Skip to main content

Snake α-Neurotoxins and the Nicotinic Acetylcholine Receptor

  • Reference work entry
  • First Online:
Snake Venoms

Part of the book series: Toxinology ((TOXI))

Abstract

α-Neurotoxins from snake venoms act on postsynaptic nicotinic acetylcholine receptors at the neuromuscular junction to produce clinically significant skeletal muscle paralysis following envenomation. From the seminal discovery almost 50 years ago of α-bungarotoxin, the prototypical α-neurotoxin, our knowledge of the composition of snake venoms, snake envenomation and its treatment, physiology of the neuromuscular junction, structure and function of nicotinic acetylcholine receptors, protein-protein interactions, and pathophysiological mechanisms that underpin diseases like myasthenia gravis has grown exponentially. The potential for the discovery of therapeutic lead compounds from snake venoms has also been advanced. This review looks back at the historical milestones of this research; highlights the challenges of nomenclature pertaining to the increasing number of novel toxins; provides an overview of nicotinic acetylcholine receptors and their subtypes; discusses the classification of snake α-neurotoxins; describes the three-finger protein fold that is the characteristic scaffold of most snake α-neurotoxins, while noting the unique exceptions; details the pharmacology of snake α-neurotoxins including their mechanisms of neuromuscular blockade, reversibility of blockade, and differential binding affinities for the two different acetylcholine-binding sites on the muscle nicotinic receptor; and lastly, delivers an updated and in-depth analysis of the structure-function relationships of the α-neurotoxin–nicotinic acetylcholine receptor interaction, including information gleaned from mutational, computer modeling, and structural studies of complexes formed between α-neurotoxins and receptor components or homologues. These new facets in toxinology have significantly broadened the scope of α-neurotoxins in scientific discovery as well as their therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann EJ, Taylor P. Nonidentity of the α-neurotoxin binding sites on the nicotinic acetylcholine receptor revealed by modification in α-neurotoxin and receptor structures. Biochemistry. 1997;36(42):12836–44.

    Article  CAS  PubMed  Google Scholar 

  • Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev. 2014;114(11):5815–47.

    Article  CAS  PubMed  Google Scholar 

  • Antil S, Servent D, Menez A. Variability among the sites by which curaremimetic toxins bind to Torpedo acetylcholine receptor, as revealed by identification of the functional residues of alpha-cobratoxin. J Biol Chem. 1999;274(49):34851–8.

    Article  CAS  PubMed  Google Scholar 

  • Antil-Delbeke S, Gaillard C, Tamiya T, Corringer PJ, Changeux JP, Servent D, Menez A. Molecular determinants by which a long chain toxin from snake venom interacts with the neuronal alpha 7-nicotinic acetylcholine receptor. J Biol Chem. 2000;275(38):29594–601.

    Article  CAS  PubMed  Google Scholar 

  • Azam L, Mcintosh JM. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors. Acta Pharmacol Sin. 2009;30(6):771–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey GS. Enzymes from snake venom. Fort Collins: Alaken; 1998.

    Google Scholar 

  • Balass M, Katchalski-Katzir E, Fuchs S. The α-bungarotoxin binding site on the nicotinic acetylcholine receptor: analysis using a phage–epitope library. Proc Natl Acad Sci. 1997;94(12):6054–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber CM, Isbister GK, Hodgson WC. Alpha neurotoxins. Toxicon. 2013;66:47–58.

    Article  CAS  PubMed  Google Scholar 

  • Barchan D, Kachalsky S, Neumann D, Vogel Z, Ovadia M, Kochva E, Fuchs S. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proc Natl Acad Sci U S A. 1992;89(16):7717–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barchan D, Ovadia M, Kochva E, Fuchs S. The binding site of the nicotinic acetylcholine receptor in animal species resistant to alpha-bungarotoxin. Biochemistry. 1995;34(28):9172–6.

    Article  CAS  PubMed  Google Scholar 

  • Barnett D, Barnett D, Howden MEH, Spence I. A neurotoxin of novel structural type from the venom of the Australian common brown snake. Naturwissenschaften. 1980;67(8):405–6.

    Article  CAS  PubMed  Google Scholar 

  • Bourne Y, Taylor P, Marchot P. Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell. 1995;83(3):503–12.

