Abstract
Venomous snakes native in Malaysia include the elapids (cobras, king cobra, kraits, coral snakes, sea snakes) and crotalids (Malayan pit viper, Asian lance-headed pit vipers). The elapid venoms are typically neurotoxic, while the crotalid venoms are usually hemorrhagic, coagulopathic, and necrotizing. Among the elapids, cobra and king cobra venoms produce pain and tissue-necrotizing effect, whereas sea snake venoms can cause rhabdomyolysis and acute kidney injury. Venom compositions greatly vary from species to species, resulting in differences in the clinical presentation of envenomation by different species and the varied effectiveness of antivenoms on different venoms. In Malaysia, research activities on snakes have been carried out since the 1960s; through these years venoms have been subjected to multifaceted characterizations where knowledge on toxin variants and compositions, envenoming pathophysiology, venom pharmacokinetics-pharmacodynamics, as well as antivenom neutralization had been greatly advanced. The knowledge is indispensable for improving clinical protocol on snakebite assessment and to guide on the appropriate type of antivenoms to stock in local hospitals for clinical use. This is especially important for Malaysia, where antivenoms are supplied by manufacturers from overseas without a clear standardization for the selection of antivenom source. Until today, there are research gaps and repertoires for scientists to further explore. These include proteomic profiling of venoms and venom gland transcriptomics for local species, antivenomics, antivenom formulation optimization, and so on.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afifiyan F, Armugam A, Gopalakrishnakone P, Tan NH, Tan CH, Jeyaseelan K. Four new postsynaptic neurotoxins from NajaNaja sputatrix venom: cDNA cloning, protein expression, and phylogenetic analysis. Toxicon. 1998;36(12):1871–85.
Ahn MY, Lee BM, Kim YS. Characterization and cytotoxicity of L-amino acid oxidase from the venom of king cobra (Ophiophagus hannah). Int J Biochem Cell Biol. 1997;29(6):911–9.
Ali SA, Baumann K, Jackson TN, Wood K, Mason S, Undheim EA, Nouwens A, Koludarov I, Hendrikx I, Jones A, Fry BG. Proteomic comparison of Hypnale hypnale (hump-nosed pit-viper) and Calloselasma rhodostoma (Malayan pit-viper) venoms. J Proteomics. 2013;91:338–43.
Armugam A, Earnest L, Chung MC, Gopalakrishnakone P, Tan CH, Tan NH, Jeyaseelan K. Cloning and characterization of cDNAs encoding three isoforms of phospholipase A2 in Malayan spitting cobra (NajaNaja sputatrix) venom. Toxicon. 1997;35(1):27–37.
Au LC, Huang YB, Huang TF, The GW, Lin HH, Choo KB. A common precursor for a putative hemorrhagic protein and rhodostomin, a platelet aggregation inhibitor of the venom of Calloselasma rhodostoma: molecular cloning and sequence analysis. Biochem Biophys Res Commun. 1991;181:585.
Bergmeier W, Bouvard D, Eble JA, Mokhtari-Nejad R, Schulte V, Zirngibl H, Brakebusch C, Fässler R, Nieswandt B. Rhodocytin (aggretin) activates platelets lacking alpha(2)beta(1) integrin, glycoprotein VI, and the ligand-binding domain of glycoprotein Ibα. J Biol Chem. 2001;276(27):25121–6.
Bon C, Saliou B. Ceruleotoxin: identification in the venom of Bungarus fasciatus, molecular properties and importance of phospholipase A2 activity for neurotoxicity. Toxicon. 1983;21(5):681–98.
Bonfim VL, Ponce-Soto LA, Novello JC, Marangoni S. Structural and functional properties of Cr 5, a new Lys49 phospholipase A2 homologue isolated from the venom of the snake Calloselasma rhodostoma. Protein J. 2006;25(7–8):492–502.
Bonfim VL, Ponce-Soto LA, Martins de Souza D, Souza GH, Baldasso PA, Eberlin MN, Marangoni S. Structural and functional characterization of myotoxin, Cr-IV 1, a phospholipase A2 D49 from the venom of the snake Calloselasma rhodostoma. Biologicals. 2008;36(3):168–76.
