Advertisement

Structure-Function Relationship in Heterodimeric Neurotoxin PLA2s from Viperidae Snakes Inhabiting Europe, South America, and Asia

Functional Importance of the Nontoxic Components
  • Dessislava Georgieva
  • Raghuvir K. Arni
  • Christian Betzel
Reference work entry
Part of the Toxinology book series (TOXI)

Abstract

Snake venom heterodimeric non-covalent phospholipase A2 (PLA2) complexes (ncHdPLA2s) are neurotoxins encountered in the venoms of Viperinae and Crotalinae snakes. In contrast to their monomeric counterparts, they have a sophisticated mechanism of action in order to avoid nonspecific binding to “wrong” targets and to increase the efficiency of the pharmacological attack. ncHdPLA2s consist of a toxic and enzymatically active basic PLA2 and an acidic and catalytically inactive PLA2 protein. The main function of the acidic subunit is to direct the toxic component to the “correct” targets on the cell membrane and in this way to avoid binding to phospholipids, which are not important for the pharmacological effect of the toxin. The nontoxic component of ncHdPLA2s is multifunctional. It can modulate the toxicity and catalytic activity of PLA2.

The structure and function of ncHdPLA2s from the venoms of snakes inhabiting Europe, South America, and Asia are similar. There exists a high identity at the levels of primary and three-dimensional structures of ncHdPLA2s from snakes inhabiting widely separated regions of the world. Although a substantial progress has been made during the last years in understanding the structure and biological action of ncHdPLA2s, a number of questions still remain to be answered.

Keywords

Snake Venom Presynaptic Membrane Basic Subunit Acidic Subunit PLA2 Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrego JR, Craevich AF, Mascarenhas YP, Laure CJ. SAXS study of crotapotin at low pH. Biophys J. 1993;64:560–4.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aird SD, Kaiser II, Lewis RV, Kruggel WG. Rattlesnake presynaptic neurotoxins: primary structure and evolutionary origin of the acidic subunit. Biochemistry. 1985;24:7054–8.CrossRefPubMedGoogle Scholar
  3. Aird SD, Kruggel WG, Kaiser II. Amino acid sequence of the basic subunit of Mojave toxin from the venom of the Mojave rattlesnake (Crotalus. S. scutulatus). Toxicon. 1990;28:669–73.CrossRefPubMedGoogle Scholar
  4. Aleksiev B, Shipolini R. Weitere Untersuchungen zur Fraktionierung und Reiningung der toxischen Proteine aus dem Gift der bulgarischen Viper (Vipera ammodytes meridionalis). Hoppe-Seyler Z Physiol Chem. 1971;352:1183–8.CrossRefPubMedGoogle Scholar
  5. Aleksiev B, Tchorbanov B. Action on phosphatidylcholine of the toxic phospholipase A2 from the venom of Bulgarian viper (Vipera ammodytes meridionalis). Toxicon. 1976;14:477–85.CrossRefPubMedGoogle Scholar
  6. Banumathi S, Rajashankar KR, Nötzel C, Aleksiev B, Singh TP, Genov N, Betzel C. Structure of the neurotoxic complex vipoxin at 1.4 Ǻ resolution. Acta Crystallogr. 2001;D57:1552–9.Google Scholar
  7. Betzel C, Visanji M, Wilson KS, Genov N, Mancheva I, Aleksiev B, Singh TP. Crystallization and preliminary X-ray analysis of vipoxin, a complex between a toxic phospholipase A2 and its natural polypeptide inhibitor. J Mol Biol. 1993;231:498–500.CrossRefPubMedGoogle Scholar
  8. Betzel C, Genov N, Rajashankar KR, Singh TP. Modulation of phospholipase A2 activity generated by molecular evolution. Cell Mol Life Sci. 1999;56:384–97.CrossRefPubMedGoogle Scholar