    Article  CAS  PubMed  Google Scholar 

  • Bourne Y, Talley TT, Hansen SB, Taylor P, Marchot P. Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic receptors. EMBO J. 2005;24(8):1512–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulbring E. Observations on the isolated phrenic nerve diaphragm preparation of the rat. Br J Pharmacol Chemother. 1946;1:38–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cecchini M, Changeux JP. The nicotinic acetylcholine receptor and its prokaryotic homologues: structure, conformational transitions & allosteric modulation. Neuropharmacology. 2015;96(Pt B):137–49.

    Article  CAS  PubMed  Google Scholar 

  • Chang CC. Looking back on the discovery of α-bungarotoxin. J Biomed Sci. 1999;6(6):368–75.

    CAS  PubMed  Google Scholar 

  • Changeux JP. The nicotinic acetylcholine receptor: the founding father of the pentameric ligand-gated ion channel superfamily. J Biol Chem. 2012;287(48):40207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiappinelli VA, Weaver WR, Mclane KE, Conti-Fine BM, Fiordalisi JJ, Grant GA. Binding of native k-neurotoxins and site-directed mutants to nicotinic acetylcholine receptors. Toxicon. 1996;34(11–12):1243–56.

    Article  CAS  PubMed  Google Scholar 

  • Chicheportiche R, Vincent JP, Kopeyan C, Schweitz H, Lazdunski M. Structure-function relationship in the binding of snake neurotoxins to the Torpedo membrane receptor. Biochemistry. 1975;14(10):2081–91.

    Article  CAS  PubMed  Google Scholar 

  • Cohen JB, Weber M, Huchet M, Changeux JP. Purification from Torpedo marmorata electric tissue of membrane fragments particularly rich in cholinergic receptor protein. FEBS Lett. 1972;26(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  • Da Silva SL, Rowan EG, Albericio F, Stábeli RG, Calderon LA, Soares AM. Animal toxins and their advantages in biotechnology and pharmacology. Biomed Res Int. 2004.

    Google Scholar 

  • Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L. Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat Neurosci. 2007;10(8):953–62.

    Article  CAS  PubMed  Google Scholar 

  • Dineley KT, Pandya AA, Yakel JL. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci. 2015;36(2):96–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RW, Harris JB. Nerve terminal damage by beta-bungarotoxin. Am J Pathol. 1999;154(2):447–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducancel F, Merienne K, Fromen-Romano C, Tremeau O, Pillet L, Drevet P, Zinn-Justin S, Boulain JC, Menez A. Mimicry between receptors and antibodies. Identification of snake toxin determinants recognized by the acetylcholine receptor and an acetylcholine receptor-mimicking monoclonal antibody. J Biol Chem. 1996;271(49):31345–53.

    Article  CAS  PubMed  Google Scholar 

  • Dutertre S, Lewis RJ. Toxin insights into nicotinic acetylcholine receptors. Biochem Pharmacol. 2006;72(6):661–70.

    Article  CAS  PubMed  Google Scholar 

  • Eaker DL, Porath J. The amino acid sequence of a neurotoxin from Naja nigricollis venom. Japan J Microbiol. 1967;11(4):353–355.

    Google Scholar 

  • Endo T, Tamiya N. Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms. Pharmacol Ther. 1987;34(3):403–51.

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Tamiya N. Structure–function relationships of postsynaptic neurotoxins from snake venoms. In: Snake toxins. New York: Pergamon Press; 1991.

    Google Scholar 

  • Fasoli F, Gotti C. Structure of neuronal nicotinic receptors. Curr Top Behav Neurosci. 2015;23:1–17.

    Article  CAS  PubMed  Google Scholar 

  • Fruchart-Gaillard C, Gilquin B, Antil-Delbeke S, Le Novere N, Tamiya T, Corringer PJ, Changeux JP, Menez A, Servent D. Experimentally based model of a complex between a snake toxin and the alpha 7 nicotinic receptor. Proc Natl Acad Sci U S A. 2002;99(5):3216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fruchart-Gaillard C, Mourier G, Marquer C, Menez A, Servent D. How three-finger-fold toxins interact with various cholinergic receptors. J Mol Neurosci. 2006;30(1–2):7–8.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Lumsden NG, Wuster W, Wickramaratna JC, Hodgson WC, Kini RM. Isolation of a neurotoxin (alpha-colubritoxin) from a nonvenomous colubrid: evidence for early origin of venom in snakes. J Mol Evol. 2003a;57(4):446–52.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Wuster W, Kini RM, Brusic V, Khan A, Venkataraman D, Rooney AP. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol. 2003b;57(1):110–29.