Brook GA, Torres LF, Gopalakrishnakone P, Duchen LW. Effects of phospholipase of Enhydrina schistosa venom on nerve, motor end-plate and muscle of the mouse. Q J Exp Physiol. 1987;72(4):571–91.
Bruserud Ø. The snake venom rhodocytin from Calloselasma rhodostoma- a clinically important toxin and a useful experimental tool for studies of C-type lectin-like receptor 2 (CLEC-2). Toxins (Basel). 2013;5(4):665–74.
Burkhart W, Smith GFH, Su JL, Parikh I, And LeVine III H. Amino acid sequence determination of Ancrod, the thrombin-like α-fibrinogenase from the venom of Agkistrodon rhodostoma. FEBS Lett. 1992;297:297.
Cham G, Pan JC, Lim F, Earnest A, Gopalakrishnakone P. Effects of topical heparin, antivenom, tetracycline and dexamethasone treatment in corneal injury resulting from the venom of the black spitting cobra (Naja sumatrana), in a rabbit model. Clin Toxicol (Phila). 2006;44(3):287–92.
Chang WC, Lee ML, Lo TB. Phospholipase A2 activity of long-chaincardiotoxins in the venom of the banded krait (Bungarus fasciatus). Toxicon. 1983;21(1):163–5.
Chang HH, Chang CP, Chang JC, Dung SZ, Lo SJ. Application of recombinant Rhodostomin in studying cell adhesion. J Biomed Sci. 1997;4(5):235–43.
Chang CH, Chung CH, Kuo HL, Hsu CC, Huang TF. The highly specific platelet glycoprotein (GP) VI agonist trowaglerix impaired collagen-induced platelet aggregation ex vivo through matrix metalloproteinase-dependent GPVI shedding. J Thromb Haemost. 2008;6(4):669–76.
Chang HC, Tsai TS, Tsai IH. Functional proteomic approach to discover geographic variations of king cobra venoms from Southeast Asia and China. J Proteomics. 2013;89C:141–53.
Chanhome L, Sitprija V, Chaiyabutr N. Effects of Bungarus candidus (Malayan krait) venom on general circulation and hemodynamics in experimental animals. Asian Biomed. 2010;4(3):421–8.
Chew KS, Khor HW, Ahmad R, Rahman NH. A five-year retrospective review of snakebite patients admitted to a tertiary university hospital in Malaysia. Int J Emerg Med. 2011;4:41.
Chiappinelli VA, Wolf KM, DeBin JA, Holt IL. Kappa-flavitoxin: isolation of a new neuronal nicotinic receptor antagonist that is structurally related to kappa-bungarotoxin. Brain Res. 1987;402(1):21–9.
Chippaux JP. Snake venoms and envenomations. (trans: Huchzermeyer FW). Malabar: Krieger. 2006. (Original work published 2002).
Chung MC, Tan NH, Armugam A. The amino acid sequences of two postsynaptic neurotoxins isolated from Malayan cobra (NajaNaja sputatrix) venom. Toxicon. 1994;32(11):1471–4.
Chung MCM, Ponnudurai G, Kataoka M, Shimizu S, Tan NH. Structural studies of a major hemorrhagin (rhodostoxin) from the venom of Calloselasma rhodostoma (Malayan pit viper). Arch Biochem Biophys. 1996;325:199–208.
Chung CH, Au LC, Huang TF. Molecular cloning and sequence analysis of aggretin, a collagen-like platelet aggregation inducer. Biochem Biophys Res Commun. 1999;263(3):723–7.
Daltry JC, Ponnudurai G, Shin CK, Tan NH, Thorpe RS, Wüster W. Electrophoretic profiles and biological activities: intraspecific variation in the venom of the Malayan pit viper (Calloselasma rhodostoma). Toxicon. 1996a;34(1):67–79.
Daltry JC, Wüster W, Thorpe RS. Diet and snake venom evolution. Nature. 1996b;379(6565):537–40.
Debnath A, Saha A, Gomes A, Biswas S, Chakrabarti P, Giri B, Biswas AK, Gupta SD, Gomes A. A lethal cardiotoxic-cytotoxic protein from the Indian monocellate cobra (Naja kaouthia) venom. Toxicon. 2010;56(4):569–79.