  9. Betzel C, Georgieva D, Murakami M, Arni RK, Genov N. Phospholipase A2 as a biomarker of pathophysiological processes. Curr Top Biochem Res. 2006;8:87–93.Google Scholar
  10. Bieber AL, Becker RR, McParland R, Hunt DF, Shabanovitz J, Yates JR, Martino PA, Johnson GR. The complete sequence of the acidic subunit from Mojave toxin determined by Edman degradation and mass spectrometry. Biochim Biophys Acta. 1990;1037:413–21.CrossRefPubMedGoogle Scholar
  11. Bon C. Multicomponent neurotoxic phospholipase A2. In: Kini RM, editor. Venom phospholipase A2 enzymes: structure, function and mechanism. Chichester: Wiley; 1997. p. 269–86.Google Scholar
  12. Bon C, Jeng TW. Crotoxin: a possible mechanism of action. Adv Cytopharmacol. 1979;3:231–5.PubMedGoogle Scholar
  13. Bon C, Changeux J-P, Jeng T-W, Fraenkel-Conrat H. Postsynaptic effects of crotoxin and of its isolated subunits. Eur J Biochem. 1979;99:471–81.CrossRefPubMedGoogle Scholar
  14. Bouchier C, Boulain JC, Bon CA, Menez A. Analysis of cDNAs encoding the two subunits of crotoxin, a phospholipase A2 neurotoxin from rattlesnake venom: the acidic non-enzymatic subunit derives from a phospholipase A2-like precursor. Biochim Biophys Acta. 1991;1088:401–8.CrossRefPubMedGoogle Scholar
  15. Carredano E, Westerlund B, Persson B, Saarinen M, Ramaswamy S, Eaker D, Eklund H. The three-dimensional structures of two toxins from snake venom throw light on the anticoagulant and neurotoxic sites of phospholipase A2. Toxicon. 1998;36:75–92.CrossRefPubMedGoogle Scholar
  16. Changeux J-P, Kasai M, Lee CY. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci U S A. 1970;67:1241–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Choumet V, Faure G, Rcent A, Saliou B, Mazie JC, Bon C. Immunochemical analysis of a snake venom phospholipase A2 neurotoxin, crotoxin, with monoclonal antibodies. Mol Immunol. 1992;29:871–82.CrossRefPubMedGoogle Scholar
  18. Choumet V, Saliou B, Fideler L, Chen Y-C, Gubensek F, Bon C, Délot E. Snake-venom phospholipase A2 neurotoxins. Potentiation of a single-chain neurotoxin by the chaperon subunit of a two-component neurotoxin. Eur J Biochem. 1993;211:57–62.CrossRefPubMedGoogle Scholar
  19. Crotalinae, Integrated Taxonomic Information System. IT IS report, Taxonomic Serial No: 634394. 2006. http://www.itis.gov.
  20. Cura JE, Blanzaco DP, Brisson C, Cura MA, Cabrol R, Larrateguy L, Mendez C, Mendez C, Sechi JC, Siveira JS, Theiller E, de Roodt AR, Vidal JC. Phase I and pharmacokinetics study of Cro (cytotoxin PLA2. NSC-624244) in patient with advanced cancer. Clin Cancer Res. 2002;8:1033–41.PubMedGoogle Scholar
  21. Čurin-Šerbec V, Délot E, Faure G, Saliou B, Gubenšek F, Bon C, Choumet V. Antipeptide antibodies directed to the C-terminal part of ammodytoxin A react with the PLA2 subunit of crotoxin and neutralize its pharmacological activity. Toxicon. 1994;32:1337–48.CrossRefPubMedGoogle Scholar
  22. Delot E, Bon C. Model for the interaction of crotoxin, a phospholipase A2 neurotoxin, with presynaptic membranes. Biochemistry. 1993;32:10708–13.CrossRefPubMedGoogle Scholar
  23. Dijkstra BW, Drenth J, Kalk KH. Active site and catalytic mechanism of phospholipase A2. Nature. 1981;289:604–6.CrossRefPubMedGoogle Scholar
  24. Dorandeu F, Hesters R, Girard F, Four E, Foquin A, Bon C, Lallement G, Faure G. Inhibition of phospholipase A2 activity by manoalide associated with inactivation of crotoxin toxicity and dissociation of the heterodimeric neurotoxic complex. Biochem Pharmacol. 2002;63:755–61.CrossRefPubMedGoogle Scholar