    Article  CAS  PubMed  Google Scholar 

  • Ginsborg BL, Warriner J. The isolated chick biventer cervicis nerve-muscle preparation. Br J Pharmacol Chemother. 1960;15:410–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannan S, Mortensen M, Smart TG. Snake neurotoxin α-bungarotoxin is an antagonist at native GABAA receptors. Neuropharmacology. 2015;93:28–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harel M, Kasher R, Nicolas A, Guss JM, Balass M, Fridkin M, Smit AB, Brejc K, Sixma TK, Katchalski-Katzir E, Sussman JL, Fuchs S. The binding site of acetylcholine receptor as visualized in the X-ray structure of a complex between α-bungarotoxin and a mimotope peptide. Neuron. 2001;32(2):265–75.

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL. Toxins and drug discovery. Toxicon. 2014;92:193–200.

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL, Rodger IW. Reversibility of neuromuscular blockade produced by toxins isolated from the venom of the seasnake Laticauda semifasciata. Toxicon. 1978;16(3):219–25.

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL, Barfaraz A, Thomson E, Faiz A, Preston S, Harris JB. Screening of snake venoms for neurotoxic and myotoxic effects using simple in vitro preparations from rodents and chicks. Toxicon. 1994;32(3):257–65.

    Article  CAS  PubMed  Google Scholar 

  • Hassan-Puttaswamy V, Adams DJ, Kini RM. A distinct functional site in omega-neurotoxins: novel antagonists of nicotinic acetylcholine receptors from snake venom. ACS Chem Biol. 2015;10(12):2805–15.

    Article  CAS  PubMed  Google Scholar 

  • Hawgood BJ. Abbé Felice Fontana (1730–1805): founder of modern toxinology. Toxicon. 1995;33(5):591–601.

    Article  CAS  PubMed  Google Scholar 

  • Hodgson WC, Wickramaratna JC. In vitro neuromuscular activity of snake venoms. Clin Exp Pharmacol Physiol. 2002;29(9):807–14.

    Article  CAS  PubMed  Google Scholar 

  • Hogg RC, Bandelier F, Benoit A, Dosch R, Bertrand D. An automated system for intracellular and intranuclear injection. J Neurosci Methods. 2008;169(1):65–75.

    Article  PubMed  Google Scholar 

  • Huang S, Li SX, Bren N, Cheng K, Gomoto R, Chen L, Sine SM. Complex between alpha-bungarotoxin and an alpha7 nicotinic receptor ligand-binding domain chimaera. Biochem J. 2013;454(2):303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. 2013;137(1):22–54.

    Article  CAS  PubMed  Google Scholar 

  • Jerusalinsky D, Kornisiuk E, Alfaro P, Quillfeldt J, Ferreira A, Rial VE, Durán R, Cerveñansky C. Muscarinic toxins: novel pharmacological tools for the muscarinic cholinergic system. Toxicon. 2000;38(6):747–61.

    Article  CAS  PubMed  Google Scholar 

  • Kachalsky SG, Jensen BS, Barchan D, Fuchs S. Two subsites in the binding domain of the acetylcholine receptor: an aromatic subsite and a proline subsite. Proc Natl Acad Sci U S A. 1995;92(23):10801–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang TS, Georgieva D, Genov N, Murakami MT, Sinha M, Kumar RP, Kaur P, Kumar S, Dey S, Sharma S, Vrielink A, Betzel C, Takeda S, Arni RK, Singh TP, Kini RM. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 2011;278(23):4544–76.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson E, Jolkkonen M, Mulugeta E, Onali P, Adem A. Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors. Biochimie. 2000;82(9–10):793–806.

    Article  CAS  PubMed  Google Scholar 

  • Katchalski-Katzir E, Kasher R, Balass M, Scherf T, Harel M, Fridkin M, Sussman JL, Fuchs S. Design and synthesis of peptides that bind alpha-bungarotoxin with high affinity and mimic the three-dimensional structure of the binding-site of acetylcholine receptor. Biophys Chem. 2003;100(1–3):293–305.

    CAS  PubMed  Google Scholar 

  • Kim HS, Tamiya N. Amino acid sequences of two novel long-chain neurotoxins from the venom of the sea snake Laticauda colubrina. Biochem J. 1982;207(2):215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King GF, Gentz MC, Escoubas P, Nicholson GM. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon. 2008;52(2):264–76.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM. Proline brackets and identification of potential functional sites in proteins: toxins to therapeutics. Toxicon. 1998;36(11):1659–70.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM. Evolution of three-finger toxins–a versatile mini protein scaffold. Acta Chim Slov. 2011;58:693–701.

    CAS  PubMed  Google Scholar 

  • Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon. 2010;56(6):855–67.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM, Evans HJ. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon. 1989;27(6):613–35.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM, Fox JW. Milestones and future prospects in snake venom research. Toxicon. 2013;62:1–2.

    Article  CAS  PubMed  Google Scholar 

  • Kreienkamp HJ, Sine SM, Maeda RK, Taylor P. Glycosylation sites selectively interfere with alpha-toxin binding to the nicotinic acetylcholine receptor. J Biol Chem. 1994;269(11):8108–14.

    CAS  PubMed  Google Scholar 

  • Kudryavtsev DS, Shelukhina IV, Son LV, Ojomoko LO, Kryukova EV, Lyukmanova EN, Zhmak MN, Dolgikh DA, Ivanov IA, Kasheverov IE, Starkov VG, Ramerstorfer J, Sieghart W, Tsetlin VI, Utkin YN. Neurotoxins from snake venoms and alpha-conotoxin ImI inhibit functionally active ionotropic gamma-aminobutyric acid (GABA) receptors. J Biol Chem. 2015;290(37):22747–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kularatne SA, Senanayake N. Venomous snake bites, scorpions, and spiders. Handb Clin Neurol. 2014;120:987–1001.

    Article  CAS  PubMed  Google Scholar 

  • Langelaan DN, Rainey JK. Membrane catalysis of peptide-receptor binding. Biochem Cell Biol. 2010;88:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebbe EK, Peigneur S, Wijesekara I, Tytgat J. Conotoxins targeting nicotinic acetylcholine receptors: an overview. Mar Drugs. 2014;12(5):2970–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CY. Chemistry and pharmacology of polypeptide toxins in snake venoms. Annu Rev Pharmacol. 1972;12:265–86.

    Article  CAS  PubMed  Google Scholar 

  • Lee CY. Snake venoms. Berlin/Heidelberg: Springer; 2012.

    Google Scholar 

  • Lee CY, Chang CC, Chen YM. Reversibility of neuromuscular blockade by neurotoxins from elapid and sea snake venoms. Taiwan Yi Xue Hui Za Zhi. 1972;71(6):344–9.

    CAS  PubMed  Google Scholar 

  • Lesovoy DM, Bocharov EV, Lyukmanova EN, Kosinsky YA, Shulepko MA, Dolgikh DA, Kirpichnikov MP, Efremov RG, Arseniev AS. Specific membrane binding of neurotoxin II can facilitate its delivery to acetylcholine receptor. Biophys J. 2009;97(7):2089–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levandoski MM, Lin Y, Moise L, Mclaughlin JT, Cooper E, Hawrot E. Chimeric analysis of a neuronal nicotinic acetylcholine receptor reveals amino acids conferring sensitivity to alpha-bungarotoxin. J Biol Chem. 1999;274(37):26113–9.

    Article  CAS  PubMed  Google Scholar 

  • Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2003;2(10):790–802.

    Article  CAS  PubMed  Google Scholar 

  • Lewis RL, Gutmann L. Snake venoms and the neuromuscular junction. Semin Neurol. 2004;24(2):175–9.

    Article  PubMed  Google Scholar 

  • Lewis RJ, Dutertre S, Vetter I, Christie MJ. Conus venom peptide pharmacology. Pharmacol Rev. 2012;64(2):259–98.

    Article  CAS  PubMed  Google Scholar 

  • Mackessy SP. Handbook of venoms and toxins of reptiles. Taylor & Francis Group, FL, USA. CRC Press; 2009.

    Google Scholar 

  • Marshall IG, Harvey AL. Selective neuromuscular blocking properties of alpha-conotoxins in vivo. Toxicon. 1990;28(2):231–4.

    Article  CAS  PubMed  Google Scholar 

  • Maslennikov IV, Shenkarev ZO, Zhmak MN, Ivanov VT, Methfessel C, Tsetlin VI, Arseniev AS. NMR spatial structure of alpha-conotoxin ImI reveals a common scaffold in snail and snake toxins recognizing neuronal nicotinic acetylcholine receptors. FEBS Lett. 1999;444(2–3):275–80.

    Article  CAS  PubMed  Google Scholar 

  • Mccann CM, Bracamontes J, Steinbach JH, Sanes JR. The cholinergic antagonist alpha-bungarotoxin also binds and blocks a subset of GABA receptors. Proc Natl Acad Sci U S A. 2006;103(13):5149–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mccleary RJ, Kini RM. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon. 2013;62:56–74.