Dennis MS, Henzel WJ, Pitti RM, Lipari MT, Napier MA, Deisher TA, Bunting S, Lazarus RA. Platelet glycoprotein IIb-IIIa protein antagonists from snake venoms: evidence for a family of platelet-aggregation inhibitors. Proc Natl Acad Sci U S A. 1990;87(7):2471–5.
Eble JA, Beermann B, Hinz HJ, Schmidt-Hederich A. α2β1integrin is not recognized by rhodocytin but is the specific, high affinity target of rhodocetin, an RGD-independent disintegrin and potent inhibitor of cell adhesion to collagen. J Biol Chem. 2001;276(15):12274–84.
Eble JA, Niland S, Dennes A, Schmidt-Hederich A, Bruckner P, Brunner G. Rhodocetin antagonizes stromal tumor invasion in vitro and other α2β1integrin-mediated cell functions. Matrix Biol. 2002;21(7):547–58.
Endo T, Tamiya N. Structure-function relationships of postsynaptic neurotoxins from snake venoms. In: Harvey AL, editor. Snake toxins. Oxford: Pergamon Press; 1991. p. 165–222.
Esnouf MP, Tunnah GW. The isolation and properties of the thrombin-like activity rom Ancistrodon rhodostoma venom. Br J Haematol. 1967;13:581–90.
Fletcher JE, Jiang MS. Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittin. Toxicon. 1993;31(6):669–95.
Fletcher JE, Jiang MS, Gong QH, Smith LA. Snake venom cardiotoxins and bee venom melittin activate phospholipase C activity in primary cultures of skeletal muscle. Biochem Cell Biol. 1991;69(4):274–81.
Fohlman J, Eaker D. Isolation and characterization of a lethal myotoxic phospholipase A from the venom of the common sea snake Enhydrina schistosa causing myoglobinuria in mice. Toxicon. 1977;15(5):385–93.
Fry BG. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005;15(3):403–20.
Fryklund L, Eaker D, Karlsson E. Amino acid sequences of the two principal neurotoxins of Enhydrina schistosa venom. Biochemistry. 1972;11(24):4633–40.
Ganthavorn S. A case of king cobra bite. Toxicon. 1971;9(3):293–4.
Geh SL, Lin-Shiau SY. The neuromuscular blocking properties of an acidic and a basic phospholipase A2 purified from the common sea snake, Enhydrina schistosa venom. Asian Pac J Pharmacol. 1987;2:161–7.
Geh SL, Toh HT. Ultrastructural changes in skeletal muscle caused by a phospholipase A2 fraction isolated from the venom of a sea snake, Enhydrina schistosa. Toxicon. 1978;16(6):633–43.
Geyer A, Fitzpatrick TB, Pawelek PD, Kitzing K, Vrielink A, Ghisla S, Macheroux P. Structure and characterization of the glycan moiety of L-amino acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Eur J Biochem. 2001;268:4044–53.
Gold BS, Pyle P. Successful treatment of neurotoxicking cobra envenomation in Myrtle Beach, South Carolina. Ann Emerg Med. 1998;32(6):736–8.
Gong QH, Wieland SJ, Fletcher JE, Conner GE, Jiang MS. Effect of a phospholipase A2 with cardiotoxin-like properties, from Bungarus fasciatus snake venom, on calcium-modulated potassium currents. Toxicon. 1989;27(12):1339–49.
Gopalakrishnakone P. Histopathological changes induced by the sea snake Enhydrina schistosa venom on murine muscle and neuromuscular junction. In: Meier J, Stocker K, Freyvogal TA, editors. Proceedings of 6th European symposium on animal, plant and microbial toxins. International Society on Toxinology; Basel Switzerland, 1984. p. 89.
Gopalakrishnakone P, Kochva E. Unusual aspects of the venom apparatus of the blue coral snake, Maticora bivirgata. Arch Histol Cytol. 1990;53(2):199–210.
Gopalakrishnakone P, Ponraj D, Thwinn MM. Myotoxic phospholipases from snake venoms: general myoglobinuric and local myonecrotic toxins. In: Kini RN, editor. Venom phospholipases A2 enzymes: structure, function and mechanism. New York: Wiley; 1997. p. 287–320.
