics. 2014;15:366.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ. The one hour yeast proteome. Mol Cell Proteomics. 2014;13:339–47.CrossRefPubMedGoogle Scholar
  21. Jensen ON. Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol. 2006;7:391–403.CrossRefPubMedGoogle Scholar
  22. Kulkeaw K, Chaicumpa W, Sakolvaree Y, Tongtawe P, Tapchaisri P. Proteome and immunome of the venom of the Thai cobra, Naja kaouthia. Toxicon. 2007;49:1026–41.CrossRefPubMedGoogle Scholar
  23. Li S, Wang J, Zhang X, Ren Y, Wang N, Zhao K, Chen X, Zhao C, Li X, Shao J, et al. Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys. Biochem J. 2004;384:119–27.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li R, Zhang L, Fang Y, Han B, Lu X, Zhou T, Feng M, Li J. Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. BMC Genomics. 2013;14:766.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates 3rd JR. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999;17:676–82.CrossRefPubMedGoogle Scholar
  26. Margres MJ, McGivern JJ, Wray KP, Seavy M, Calvin K, Rokyta DR. Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus). J Proteomics. 2014;96:145–58.CrossRefPubMedGoogle Scholar
  27. Nawarak J, Sinchaikul S, Wu C-Y, Liau M-Y, Phutrakul S, Chen S-T. Proteomics of snake venoms from elapidae and viperidae families by multidimensional chromatographic methods. Electrophoresis. 2003;24(16):2838–54.CrossRefPubMedGoogle Scholar
  28. Nogueira FC, Domont GB. Survey of shotgun proteomics. Methods Mol Biol. 2014;1156:3–23.CrossRefPubMedGoogle Scholar
  29. Olsen JV, Mann M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics. 2013;12:3444–52.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Portes-Junior JA, Yamanouye N, Carneiro SM, Knittel PS, Sant’Anna SS, Nogueira FC, Junqueira M, Magalhães GS, Domont GB, Moura-da-Silva AM. Unraveling the processing and activation of snake venom metalloproteinases. J Proteome Res. 2014;13:3338–48.CrossRefPubMedGoogle Scholar
  31. Resende VMF, Vasilj A, Santos KS, Palma MS, Shevchenko A. Proteome and phosphoproteome of Africanized and European honeybee venoms. Proteomics. 2013;13:2638–48.CrossRefPubMedGoogle Scholar
  32. Righetti PG, Fasoli E, Boschetti E. Combinatorial peptide ligand libraries: the conquest of the ‘hidden proteome’ advances at great strides. Electrophoresis. 2011;32:960–6.CrossRefPubMedGoogle Scholar
  33. Sousa LF, Nicolau CA, Peixoto PS, Bernardoni JL, Oliveira SS, Portes-Junior JA, Mourão RHV, Lima-dos-Santos I, Sano-Martins IS, Chalkidis HM, et al. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of Bothrops complex. PLoS Negl Trop Dis. 2013;7:e2442.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tashima AK, Zelanis A, Kitano ES, Ianzer D, Melo RL, Rioli V, Sant’anna SS, Schenberg AC, Camargo AC, Serrano SM. Peptidomics of three Bothrops snake venoms: insights into the molecular diversification of proteomes and peptidomes. Mol Cell Proteomics. 2012;11:1245–62.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tayo LL, Lu B, Cruz LJ, Yates JR. Proteomic analysis provides insights on venom processing in Conus textile. J Proteome Res. 2010;9:2292–301.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Thakur SS, Geiger T, Chatterjee B, Bandilla P, Fröhlich F, Cox J, Mann M. Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation. Mol Cell Proteomics. 2011;10:M110.003699.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Undheim EA, Sunagar K, Hamilton BR, Jones A, Venter DJ, Fry BG, King GF. Multifunctional warheads: diversification of the toxin arsenal of centipedes via novel multidomain transcripts. J Proteomics. 2014;102:1–10.CrossRefPubMedGoogle Scholar
  38. Valente RH, Guimarães PR, Junqueira M, Neves-Ferreira AG, Soares MR, Chapeaurouge A, Trugilho MR, León IR, Rocha SL, Oliveira-Carvalho AL, et al. Bothrops insularis venomics: a proteomic analysis supported by transcriptomic-generated sequence data. J Proteomics. 2009;72:241–55.CrossRefPubMedGoogle Scholar
  39. Van Vaerenbergh M, Debyser G, Devreese B, de Graaf DC. Exploring the hidden honeybee (Apis mellifera) venom proteome by integrating a combinatorial peptide ligand library approach with FTMS. J Proteomics. 2014;99:169–78.CrossRefPubMedGoogle Scholar
  40. Verano-Braga T, Dutra AA, Leon IR, Melo-Braga MN, Roepstorff P, Pimenta AM, Kjeldsen F. Moving pieces in a venomic puzzle: unveiling post-translationally modified toxins from Tityus serrulatus. J Proteome Res. 2013;12:3460–70.CrossRefPubMedGoogle Scholar
  41. Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, Kerkkamp HM, Vos RA, Guerreiro I, Calvete JJ, et al. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110:20651–6.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wolters DA, Washburn MP, Yates 3rd JR. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem. 2001;73:5683–90.CrossRefPubMedGoogle Scholar
  43. Yates JR. The revolution and evolution of shotgun proteomics for large-scale proteome analysis. J Am Chem Soc. 2013;135:1629–40.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zelanis A, Tashima AK, Pinto AFM, Paes Leme AF, Stuginski DR, Furtado MF, Sherman NE, Ho PL, Fox JW, Serrano SMT. Bothrops jararaca venom proteome rearrangement upon neonate to adult transition. Proteomics. 2011;11:4218–28.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Rafael Donadelli Melani
    • 1
  • Livia Goto-Silva
    • 1
  • Fábio César Sousa Nogueira
    • 1
  • Magno Junqueira
    • 1
  • Gilberto Barbosa Domont
    • 1
  1. 1.Proteomics UnitInstitute of Chemistry, Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations