Skip to main content
Book cover

Snake Venoms pp 265–293Cite as

Crotamine: Function Diversity and Potential Applications

  • Reference work entry
  • First Online:

Part of the book series: Toxinology ((TOXI))

Abstract

The snake venom is composed by a complex combination of components (namely, proteins and/or enzymes, peptides, nucleic acids, among others) known as toxins, which are designed in principle to act essentially on prey’s cardiovascular system or on specific tissues as, for instance, muscles (skeletal or smooth muscles) and central nervous system (CNS). Crotamine is one of the most abundant components of the venom of the South American rattlesnake Crotalus durissus terrificus, corresponding to about 12–25 % of the dry weight of the crude venom. Several data reported by the group in the last decade suggested that this polypeptide may also be a promising tool for biotechnological and biomedical applications. In addition, it may also represent a potential structural model for the development of new drugs. Most significant evidences of crotamine versatility for diverse applications will be discussed in the present work, including: (1) the ability to translocate biological membranes and penetrate into highly proliferative cells; (2) the specificity for intracellular compartments, particularly nucleus and lysosomes; (3) the ability to carry nucleic acids, and other molecules, into cells, which could make it useful as a transfection vector; (4) the antimicrobial property with remarkable activity against some yeasts and fungus; and (5) the cytotoxic activity against cancer cells with the ability to stop the growth of certain tumors in vivo. In addition, other recently described biological activities of crotamine as the antiparasitic (antimalarial and anthelmintic) activity, as well its action on CNS, are described here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen HR, Tucker RK, Geren CR. Potentiation of the toxicity of basic peptides from rattlesnake venoms by sodium acetate. Toxicon. 1986;24(6):553–8.

    Article  CAS  PubMed  Google Scholar 

  • Araldi RP, de Melo TC, Mendes TB, de Sa Junior PL, Nozima BH, Ito ET, et al. Using the comet and micronucleus assays for genotoxicity studies: a review. Biomed Pharmacother. 2015;72:74–82. Epub 2015/06/10.

    Article  CAS  PubMed  Google Scholar 

  • Bagnaresi P, Barros NM, Assis DM, Melo PM, Fonseca RG, Juliano MA, et al. Intracellular proteolysis of kininogen by malaria parasites promotes release of active kinins. Malar J. 2012;11:156. PMCID: 3407703. Epub 2012/05/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker B, Tu AT, Middlebrook JL. Binding of myotoxin a to cultured muscle cells. Toxicon. 1993;31(3):271–84.

    Article  CAS  PubMed  Google Scholar 

  • Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587(12):1693–702. Epub 2013/05/15.

    Article  CAS  PubMed  Google Scholar 

  • Boisguerin P, Deshayes S, Gait MJ, O’Donovan L, Godfrey C, Betts CA, et al. Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev. 2015;87:52–67. Epub 2015/03/10.

    Article  CAS  PubMed  Google Scholar 

  • Boni-Mitake M, Costa H, Spencer PJ, Vassilieff VS, Rogero JR. Effects of (60)Co gamma radiation on crotamine. Braz J Med Biol Res. 2001;34(12):1531–8. Epub 2001/11/22.

    Article  CAS  PubMed  Google Scholar 

  • Boni-Mitake M, Costa H, Vassilieff VS, Rogero JR. Distribution of (125)I-labeled crotamine in mice tissues. Toxicon. 2006;48(5):550–5. Epub 2006/08/22.

    Article  CAS  PubMed  Google Scholar 

  • Boulanger N, Lowenberger C, Volf P, Ursic R, Sigutova L, Sabatier L, et al. Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect Immun. 2004;72(12):7140–6. PMCID: 529173. Epub 2004/11/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazil OV, Prado-Franceschi J, Laure CJ. Repetitive muscle responses induced by crotamine. Toxicon. 1979;17(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238–50. Epub 2005/02/11.

    Article  CAS  PubMed  Google Scholar 

  • Cameron DL, Tu AT. Chemical and functional homology of myotoxin a from prairie rattlesnake venom and crotamine from South American rattlesnake venom. Biochim Biophys Acta. 1978;532(1):147–54.