Guo XX, Zeng L, Lee WH, Zhang Y, Jin Y. Isolation and cloning of a metalloproteinase from king cobra snake venom. Toxicon. 2007;49(7):954–65.
Gutiérrez JM, Theakston RDG, Warrell DA. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med. 2006;3(6):e150.
Hawgood BJ. Hugh Alistair Reid OBE MD: investigation and treatment of snake bite. Toxicon. 1998;36(3):431–46.
He YY, Lee WH, Zhang Y. Cloning and purification of alpha-neurotoxins from king cobra (Ophiophagus hannah). Toxicon. 2004;44(3):295–303.
He YY, Liu SB, Lee WH, Qian JQ, Zhang Y. Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom. Peptides. 2008;29(10):1692–9.
Heatwole H, Poran NS Resistances of sympatric and allopatric eels to sea snake venoms. Copeia. 1995;136–147.
Hegde RP, Rajagopalan N, Doley R, Kini RM. Snake venom three-finger toxins. In: Mackessy SP, edtior. Handbook of venoms and toxins of reptiles. Boca Raton, Taylor & Fracis Group/CRC Press. 2009; pp 287–301.
Hennerici MG, Kay R, Bogousslavsky J, Lenzi GL, Verstraete M, Orgogozo JM, ESTAT investigators. Intravenous ancrod for acute ischaemic stroke in the European Stroke Treatment with Ancrod Trial: a randomised controlled trial. Lancet. 2006;368(9550):1871–8.
Hodgson WC, Wickramaratna JC. In vitro neuromuscular activity of snake venoms. Clin Exp Pharmacol Physiol. 2002;29(9):807–14.
Hsu CC, Wu WB, Chang YH, Kuo HL, Huang TF. Antithrombotic effect of a protein-type I class snake venom metalloproteinase, kistomin, is mediated by affecting glycoprotein Ib-von Willebrand factor interaction. Mol Pharmacol. 2007;72(4):984–92.
Huang MZ, Gopalakrishnakone P. Pathological changes induced by an acidic phospholipase A2 from Ophiophagus hannah venom on heart and skeletal muscle of mice after systemic injection. Toxicon. 1996;34(2):201–11.
Huang TF, Wu YJ, Ouyang C. Characterization of a platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochim Biophys Acta. 1987;925:248–57.
Huang TF, Chang MC, Teng CM. Anti-platelet protease, kistomin, selectively cleaves human platelet glycoprotein Ib. Biochim Biophys Acta. 1993;1158:293.
Huang TF, Liu CZ, Yang SH. Aggretin, a novel platelet-aggregation inducer from snake (Calloselasma rhodostoma) venom, activates phospholipase C by acting as a glycoprotein Ia/IIa agonist. Biochem J. 1995;309(Pt 3):1021–7.
Huang MZ, Gopalakrishnakone P, Chung MC, Kini RM. Complete amino acid sequence of an acidic, cardiotoxicphospholipase A2 from the venom of Ophiophagus hannah (King cobra): a novel cobra venom enzyme with “pancreatic loop”. Arch Biochem Biophys. 1997a;338(2):150–6.
Huang MZ, Gopalakrishnakone P, Kini RM. Role of enzymatic activity in the anti-platelet effects of a phospholipase A2 from Ophiophagus hannah snake venom. Life Sci. 1997b;61(22):2211–7.
Hutton RA, Looareesuwan S, Ho M, Silamut K, Chanthavanich P, Karbwang J, Supanaranond W, Vejcho S, Viravan C, Phillips RE. Arboreal green pit vipers (genus Trimeresurus) of South-East Asia: bites by T. albolabris and T. macrops in Thailand and a review of the literature. Trans R Soc Trop Med Hyg. 1990;84(6):866–74.
Ismail M, Ellison AC. Ocular effects of the venom from the spitting cobra (Naja nigricollis). J Toxicol Clin Toxicol. 1986;24(3):183–202.
Ismail M, al-Bekairi AM, el-Bedaiwy AM, Abd-el Salam MA. The ocular effects of spitting cobras: II. Evidence that cardiotoxins are responsible for the corneal opacification syndrome. J Toxicol Clin Toxicol. 1993;31(1):45–62.