  25. Faure G, Bon C. Crotoxin, a phospholipase A2 neurotoxin from the South American rattlesnake Crotalus durissus terrificus: purification of several isoforms and comparison of their molecular structure and of their biological activities. Biochemistry. 1988;27:730–8.CrossRefPubMedGoogle Scholar
  26. Faure G, Saul F. Crystallographic characterization of functional sites of crotoxin and ammodytoxin, potent β-neurotoxins from Viperidae venom. Toxicon. 2012;60(4):531–8. PMID: 22683534.CrossRefPubMedGoogle Scholar
  27. Faure G, Harvey A, Thomson E, Saliou B, Radvanyi F, Bon C. Comparison of crotoxin isoforms reveals that stability of the complex plays a major role in its pharmacological action. Eur J Biochem. 1993;214:491–6.CrossRefPubMedGoogle Scholar
  28. Faure G, Choumet V, Bouchier C, Camoin L, Guillaume JL, Monegier B, Vuilhorgne M, Bon C. The origin of the diversity of crotoxin isoforms in the venom of Crotalus durissus terrificus. Eur J Biochem. 1994;223:161–4.CrossRefPubMedGoogle Scholar
  29. Faure G, Villela C, Perales J, Bon C. Interaction of the neurotoxic and nontoxic secretory phospholipases A2 with the crotoxin inhibitor from Crotalus serum. Eur J Biochem. 2000;267:4799–808.CrossRefPubMedGoogle Scholar
  30. Faure G, Čopič A, Le Porrier S, Gubenšek F, Bon C, Križaj I. Crotoxin acceptor protein isolated from Torpedo electric organ: binding properties to crotoxin by surface Plasmon resonance. Toxicon. 2003;41:509–17.CrossRefPubMedGoogle Scholar
  31. Faure G, Xu H, Saul FA. Crystal structure of crotoxin reveals key residues involved in the stability and toxicity of this potent heterodimeric β-neurotoxin. J Mol Biol. 2011;412:176–91.CrossRefPubMedGoogle Scholar
  32. Francis B, Bdolah A, Kaiser II. Amino acid sequence of a heterodimeric neurotoxin from the venom of the false hornet viper (Pseudocerastes fieldi). Toxicon. 1995;33:863–74.CrossRefPubMedGoogle Scholar
  33. French WJ, Hayes WK, Bush SP, Cardwell MD, Bader JO, Rael ED. Mojave toxin in venom of Crotalus helleri (Southern Pacific Rattlesnake): molecular and geographic characterization. Toxicon. 2004;44:781–91.CrossRefPubMedGoogle Scholar
  34. Georgieva D, Genov N, Hristov K, Dierks K, Betzel C. Interactions of the neurotoxin vipoxin in solution studied by dynamic light scattering. Biophys J. 2004a;86:461–6.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Georgieva D, Rypniewski W, Gabdoulkhakov A, Genov N, Betzel C. Asp49 phospholipase A2 – elaidoylamide complex: a new mode of inhibition. Biochem Biophys Res Commun. 2004b;319:1314–21.CrossRefPubMedGoogle Scholar
  36. Georgieva D, Perbandt M, Rypniewski W, Hristov K, Genov N, Betzel C. The X-ray structure of a snake venom Gln48 phospholipase A2 at 1.9 Å resolution reveals anion-binding sites. Biochem Biophys Res Commun. 2004c;316:33–8.CrossRefPubMedGoogle Scholar
  37. Georgieva D, Risch M, Kardas A, Buck F, von Bergen M, Betzel C. Comparative analysis of the venom proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis. J Proteome Res. 2008;7:866–86.CrossRefPubMedGoogle Scholar
  38. Gopalakrishnakone P, Hawgood BJ, Holbrooke SE, Marsh NA, Santana S, Tu AT. Sites of action of Mojave toxin isolated from the venom of the Mojave rattlesnake. Br J Pharmacol. 1980;69:421–31.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Guillemin I, Bouchiert C, Garrigues T, Wisner A, Choumet V. Sequences and structural organization of phospholipase A2 genes from Vipera aspis aspis, V. aspis zinnikeri and Vipera berus berus venom. Eur J Biochem. 2003;270:2697–706.CrossRefPubMedGoogle Scholar