    Article  CAS  PubMed  Google Scholar 

  • Camillo MA, Arruda Paes PC, Troncone LR, Rogero JR. Gyroxin fails to modify in vitro release of labelled dopamine and acetylcholine from rat and mouse striatal tissue. Toxicon. 2001;39(6):843–53. Epub 2001/01/04.

    Article  CAS  PubMed  Google Scholar 

  • Chen PC, Hayashi MA, Oliveira EB, Karpel RL. DNA-interactive properties of crotamine, a cell-penetrating polypeptide and a potential drug carrier. PLoS One. 2012;7(11):e48913. PMCID: 3493588. Epub 2012/11/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheymol J, Gonçalves JM, Bourillet F, Roch-Arveiller M. Action neuromusculaire comparee de la crotamine et du venin de Crotalus durissus terrificus var. crotaminicus – I. Sur preparations neuromusculaires in situ. Toxicon. 1971;9(3):279–86.

    Article  CAS  PubMed  Google Scholar 

  • Clissa PB, do Nascimento N, Rogero JR. Toxicity and immunogenicity of Crotalus durissus terrificus venom treated with different doses of gamma rays. Toxicon. 1999;37(8):1131–41. Epub 1999/07/10.

    Article  CAS  PubMed  Google Scholar 

  • Coronado MA, Gabdulkhakov A, Georgieva D, Sankaran B, Murakami MT, Arni RK, Betzel C. Structure of the polypeptide crotamine from the Brazilian rattlesnake Crotalus durissus terrificus. Acta Crystallogr D Biol Crystallogr. 2013;69(Pt 10):1958–64. Epub 2013 Sep 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa BA, Sanches L, Gomide AB, Bizerra F, Dal Mas C, Oliveira EB, et al. Interaction of the rattlesnake toxin crotamine with model membranes. J Phys Chem B. 2014;118(20):5471–9. Epub 2014/04/24.

    Article  CAS  PubMed  Google Scholar 

  • Cruz LS, Vargas R, Lopes AA. Snakebite envenomation and death in the developing world. Ethn Dis. 2009;19(1 Suppl 1):S1–42–6. Epub 2009/06/02.

    Google Scholar 

  • Dal Mas C, Moreira JT, Pinto S, Nering MB, Oliveira EB, Gazarini ML, Mori MA, Hayashi MA. Anthelmintic effects of a cationic toxin from a South American rattlesnake venom. Toxicon. 2015;pii: S0041-0101(15)30149-5. [Epub ahead of print].

    Google Scholar 

  • Dhople V, Krukemeyer A, Ramamoorthy A. The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta. 2006;1758(9):1499–512. Epub 2006 Jul 21.

    Article  CAS  PubMed  Google Scholar 

  • Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361(5):455–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duhr S, Braun D. Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A. 2006;103(52):19678–82. Epub 2006 Dec 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Chamy Maluf S, Dal Mas C, Oliveira EB, Melo PM, Carmona AK, Gazarini ML, Hayashi MA. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides. 2016; pii: S0196-9781(16)30013–4.

    Google Scholar 

  • Fadel V, Bettendorff P, Herrmann T, De Azevedo Jr WF, Oliveira EB, Yamane T, et al. Automated NMR structure determination and disulfide bond identification of the myotoxin crotamine from Crotalus durissus terrificus. Toxicon. 2005;46(7):759–67. Epub 2005/09/28.

    Article  CAS  PubMed  Google Scholar 

  • Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides. 2014;57:78–94. Epub 2014/05/06.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira Junior RS, Nascimento N, Martinez JC, Alves JB, Meira DA, Barraviera B. Immunization with native and cobalt 60-irradiated Crotalus durissus terrificus venom in swiss mice: assessment of the neutralizing potency of antisera. J Venom Anim Toxins Incl Trop Dis. 2005;11:299–314.

    Google Scholar 

  • Fox JW, Elzinga M, Tu AT. Amino acid sequence and disulfide bond assignment of myotoxin a isolated from the venom of Prairie rattlesnake (Crotalus viridis viridis). Biochemistry. 1979;18(4):678–84. Epub 1979/02/20.

    Article  CAS  PubMed  Google Scholar 

  • Geary TG, Woo K, McCarthy JS, Mackenzie CD, Horton J, Prichard RK, et al. Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol. 2010;40(1):1–13. Epub 2009/11/26.