    Article  CAS  PubMed  Google Scholar 

  • Mcintosh JM, Absalom N, Chebib M, Elgoyhen AB, Vincler M. Alpha9 nicotinic acetylcholine receptors and the treatment of pain. Biochem Pharmacol. 2009;78(7):693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mclane KE, Wu XD, Schoepfer R, Lindstrom JM, Conti-Tronconi BM. Identification of sequence segments forming the alpha-bungarotoxin binding sites on two nicotinic acetylcholine receptor alpha subunits from the avian brain. J Biol Chem. 1991;266(23):15230–9.

    CAS  PubMed  Google Scholar 

  • Ménez A. Functional architectures of animal toxins: a clue to drug design? Toxicon. 1998;36(11):1557–72.

    Article  PubMed  Google Scholar 

  • Ménez A. Perspectives in molecular toxinology. Chichester/New York: Wiley; 2002.

    Google Scholar 

  • Menez A, Bouet F, Guschlbauer W, Fromageot P. Refolding of reduced short neurotoxins: circular dichroism analysis. Biochemistry. 1980;19(18):4166–72.

    Article  CAS  PubMed  Google Scholar 

  • Moise L, Piserchio A, Basus VJ, Hawrot E. NMR structural analysis of alpha-bungarotoxin and its complex with the principal alpha-neurotoxin-binding sequence on the alpha 7 subunit of a neuronal nicotinic acetylcholine receptor. J Biol Chem. 2002a;277(14):12406–17.

    Article  CAS  PubMed  Google Scholar 

  • Moise L, Zeng H, Caffery P, Rogowski RS, Hawrot E. Structure and function of α-bungarotoxin. J Toxicol Toxin Rev. 2002b;21(3):293–317.

    Article  CAS  Google Scholar 

  • Molles BE, Taylor P. Structure and function of the waglerins, peptide toxins from the venom of Wagler’s pit viper, Tropidolaemus wagleri. J Toxicol Toxin Rev. 2002;21(3):273–92.

    Article  CAS  Google Scholar 

  • Molles BE, Rezai P, Kline EF, Mcardle JJ, Sine SM, Taylor P. Identification of residues at the alpha and epsilon subunit interfaces mediating species selectivity of Waglerin-1 for nicotinic acetylcholine receptors. J Biol Chem. 2002;277(7):5433–40.

    Article  CAS  PubMed  Google Scholar 

  • Montecucco C, Rossetto O, Caccin P, Rigoni M, Carli L, Morbiato L, Muraro L, Paoli M. Different mechanisms of inhibition of nerve terminals by botulinum and snake presynaptic neurotoxins. Toxicon. 2009;54(5):561–4.

    Article  CAS  PubMed  Google Scholar 

  • Mordvintsev DY, Polyak YL, Levtsova OV, Tourleigh YV, Kasheverov IE, Shaitan KV, Utkin YN, Tsetlin VI. A model for short α-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain α-neurotoxins and α-conotoxins. Comput Biol Chem. 2005;29(6):398–411.

    Article  CAS  PubMed  Google Scholar 

  • Mordvintsev DY, Polyak YL, Rodionov DI, Jakubik J, Dolezal V, Karlsson E, Tsetlin VI, Utkin YN. Weak toxin WTX from Naja kaouthia cobra venom interacts with both nicotinic and muscarinic acetylcholine receptors. FEBS J. 2009;276(18):5065–75.

    Article  CAS  PubMed  Google Scholar 

  • Naamati G, Askenazi M, Linial M. ClanTox: a classifier of short animal toxins. Nucleic Acids Res. 2009;37:W363–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirthanan S, Gwee MCE. Three-finger α-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J Pharmacol Sci. 2004;94(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  • Nirthanan S, Charpantier E, Gopalakrishnakone P, Gwee MC, Khoo H-E, Cheah L-S, Bertrand D, Kini RM. Candoxin, a novel toxin from Bungarus candidus, is a reversible antagonist of muscle (αβγδ) but a poorly reversible antagonist of neuronal α7 nicotinic acetylcholine receptors. J Biol Chem. 2002;277(20):17811–20.

    Article  CAS  PubMed  Google Scholar 

  • Nirthanan S, Charpantier E, Gopalakrishnakone P, Gwee M, Khoo H, Cheah L, Kini R, Bertrand D. Neuromuscular effects of candoxin, a novel toxin from the venom of the Malayan krait (Bungarus candidus). Br J Pharmacol. 2003a;139(4):832–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirthanan S, Gopalakrishnakone P, Gwee M, Khoo H, Kini R. Non-conventional toxins from elapid venoms. Toxicon. 2003b;41(4):397–407.