Ismail AK, Weinstein SA, Auliya M, Appareo P. Ventricular bigeminy following a cobra envenomation. Clin Toxicol (Phila). 2012;50(6):518–521.
Jamaiah I, Rohela M, Roshalina R, Undan RC. Prevalence of snake bites in Kangar District Hospital, Perlis, west Malaysia: a retrospective study (January 1999–December 2000). Southeast Asian J Trop Med Public Health. 2004;35(4):962–5.
Jamaiah I, Rohela M, Ng TK, Ch’ng KB, Teh YS, Nurulhuda AL, Suhaili N. Retrospective prevalence of snakebites from Hospital Kuala Lumpur (HKL) (1999–2003). Southeast Asian J Trop Med Public Health. 2006;37(1):200–5.
Jeyaseelan K, Armugam A, Lachumanan R, Tan CH, Tan NH. Six isoforms of cardiotoxin in Malayan spitting cobra (NajaNaja sputatrix) venom: cloning and characterization of cDNAs. Biochim Biophys Acta. 1998;1380(2):209–22.
Jeyaseelan K, Poh SL, Nair R, Armugam A. Structurally conserved alpha-neurotoxin genes encode functionally diverse proteins in the venom of Naja sputatrix. FEBS Lett. 2003;553(3):333–41.
Jiang MS, Häggblad J, Heilbronn E. Interaction with chick myotube cholinergic receptors of an alpha-neurotoxin isolated from venom of the banded krait (Bungarus fasciatus). Toxicon. 1986;24(7):713–9.
Joubert FJ. Snake venom toxins the amino acid sequences of two toxins from Ophiophagus hannah (King cobra) venom. Biochim Biophys Acta. 1973;317(1):85–98.
Kanthimathi MS. Acetylcholinesterase from the venom of Enhydrina schistosa. MSc thesis. Department of Biochemistry, University of Malaya, Kuala Lumpur, Malaysia. 1980.
Karlsson E, Eaker D. Isolation of the principal neurotoxins of NajaNaja subspecies from the Asian mainland. Toxicon. 1972;10(3):217–25.
Karlsson E, Eaker D, Fryklund L, Kadin S. Chromatographic separation of Enhydrina schistosa (common sea snake) venom and the characterization of two principal neurotoxins. Biochemistry. 1972;11(24):4628–33.
Khomvilai S. New improvement in the production technique of polyvalent snake antivenom imunoglobulins. Paper presented at the inaugural conference on global issues in clinical toxinology, 23rd–28th Nov 2008, Melbourne.
Khow O, Chanhome L, Omori-Satoh T, Puempunpanich S, Sitprija V. A hemorrhagin as a metalloprotease in the venom of Trimeresurus purpureomaculatus: purification and characterization. Toxicon. 2002a;40(4):455–61.
Khow O, Chanhome L, Omori-Satoh T, Sitprija V. Isolation of the major lethal toxin in the venom of Bungarus flaviceps. Toxicon. 2002b;40(4):463–9.
Khow O, Chanhome L, Omori-Satoh T, Ogawa Y, Yanoshita R, Samejima Y, Kuch U, Mebs D, Sitprija V. Isolation, toxicity and amino terminal sequences of three major neurotoxins in the venom of Malayan krait (Bungarus candidus) from Thailand. J Biochem. 2003;134(6):799–804.
Kini RM, Chan YM. Accelerated evolution and molecular surface of venom phospholipase A2 enzymes. J Mol Evol. 1999;48(2):125–32.
Kordis D, Gubensek F. Adaptive evolution of animal toxin multigene families. Gene. 2000;261(1):43–52.
Kruck TP, Logan DM. Neurotoxins from Bungarus fasciatus venom: a simple fractionation and separation of alpha- and beta-type neurotoxins and their partial characterization. Biochemistry. 1982;21(21):5302–9.
Kuch U, Molles BE, Omori-Satoh T, Chanhome L, Samejima Y, Mebs D. Identification of alpha-bungarotoxin (A31) as the major postsynaptic neurotoxin, and complete nucleotide identity of a genomic DNA of Bungarus candidus from Java with exons of the Bungarus multicinctus alpha-bungarotoxin (A31) gene. Toxicon. 2003;42(4):381–90.