    Article  CAS  PubMed  Google Scholar 

  • Giglio JR. Analytical studies on crotamine hydrochloride. Anal Biochem. 1975;69(1):207–21. Epub 1975/11/01.

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves JM, Vieira LG. Estudos sobre venenos de serpentes brasileiras. I – Análise eletroforética. An Acad Bras Cienc. 1950;22(1):141–50.

    Google Scholar 

  • Gonçalves R, Vargas LS, Lara MVS, Güllich A, Mandredini V, Ponce-Soto L, et al. Intrahippocampal infusion of crotamine isolated from Crotalus durissus terrificus alters plasma and brain biochemical parameters. Int J Environ Res Public Health. 2014;11(11):11438–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Habermann E, Cheng-Raude D. Central neurotoxicity of apamin, crotamin, phospholipase A and alpha-amanitin. Toxicon. 1975;13(6):465–73. Epub 1975/12/01.

    Article  CAS  PubMed  Google Scholar 

  • Hampe OG. Model studies of crotamine self-association. Braz J Med Biol Res. 1989;22(1):17–24. Epub 1989/01/01.

    CAS  PubMed  Google Scholar 

  • Harvey AL. Recent studies on dendrotoxins and potassium ion channels. Gen Pharmacol. 1997;28(1):7–12. Epub 1997/01/01.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi MA, Nascimento FD, Kerkis A, Oliveira V, Oliveira EB, Pereira A, et al. Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization. Toxicon. 2008;52(3):508–17. Epub 2008/07/30.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi MA, Ducancel F, Konno K. Natural peptides with potential applications in drug development, diagnosis, and/or biotechnology. Int J Pept. 2012a;2012:757838. PMCID: 3423923. Epub 2012/08/29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi MA, Oliveira EB, Kerkis I, Karpel RL. Crotamine: a novel cell-penetrating polypeptide nanocarrier with potential anti-cancer and biotechnological applications. Methods Mol Biol. 2012b;906:337–52. Epub 2012/07/14.

    CAS  PubMed  Google Scholar 

  • Hayashi MA, Bizerra FC, Da Silva PI. Antimicrobial compounds from natural sources. Front Microbiol. 2013;4:195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Oliveira e Silva S, Rostelato-Ferreira S, Rocha-e-Silva TA, Randazzo-Moura P, Dal-Belo CA, Sanchez EF, et al. Beneficial effect of crotamine in the treatment of myasthenic rats. Muscle Nerve. 2013;47(4):591–3. Epub 2013/03/06.

    Article  CAS  PubMed  Google Scholar 

  • Holden-Dye L, Walker RJ. Anthelmintic drugs and nematicides: studies in Caenorhabditis elegans. WormBook. 2014;1–29. Epub 2014/12/18.

    Google Scholar 

  • Hong SJ, Chang CC. Electrophysiological studies of myotoxin a, isolated from prairie rattlesnake (Crotalus viridis viridis) venom, on murine skeletal muscles. Toxicon. 1985;23(6):927–37. Epub 1985/01/01.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Li M, Zhang Z, Gong T, Sun X. Cell-penetrating peptides as delivery enhancers for vaccine. Curr Pharm Biotechnol. 2014;15(3):256–66. Epub 2014/08/22.

    Article  CAS  PubMed  Google Scholar 

  • Kang T, Gao X, Chen J. Harnessing the capacity of cell-penetrating peptides for drug delivery to the central nervous system. Curr Pharm Biotechnol. 2014;15(3):220–30. Epub 2014/06/19.

    Article  CAS  PubMed  Google Scholar 

  • Kerkis A, Kerkis I, Radis-Baptista G, Oliveira EB, Vianna-Morgante AM, Pereira LV, et al. Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. FASEB J. 2004;18(12):1407–9. Epub 2004/07/03.

    CAS  PubMed  Google Scholar 

  • Kerkis A, Hayashi MA, Yamane T, Kerkis I. Properties of cell penetrating peptides (CPPs). IUBMB Life. 2006;58(1):7–13. Epub 2006/03/17.