    Article  CAS  PubMed  Google Scholar 

  • Nirthanan S, Ziebell MR, Chiara DC, Hong F, Cohen JB. Photolabeling the Torpedo nicotinic acetylcholine receptor with 4-azido-2,3,5,6-tetrafluorobenzoylcholine, a partial agonist. Biochemistry. 2005;44(41):13447–56.

    Article  CAS  PubMed  Google Scholar 

  • Nirthanan S, Garcia 3rd G, Chiara DC, Husain SS, Cohen JB. Identification of binding sites in the nicotinic acetylcholine receptor for TDBzl-etomidate, a photoreactive positive allosteric effector. J Biol Chem. 2008;283(32):22051–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivera BM, Teichert RW. Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery. Mol Interv. 2007;7(5):251–60.

    Article  CAS  PubMed  Google Scholar 

  • Osaka H, Malany S, Molles BE, Sine SM, Taylor P. Pairwise electrostatic interactions between alpha-neurotoxins and gamma, delta, and epsilon subunits of the nicotinic acetylcholine receptor. J Biol Chem. 2000;275(8):5478–84.

    Article  CAS  PubMed  Google Scholar 

  • Osipov AV, Kasheverov IE, Makarova YV, Starkov VG, Vorontsova OV, Ziganshin R, Andreeva TV, Serebryakova MV, Benoit A, Hogg RC, Bertrand D, Tsetlin VI, Utkin YN. Naturally occurring disulfide-bound dimers of three-fingered toxins: a paradigm for biological activity diversification. J Biol Chem. 2008;283(21):14571–80.

    Article  CAS  PubMed  Google Scholar 

  • Osipov AV, Rucktooa P, Kasheverov IE, Filkin SY, Starkov VG, Andreeva TV, Sixma TK, Bertrand D, Utkin YN, Tsetlin VI. Dimeric alpha-cobratoxin X-ray structure: localization of intermolecular disulfides and possible mode of binding to nicotinic acetylcholine receptors. J Biol Chem. 2012;287(9):6725–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswald RE, Sutcliffe MJ, Bamberger M, Loring RH, Braswell E, Dobson CM. Solution structure of neuronal bungarotoxin determined by two-dimensional NMR spectroscopy: sequence-specific assignments, secondary structure, and dimer formation. Biochemistry. 1991;30(20):4901–9.

    Article  CAS  PubMed  Google Scholar 

  • Pawlak J, Mackessy SP, Fry BG, Bhatia M, Mourier G, Fruchart-Gaillard C, Servent D, Menez R, Stura E, Menez A, Kini RM. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J Biol Chem. 2006;281(39):29030–41.

    Article  CAS  PubMed  Google Scholar 

  • Pawlak J, Mackessy SP, Sixberry NM, Stura EA, Le Du MH, Ménez R, Foo CS, Ménez A, Nirthanan S, Kini RM. Irditoxin, a novel covalently linked heterodimeric three-finger toxin with high taxon-specific neurotoxicity. FASEB J. 2009;23(2):534–45.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen SE, Cohen JB. d-Tubocurarine binding sites are located at alpha-gamma and alpha-delta subunit interfaces of the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A. 1990;87(7):2785–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillet L, Trémeau O, Ducancel F, Drevet P, Zinn-Justin S, Pinkasfeld S, Boulain JC, Ménez A. Genetic engineering of snake toxins. Role of invariant residues in the structural and functional properties of a curaremimetic toxin, as probed by site-directed mutagenesis. J Biol Chem. 1993;268(2):909–16.

    CAS  PubMed  Google Scholar 

  • Poh SL, Mourier G, Thai R, Armugam A, Molgo J, Servent D, Jeyaseelan K, Menez A. A synthetic weak neurotoxin binds with low affinity to Torpedo and chicken alpha7 nicotinic acetylcholine receptors. Eur J Biochem. 2002;269(17):4247–56.

    Article  CAS  PubMed  Google Scholar 

  • Prashanth JR, Brust A, Jin AH, Alewood PF, Dutertre S, Lewis RJ. Cone snail venomics: from novel biology to novel therapeutics. Future Med Chem. 2014;6(15):1659–75.