Kuhn P, Deacon AM, Comsa DS, Rajaseger G, Kini RM, Usón I, Kolatkar PR. The atomic resolution structure of bucandin, a novel toxin isolated from the Malayan krait, determined by direct methods. Acta Crystallogr D Biol Crystallogr. 2000;56(Pt 11):1401–7.
Kulkeaw K, Chaicumpa W, Sakolvaree Y, Tongtawe P, Tapchaisri P. Proteome and immunome of the venom of the Thai cobra, Naja kaouthia. Toxicon. 2007;49(7):1026–41.
Kumar V, Elliott WB. The acetylcholinesterase of Bungarus fasciatus venom. Eur J Biochem. 1973;34:586–92.
Lachumanan R, Armugam A, Durairaj P, Gopalakrishnakone P, Tan CH, Jeyaseelan K. In situ hybridization and immunohistochemical analysis of the expression of cardiotoxin and neurotoxin genes in NajaNaja sputatrix. J Histochem Cytochem. 1999;47(4):551–60.
Laothong C, Sitprija V. Decreased parasympathetic activities in Malayan krait (Bungarus candidus) envenoming. Toxicon. 2001;39:1353–7.
Lee ML, Tan NH, Fung SY, Sekaran SD. Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom. Comp Biochem Physiol C Toxicol Pharmacol. 2011;153(2):237–42.
Leeprasert W, Kaojarern S. Specific antivenom for Bungarus candidus. J Med Assoc Thai. 2007;90(7):1467–76.
Leong PK, Sim SM, Fung SY, Sumana K, Sitprija V, Tan NH. Cross neutralization of Afro-Asian cobra and Asian krait venoms by a Thai polyvalent snake antivenom (Neuro polyvalent snake antivenom). PLoS Negl Trop Dis. 2012a;6(6):e1672.
Leong PK, Tan NH, Fung SY, Sim SM. Cross neutralization of Southeast Asian cobra and krait venoms by Indian polyvalent antivenoms. Trans R Soc Trop Med Hyg. 2012b;106(12):731–7.
Leong PK, Tan CH, Sim SM, Fung SY, Sumana K, Sitprija V, Tan NH. Cross neutralization of common Southeast Asian viperid venoms by a Thai polyvalent snake antivenom (hemato polyvalent snake antivenom). Acta Trop. 2014;132:7–14.
Leung WN, Jeffrey PL, Rostas JA. Effect of denervation on sarcolemmal proteins and glycoproteins of fast and slow mammalian skeletal muscle. Exp Neurol. 1986;91(2):229–45.
Levy DE, del Zoppo GJ, Demaerschalk BM, Demchuk AM, Diener HC, Howard G, Kaste M, Pancioli AM, Ringelstein EB, Spatareanu C, Wasiewski WW. Ancrod in acute ischemic stroke: results of 500 subjects beginning treatment within 6 hours of stroke onset in the ancrod stroke program. Stroke. 2009;40(12):3796–803.
Li ZY, Yu TF, Lian EC. Purification and characterization of L-amino acid oxidase from king cobra (Ophiophagus hannah) venom and its effects on human platelet aggregation. Toxicon. 1994;32(11):1349–58.
Li X, Zheng L, Kong C, Kolatkar PR, Chung MC. Purpureotin: a novel di-dimeric C-type lectin-like protein from Trimeresurus purpureomaculatus venom is stabilized by noncovalent interactions. Arch Biochem Biophys. 2004;424(1):53–62.
Li J, Zhang H, Liu J, Xu K. Novel genes encoding six kinds of three-finger toxins in Ophiophagus hannah (king cobra) and function characterization of two recombinant long-chainneurotoxins. Biochem J. 2006;398(2):233–42.
Lin WW, Smith LA, Lee CY. A study on the cause of death due to waglerin-I, a toxin from Trimeresurus wagleri. Toxicon. 1995;33(1):111–4.