    Article  CAS  PubMed  Google Scholar 

  • Kerkis I, Hayashi MA, da Silva AR P, Pereira A, De Sa Junior PL, Zaharenko AJ, et al. State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. Biomed Res Int. 2014;2014:675985. PMCID: 3914522. Epub 2014/02/20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lameu C, Neiva M, Hayashi MAF. Cap. 5 – Cap 5. Venom bradykinin-related peptides (BRPs) and its multiple biological roles biochemistry, genetics and molecular biology. In: Rádis Baptista G, editor. An integrated view of the molecular recognition and toxinology – from analytical procedures to biomedical applications. ISBN 978-953-51-1151-1, Published: 1 July 2013 doi:10.5772/52872. http://www.intechopen.com/books/an-integrated-view-of-the-molecular-recognition-and-toxinology-from-analytical-procedures-to-biomedical-applications/venom-bradykinin-related-peptides-brps-and-its-multiple-biological-roles.

  • Laure CJ. The primary structure of crotamine (author’s transl). Hoppe Seylers Z Physiol Chem. 1975;356(2):213–5. Epub 1975/02/01.

    Google Scholar 

  • Li Q, Colberg TR, Ownby CL. A simple and rapid method for isolating small myotoxins from rattlesnake venoms. Toxicon. 1993;31(9):1197–201. Epub 1993/09/01.

    Article  CAS  PubMed  Google Scholar 

  • MacEwan SR, Chilkoti A. Harnessing the power of cell-penetrating peptides: activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(1):31–48. PMCID: 3573534. Epub 2012/09/15.

    Article  CAS  PubMed  Google Scholar 

  • Marcussi S, Santos PRS, Menaldo DL, Silveira LB, Santos-Filho NA, Mazzi MV, et al. Evaluation of the genotoxicity of Crotalus durissus terrificus snake venom and its isolated toxins on human lymphocytes. Mutat Res. 2011;724(1–2):59–63. Epub 2011 Jun 23.

    Article  CAS  PubMed  Google Scholar 

  • Matavel AC, Ferreira-Alves DL, Beirao PS, Cruz JS. Tension generation and increase in voltage-activated Na + current by crotamine. Eur J Pharmacol. 1998;348(2–3):167–73. Epub 1998/07/04.

    Article  CAS  PubMed  Google Scholar 

  • Matthews JB. Anthelmintic resistance in equine nematodes. Int J Parasitol Drugs Drug Resist. 2014;4(3):310–5. PMCID: 4266799. Epub 2014/12/18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Melo PM, Bagnaresi P, Paschoalin T, Hirata IY, Gazarini ML, Carmona AK. Plasmodium falciparum proteases hydrolyze plasminogen, generating angiostatin-like fragments. Mol Biochem Parasitol. 2014;193(1):45–54. Epub 2014/02/08.

    Article  CAS  PubMed  Google Scholar 

  • Nascimento FD, Hayashi MA, Kerkis A, Oliveira V, Oliveira EB, Radis-Baptista G, et al. Crotamine mediates gene delivery into cells through the binding to heparan sulfate proteoglycans. J Biol Chem. 2007;282(29):21349–60. Epub 2007/05/11.

    Article  CAS  PubMed  Google Scholar 

  • Nascimento FD, Sancey L, Pereira A, Rome C, Oliveira V, Oliveira EB, et al. The natural cell-penetrating peptide crotamine targets tumor tissue in vivo and triggers a lethal calcium-dependent pathway in cultured cells. Mol Pharm. 2012;9(2):211–21. Epub 2011/12/07.

    Article  CAS  PubMed  Google Scholar 

  • Nicastro G, Franzoni L, de Chiara C, Mancin AC, Giglio JR, Spisni A. Solution structure of crotamine, a Na + channel affecting toxin from Crotalus durissus terrificus venom. Eur J Biochem. 2003;270(9):1969–79. Epub 2003/04/24.