    Article  CAS  PubMed  Google Scholar 

  • Rajesh SS, Sivaraman T. TFTX: a computational tool for predicting subfamilies of three-finger toxins from the venom of elapid snakes. J Pharm Sci Res. 2011;3(12):1612–8.

    Google Scholar 

  • Ranawaka UK, Lalloo DG, De Silva HJ. Neurotoxicity in snakebite – the limits of our knowledge. PLoS Negl Trop Dis. 2013;7(10):e2302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rowan EG. What does β-bungarotoxin do at the neuromuscular junction? Toxicon. 2001;39(1):107–18.

    Article  CAS  PubMed  Google Scholar 

  • Rowan EG, Harvey AL. Snake toxins from mamba venoms: unique tools for the physiologist. Acta Chim Slov. 2011;58(4):689–92.

    CAS  PubMed  Google Scholar 

  • Roy A, Zhou X, Chong MZ, D’hoedt D, Foo CS, Rajagopalan N, Nirthanan S, Bertrand D, Sivaraman J, Kini RM. Structural and functional characterization of a novel homodimeric three-finger neurotoxin from the venom of Ophiophagus hannah (king cobra). J Biol Chem. 2010;285(11):8302–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan KH, Stiles BG, Atassi MZ. The short-neurotoxin-binding regions on the alpha-chain of human and Torpedo californica acetylcholine receptors. Biochem J. 1991;274(Pt 3):849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rucktooa P, Smit AB, Sixma TK. Insight in nAChR subtype selectivity from AChBP crystal structures. Biochem Pharmacol. 2009;78(7):777–87.

    Article  CAS  PubMed  Google Scholar 

  • Samson A, Scherf T, Eisenstein M, Chill J, Anglister J. The mechanism for acetylcholine receptor inhibition by alpha-neurotoxins and species-specific resistance to alpha-bungarotoxin revealed by NMR. Neuron. 2002;35(2):319–32.

    Article  CAS  PubMed  Google Scholar 

  • Schnizler K, Kuster M, Methfessel C, Fejtl M. The roboocyte: automated cDNA/mRNA injection and subsequent TEVC recording on Xenopus oocytes in 96-well microtiter plates. Receptors Channels. 2003;9(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  • Servent D, Ménez A. Snake neurotoxins that interact with nicotinic acetylcholine receptors. In: Massaro EJ, editor. Handbook of neurotoxicology: volume I. Totowa: Humana Press; 2002. p. 385–425.

    Google Scholar 

  • Servent D, Winckler-Dietrich V, Hu HY, Kessler P, Drevet P, Bertrand D, Menez A. Only snake curaremimetic toxins with a fifth disulfide bond have high affinity for the neuronal alpha7 nicotinic receptor. J Biol Chem. 1997;272(39):24279–86.

    Article  CAS  PubMed  Google Scholar 

  • Servent D, Antil-Delbeke S, Gaillard C, Corringer PJ, Changeux JP, Menez A. Molecular characterization of the specificity of interactions of various neurotoxins on two distinct nicotinic acetylcholine receptors. Eur J Pharmacol. 2000;393(1–3):197–204.

    Article  CAS  PubMed  Google Scholar 

  • Servent D, Blanchet G, Mourier G, Marquer C, Marcon E, Fruchart-Gaillard C. Muscarinic toxins. Toxicon. 2011;58(6–7):455–63.

    Article  CAS  PubMed  Google Scholar 

  • Sixma TK, Smit AB. Acetylcholine binding protein (AChBP): a secreted glial protein that provides a high-resolution model for the extracellular domain of pentameric ligand-gated ion channels. Annu Rev Biophys Biomol Struct. 2003;32:311–34.

    Article  CAS  PubMed  Google Scholar 

  • Sribar J, Oberckal J, Krizaj I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A(2): an update. Toxicon. 2014;89:9–16.

    Article  CAS  PubMed  Google Scholar 

  • Stephenson FA. Introduction to thematic minireview series on celebrating the discovery of the cysteine loop ligand-gated ion channel superfamily. J Biol Chem. 2012;287(48):40205–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama N, Marchot P, Kawanishi C, Osaka H, Molles B, Sine SM, Taylor P. Residues at the subunit interfaces of the nicotinic acetylcholine receptor that contribute to alpha-conotoxin M1 binding. Mol Pharmacol. 1998;53(4):787–94.

    CAS  PubMed  Google Scholar 

  • Takacs Z, Wilhelmsen KC, Sorota S. Snake alpha-neurotoxin binding site on the Egyptian cobra (Naja haje) nicotinic acetylcholine receptor is conserved. Mol Biol Evol. 2001;18(9):1800–9.