  40. Jabeen T, Singh N, Singh RK, Jasti J, Sharma S, Kaur P, Srinivasan A, Singh TP. Crystal structure of a heterodimer of phospholipase A2 from Naja naja sagittifera at 2.3 Å resolution reveals the presence of a new PLA2-like protein with a novel Cys32-Cys49 disulphide bridge with a bound sugar at the substrate-binding site. Proteins. 2006;62:329–37.CrossRefPubMedGoogle Scholar
  41. Jan V, Maroun RC, Robbe-Vincent A, De Haro L, Choumet V. Toxicity evolution of Vipera aspis aspis venom: identification and molecular modelling of a novel phospholipase A2 heterodimer neurotoxin. FEBS Lett. 2002;527:263–8.CrossRefPubMedGoogle Scholar
  42. John TR, Smith LA, Kaiser II. Genomic sequences encoding the acidic and basic subunits of Mojave toxin: unusually high sequence identity of non-coding regions. Gene. 1994;139:229–34.CrossRefPubMedGoogle Scholar
  43. Kini RM, Evans HJ. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon. 1989;27:613–35.CrossRefPubMedGoogle Scholar
  44. Komori Y, Masuda K, Nikai T, Sugihara H. Complete primary structure of the subunits of heterodimeric phospholipase A2 from Vipera a. zinnikeri venom. Arch Biochem Biophys. 1996;327:303–7.CrossRefPubMedGoogle Scholar
  45. Kordiš D, Bdolah A, Gubenšek F. Positive Darwinian selection in Vipera palaestinae phospholipase A2 genes is unexpectedly limited to the third exon. Biochem Biophys Res Commun. 1998;251:613–9.CrossRefPubMedGoogle Scholar
  46. Križaj I, Bdolah A, Gubenšek F, Benčina P, Pungerčar J. Protein and cDNA structures of an acidic phospholipase A2, two-component toxin from Vipera palaestinae. Biochem Biophys Res Commun. 1996;227:374–9.CrossRefPubMedGoogle Scholar
  47. Križaj I, Faure G, Gubenšek F, Bon C. Neurotoxic phospholipases A2 ammodytoxin and crotoxin bind to distinct high-affinity protein acceptors in Torpedo marmorata electric organ. Biochemistry. 1997;36:2779–87.CrossRefPubMedGoogle Scholar
  48. Mallow D, Ludwig D, Nilson G. True vipers: natural history and toxinology of Old World vipers. Malabar: Krieger; 2003. 359 pp. ISBN 0-89464-877-2.Google Scholar
  49. Mancheva I, Kleinschmidt T, Aleksiev B, Braunitzer G. The primary structure of phospholipase A2 of vipoxin from the venom of the Bulgarian viper (Vipera ammodytes meridionalis). Biol Chem Hoppe-Seyler. 1987;368:343–52.CrossRefPubMedGoogle Scholar
  50. Marchi-Salvador DP, Corrêa LC, Magro AJ, Oliveira CZ, Soares AM, Fontes MRM. Insights into the role of oligomeric state on the biological activities of crotoxin: crystal structure of a tetrameric phospholipase A2 formed by two isoforms of crotoxin B from Crotalus durissus terrificus venom. Proteins. 2008;72:883–91.CrossRefPubMedGoogle Scholar
  51. McDiarmid RW, Campbell JA, Touré TA. Snake species of the world: a taxonomic and geographical reference, vol. 1. Washington, DC: The Herpetologists’ League; 1999.Google Scholar
  52. Monteiro HSA, da Silva IMSC, Martins AMC, Fontes MC. Effects of Crotalus durissus terrificus venom and crotoxin on the isolated rat kidney. Braz J Med Biol Res. 2001;34:1347–52.CrossRefPubMedGoogle Scholar
  53. Mounier CM, Hackeng TM, Schaeffer F, Faure G, Bon C, Griffin JJ. Inhibition of protrombinase by human secretory phospholipase A2 involves binding to factor Xa. J Biol Chem. 1998;273:23764–72.CrossRefPubMedGoogle Scholar
  54. Perbandt M, Tsai I-H, Fuchs A, Banumathi S, Rajashankar KR, Georgieva D, Kalkura N, Singh TP, Genov N, Betzel C. Structure of the heterodimeric neurotoxic complex viperotoxin F (RV-4/RV7) from the venom of Vipera russelli formosensis at 1.9 Å resolution. Acta Crystallogr. 2003;D59:1679–87.Google Scholar