    Article  CAS  PubMed  Google Scholar 

  • Oguiura N, Collares MA, Furtado MF, Ferrarezzi H, Suzuki H. Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene. 2009;446(1):35–40. Epub 2009/06/16.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira KC, Spencer PJ, Ferreira RS, Nascimento N. New insights into the structural characteristics of irradiated crotamine. J Venom Anim Toxins Incl Trop Dis. 2015;21:14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Papadopoulou LC, Tsiftsoglou AS. The potential role of cell penetrating peptides in the intracellular delivery of proteins for therapy of erythroid related disorders. Pharmaceuticals (Basel). 2013;6(1):32–53. Epub 2013/11/28.

    Article  CAS  Google Scholar 

  • Papo N, Shai Y. Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci. 2005;62(7–8):784–90. Epub 2005/05/04.

    Article  CAS  PubMed  Google Scholar 

  • Passero LF, Tomokane TY, Corbett CE, Laurenti MD, Toyama MH. Comparative studies of the anti-leishmanial activity of three Crotalus durissus ssp. venoms. Parasitol Res. 2007;101(5):1365–71. Epub 2007/07/31.

    Article  CAS  PubMed  Google Scholar 

  • Peigneur S, Orts DJ, Prieto da Silva AR, Oguiura N, Boni-Mitake M, de Oliveira EB, et al. Crotamine pharmacology revisited: novel insights based on the inhibition of KV channels. Mol Pharmacol. 2012;82(1):90–6. Epub 2012/04/14.

    Article  CAS  PubMed  Google Scholar 

  • Pereira A, Kerkis A, Hayashi MA, Pereira AS, Silva FS, Oliveira EB, et al. Crotamine toxicity and efficacy in mouse models of melanoma. Expert Opin Investig Drugs. 2011;20(9):1189–200. Epub 2011/08/13.

    Article  CAS  PubMed  Google Scholar 

  • Ponce-Soto LA, Martins-de-Souza D, Novello JC, Marangoni S. Structural and biological characterization of two crotamine isoforms IV-2 and IV-3 isolated from the Crotalus durissus cumanensis venom. Protein J. 2007;26(8):533–40. Epub 2007/09/11.

    Article  CAS  PubMed  Google Scholar 

  • Raagel H, Saalik P, Pooga M. Peptide-mediated protein delivery-which pathways are penetrable? Biochim Biophys Acta. 2010;1798(12):2240–8. Epub 2010/02/23.

    Article  PubMed  Google Scholar 

  • Radis-Baptista G, Oguiura N, Hayashi MA, Camargo ME, Grego KF, Oliveira EB, et al. Nucleotide sequence of crotamine isoform precursors from a single South American rattlesnake (Crotalus durissus terrificus). Toxicon. 1999;37(7):973–84. Epub 1999/09/15.

    Article  CAS  PubMed  Google Scholar 

  • Radis-Baptista G, Kubo T, Oguiura N, Svartman M, Almeida TM, Batistic RF, et al. Structure and chromosomal localization of the gene for crotamine, a toxin from the South American rattlesnake, Crotalus durissus terrificus. Toxicon. 2003;42(7):747–52. Epub 2004/02/06.

    Article  CAS  PubMed  Google Scholar 

  • Rana AK, Misra-Bhattacharya S. Current drug targets for helminthic diseases. Parasitol Res. 2013;112(5):1819–31. Epub 2013/03/27.

    Article  PubMed  Google Scholar 

  • Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci. 2014;20(10):760–84. Epub 2014/08/13.

    Article  CAS  PubMed  Google Scholar 

  • Robinson L, Platt B, Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res. 2011;221(2):443–65. Epub 2011/02/15.

    Article  CAS  PubMed  Google Scholar 

  • Rossato JI, Bevilaqua LR, Izquierdo I, Medina JH, Cammarota M. Dopamine controls persistence of long-term memory storage. Science. 2009;325(5943):1017–20. Epub 2009/08/22.

    Article  CAS  PubMed  Google Scholar 

  • Russo A, Gianni L, Kinsella TJ, Klecker Jr RW, Jenkins J, Rowland J, et al. Pharmacological evaluation of intravenous delivery of 5-bromodeoxyuridine to patients with brain tumors. Cancer Res. 1984;44(4):1702–5. Epub 1984/04/01.

    CAS  PubMed  Google Scholar 

  • Schenberg S. Geographical pattern of crotamine distribution in the same rattlesnake subspecies. Science. 1959;129(3359):1361–3. Epub 1959/05/15.