    Article  CAS  PubMed  Google Scholar 

  • Taylor P, Osaka H, Molles BE, Sugiyama N, Marchot P, Ackermann EJ, Malany S, Mcardle JJ, Sine SM, Tsigelny I. Toxins selective for subunit interfaces as probes of nicotinic acetylcholine receptor structure. J Physiol Paris. 1998;92(2):79–83.

    Article  CAS  PubMed  Google Scholar 

  • Taylor P, Malanz S, Molles BE, Osaka H, Tsigelny I. Subunit interface selective toxins as probes of nicotinic acetylcholine receptor structure. Pflugers Arch. 2000;440(5 Suppl):R115–7.

    Article  CAS  Google Scholar 

  • Teixeira-Clerc F, Menez A, Kessler P. How do short neurotoxins bind to a muscular-type nicotinic acetylcholine receptor? J Biol Chem. 2002;277(28):25741–7.

    Article  CAS  PubMed  Google Scholar 

  • Torres AM, Kini RM, Selvanayagam N, Kuchel PW. NMR structure of bucandin, a neurotoxin from the venom of the Malayan krait (Bungarus candidus). Biochem J. 2001;360(Pt 3):539–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremeau O, Lemaire C, Drevet P, Pinkasfeld S, Ducancel F, Boulain JC, Menez A. Genetic engineering of snake toxins. The functional site of erabutoxin a, as delineated by site-directed mutagenesis, includes variant residues. J Biol Chem. 1995;270(16):9362–9.

    Article  CAS  PubMed  Google Scholar 

  • Tsetlin VI. Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators. Trends Pharmacol Sci. 2015;36(2):109–23.

    Article  CAS  PubMed  Google Scholar 

  • Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol. 2005;346(4):967–89.

    Article  CAS  PubMed  Google Scholar 

  • Unwin N. Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Q Rev Biophys. 2013;46(4):283–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utkin YN. Three-finger toxins, a deadly weapon of elapid venom – milestones of discovery. Toxicon. 2013;62:50–5.

    Article  CAS  PubMed  Google Scholar 

  • Utkin YN, Kukhtina VV, Kryukova EV, Chiodini F, Bertrand D, Methfessel C, Tsetlin VI. “Weak toxin” from Naja kaouthia is a nontoxic antagonist of α7 and muscle-type nicotinic acetylcholine receptors. J Biol Chem. 2001;276(19):15810–5.

    Article  CAS  PubMed  Google Scholar 

  • Utkin YN, Weise C, Kasheverov IE, Andreeva TV, Kryukova EV, Zhmak MN, Starkov VG, Hoang NA, Bertrand D, Ramerstorfer J, Sieghart W, Thompson AJ, Lummis SCR, Tsetlin VI. Azemiopsin from Azemiops feae viper venom, a novel polypeptide ligand of nicotinic acetylcholine receptor. J Biol Chem. 2012;287(32):27079–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams D, Gutierrez JM, Harrison R, Warrell DA, White J, Winkel KD, Gopalakrishnakone P. The Global Snake Bite Initiative: an antidote for snake bite. Lancet. 2010;375(9708):89–91.

    Article  PubMed  Google Scholar 

  • Ye JH, Mcardle JJ. Waglerin-1 modulates gamma-aminobutyric acid activated current of murine hypothalamic neurons. J Pharmacol Exp Ther. 1997;282(1):74–80.

    CAS  PubMed  Google Scholar 

  • Zdanowski R, Krzyzowska M, Ujazdowska D, Lewicka A, Lewicki S. Role of alpha7 nicotinic receptor in the immune system and intracellular signaling pathways. Cent Eur J Immunol. 2015;40(3):373–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Moise L, Grant MA, Hawrot E. The solution structure of the complex formed between alpha-bungarotoxin and an 18-mer cognate peptide derived from the alpha 1 subunit of the nicotinic acetylcholine receptor from Torpedo californica. J Biol Chem. 2001;276(25):22930–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Selvanayagam Nirthanan , Wasim Awal or Navin R. Niranjan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Nirthanan, S., Awal, W., Niranjan, N.R. (2017). Snake α-Neurotoxins and the Nicotinic Acetylcholine Receptor. In: Inagaki, H., Vogel, CW., Mukherjee, A., Rahmy, T. (eds) Snake Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6410-1_29

Download citation

Publish with us

Policies and ethics