  55. Prijatelj P, Čopič A, Križaj I, Gubenšek F, Pungerčar J. Charge reversal of ammodytoxin A, a phospholipase A2-toxin, does not abolish its neurotoxicity. Biochem J. 2000;352:251–5.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Radvanyi F, Keil A, Saliou B, Lembezat MP, Bon C. Binding of divalent and trivalent cations with crotoxin and with its phospholipase and its non-catalytic subunits: effects on enzymatic activity and on the interaction of phospholipase component with phospholipids. Biochim Biophys Acta. 1989;1006:183–92.CrossRefPubMedGoogle Scholar
  57. Renetseder R, Dijkstra BW, Huizinga K, Kalk KH, Drenth J. Crystal structure of bovine pancreatic phospholipase A2 covalently inhibited by p-bromo-phenacyl-bromide. J Mol Biol. 1988;200:181–8.CrossRefPubMedGoogle Scholar
  58. Rübsamen K, Breithaupt H, Habermann E. Biochemistry and pharmacology of the crotoxin complex. I. Subfractionation and recombination of the crotoxin complex. Naunin-Schmeidebergs Arch Path Pharmakol. 1971;270:274–80.CrossRefGoogle Scholar
  59. Santos KF, Murakami MT, Cintra ACO, Toyama MH, Marangoni S, Forrer VP, Brandao Neto JR, Polikarpov I, Arni RK. Crystallization and preliminary X-ray crystallographic analysis of the heterodimeric crotoxin complex and the isolated subunits crotapotin and phospholipase A2. Acta Crystallogr. 2007;F63:287–90.Google Scholar
  60. Soares AM, Mancin AC, Cecchini AL, Arantes EC, Franca SC, Gutierrez JM, Giglio JR. Effects of chemical modifications of crotoxin B, the phospholipase A2 subunit of crotoxin from Crotalus durissus terrificus snake venom, on the enzymatic and pharmacological activities. Int J Biochem Cell Biol. 2001;33:877–88.CrossRefPubMedGoogle Scholar
  61. Tchorbanov B, Grishin E, Aleksiev B, Ovchinnikov Y. A neurotoxic complex from the venom of the Bulgarian viper (Vipera ammodytes meridionalis) and a partial amino acid sequence of the toxic phospholipase A2. Toxicon. 1978;16:37–44.CrossRefPubMedGoogle Scholar
  62. Tsai MC, Lee CY, Bdolah A. Mode of neuromuscular blocking action of a toxic phospholipase A2 from Pseudocerastes fieldi (Field’s hornet viper) snake venom. Toxicon. 1983;21:527–34.CrossRefPubMedGoogle Scholar
  63. Wang Y-M, Lu P-J, Ho C-L, Tsai I-H. Characterization and molecular cloning of neurotoxic phospholipases A2 from Taiwan viper (Vipera russelli formosensis). Eur J Biochem. 1992;209:635–41.CrossRefPubMedGoogle Scholar
  64. Zambelli VO, Sampaio SC, Sudo-Hayashi LS, Greco K, Britto LR, Alves AS, Zychar BC, Goncalves LR, Spadacci-Morena DD, Otton R, Della-Casa MS, Curi R, Cury Y. Crotoxin alters lymphocyte distribution in rats: involvement of adhesion molecules and lipoxygenase-derived mediators. Toxicon. 2008;51:1357–67.CrossRefPubMedGoogle Scholar
  65. Zhang HL, Han R, Chen ZX, Chen BW, Gu ZL, Reid PF, Raymond LN, Qin ZH. Opiate and acetylcholine-independent analgesic actions of crotoxin isolated from Crotalus durissus terrificus venom. Toxicon. 2006;48:175–82.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Dessislava Georgieva
    • 1
  • Raghuvir K. Arni
    • 2
  • Christian Betzel
    • 1
  1. 1.Institute of Biochemistry and Molecular Biology, Laboratory of Structural Biology of Infection and InflammationUniversity of HamburgHamburgGermany
  2. 2.Department of Physics, Multi User Center for Biomolecular Innovation, Institute of Biosciences, Humanities and Physical SciencesIBILCE/UNESP (Universidade Estadual Paulista)São José do Rio PretoBrazil

Personalised recommendations