    Article  CAS  PubMed  Google Scholar 

  • Seidel SA, Dijkman PM, Lea WA, van den Bogaart G, Jerabek-Willemsen M, Lazic A, et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods. 2013;59(3):301–15. PMCID: 3644557. Epub 2012/12/29.

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi T, Nielsen PE. Cellular delivery of peptide nucleic acids (PNAs). Methods Mol Biol. 2014;1050:193–205. Epub 2013/12/04.

    Article  CAS  PubMed  Google Scholar 

  • Sieber M, Bosch B, Hanke W. Fernandes de Lima VM. Membrane-modifying properties of crotamine, a small peptide-toxin from Crotalus durissus terifficus venom. Biochim Biophys Acta. 2014;1840(3):945–50. Epub 2014/02/12.

    Article  CAS  PubMed  Google Scholar 

  • Tokumasu F, Crivat G, Ackerman H, Hwang J, Wellems TE. Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids. Biol Open. 2014;3(6):529–41. PMCID: 4058088. Epub 2014/05/31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toyama MH, Carneiro EM, Marangoni S, Barbosa RL, Corso G, Boschero AC. Biochemical characterization of two crotamine isoforms isolated by a single step RP-HPLC from Crotalus durissus terrificus (South American rattlesnake) venom and their action on insulin secretion by pancreatic islets. Biochim Biophys Acta. 2000;1474(1):56–60. Epub 2000/03/04.

    Article  CAS  PubMed  Google Scholar 

  • Toyama MH, Marangoni S, Novello JC, Leite GB, Prado-Franceschi J, da Cruz-Hofling MA, et al. Biophysical, histopathological and pharmacological characterization of crotamine isoforms F22 and F32. Toxicon. 2003;41(4):493–500. Epub 2003/03/27.

    Article  CAS  PubMed  Google Scholar 

  • Trabulo S, Cardoso AL, Cardoso AM, Morais CM, Jurado AS. Pedroso de Lima MC. Cell-penetrating peptides as nucleic acid delivery systems: from biophysics to biological applications. Curr Pharm Des. 2013;19(16):2895–923. Epub 2012/11/13.

    Article  CAS  PubMed  Google Scholar 

  • Vanzolini PE, Calleffo ME. A taxonomic bibliography of the South American snakes of the Crotalus durissus complex (Serpentes, Viperidae). An Acad Bras Cienc. 2002;74(1):37–83.

    Article  PubMed  Google Scholar 

  • Vargas LS, Lara MV, Goncalves R, Mandredini V, Ponce-Soto LA, Marangoni S, et al. The intrahippocampal infusion of crotamine from Crotalus durissus terrificus venom enhances memory persistence in rats. Toxicon. 2014;85:52–8. Epub 2014/05/13.

    Article  CAS  PubMed  Google Scholar 

  • Vu TT, Jeong B, Yu J, Koo BK, Jo SH, Robinson RC, et al. Soluble prokaryotic expression and purification of crotamine using an N-terminal maltose-binding protein tag. Toxicon. 2014;92:157–65. Epub 2014/12/03.

    Article  CAS  PubMed  Google Scholar 

  • Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun. 2010;1:100. Epub 2010/10/29.

    Article  PubMed  Google Scholar 

  • Yamane ES, Bizerra FC, Oliveira EB, Moreira JT, Rajabi M, Nunes GL, et al. Unraveling the antifungal activity of a South American rattlesnake toxin crotamine. Biochimie. 2013;95(2):231–40. Epub 2012/10/02.

    Article  CAS  PubMed  Google Scholar 

  • Yount NY, Kupferwasser D, Spisni A, Dutz SM, Ramjan ZH, Sharma S, et al. Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Proc Natl Acad Sci U S A. 2009;106(35):14972–7. PMCID: 2736466. Epub 2009/08/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirian A. F. Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Marinovic, M.P., Mas, C.D., Monte, G.G., Felix, D., Campeiro, J.D., Hayashi, M.A.F. (2017). Crotamine: Function Diversity and Potential Applications. In: Inagaki, H., Vogel, CW., Mukherjee, A., Rahmy, T. (eds) Snake Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6410-1_28

Download citation

Publish with us

Policies and ethics