Liu CS, Hsiao PW, Chang CS, Tzeng MC, Lo TB. Unusual amino acid sequence of fasciatoxin, a weak reversibly acting neurotoxin in the venom of the banded krait, Bungarus fasciatus. Biochem J. 1989;259(1):153–158.
Liu CS, Chen JM, Chang CH, Chen SW, Tsai IH, Lu HS, Lo TB. Revised amino acid sequences of the three major phospholipases A2 from Bungarus fasciatus (banded krait) venom. Toxicon. 1990;28(12):1457–68.
Liu S, Marder VJ, Levy DE, Wang SJ, Yang F, Paganini-Hill A, Fisher MJ. Ancrod and fibrin formation: perspectives on mechanisms of action. Stroke. 2011;42(11):3277–80.
Lomonte B, Angulo Y, Calderón L. An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action. Toxicon. 2003;42(8):885–901. doi:10.1016/j.toxicon.2003.11.008.
Lowe KL, Navarro-Nunez L, Watson SP. Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res. 2012;129 Suppl 1:S30–7.
Lu MS, Lo TB. Complete amino acid sequences of two cardiotoxin-like analogues from Bungarus fasciatus (banded krait) snake venom. Toxicon. 1981;19:103–11.
Lu J, Yang H, Yu H, Gao W, Lai R, Liu J, Liang X. A novel serine protease inhibitor from Bungarus fasciatus venom. Peptides. 2008;29(3):369–74. doi:10.1016/j.peptides.2007.11.013.
MacHeroux P, Seth O, Bollschweiler C, Schwarz M, Kurfürst M, Au LC, Ghisla S. L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Comparative sequence analysis and characterization of active and inactive forms of the enzyme. Eur J Biochem. 2001;268(6):1679–86.
Mackessy SP. The field of reptile toxinology: snakes, lizards, and their venoms. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: Taylor and Francis Group/CRC Press; 2009. p. 3–23.
Malhotra A, Thorpe RS. A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for Asian pit vipers (Trimeresurus and Ovophis). Mol Phylogenet Evol. 2004;32(1):83–100.
Marsden AT, Reid HA. Pathology of sea-snake poisoning. Br Med J. 1961;1(5235):1290–3.
McArdle JJ, Lentz TL, Witzemann V, Schwarz H, Weinstein SA, Schmidt JJ. Waglerin-1 selectively blocks the epsilon form of the muscle nicotinic acetylcholine receptor. J Pharmacol Exp Ther. 1999;289(1):543–50.
Minton Jr SA. Preliminary observations on the venom of Wagler’s pit viper (Trimeresurus wagleri). Toxicon. 1968;6(2):93–7.
Moustafa IM, Foster S, Lyubimov AY, Vrielink A. Crystal structure of LAAO from Calloselasma rhodostoma with an l-phenylalanine substrate: insights into structure and mechanism. J Mol Biol. 2006;364(5):991–1002.
Mukherjee AK. Non-covalent interaction of phospholipase A2 (PLA2) and kaouthiotoxin (KTX) from venom of Naja kaouthia exhibits marked synergism to potentiate their cytotoxicity on target cells. J Venom Res. 2010;1:37–42.
Navdaev A, Clemetson JM, Polgar J, Kehrel BE, Glauner M, Magnenat E, Wells TN, Clemetson KJ. Aggretin, a heterodimeric C-type lectin from Calloselasma rhodostoma (Malayan pit viper), stimulates platelets by binding to α2β1 integrin and glycoprotein Ib, activating Syk and phospholipase Cγ 2, but does not involve the glycoprotein VI/Fc receptor γ chain collagen receptor. J Biol Chem. 2001;276(24):20882–9.
Nirthanan S, Charpantier E, Gopalakrishnakone P, Gwee MC, Khoo HE, Cheah LS, Kini RM, Bertrand D. Neuromuscular effects of candoxin, a novel toxin from the venom of the Malayan krait (Bungarus candidus). Br J Pharmacol. 2003a;139(4):832–44.
Nirthanan S, Gopalakrishnakone P, Gwee MC, Khoo HE, Kini RM. Non-conventional toxins from Elapid venoms. Toxicon. 2003b;41(4):397–407.
Ohsaka A. Hemorrhagic, necrotizing and edema-forming effects of snake venoms. In: Lee CY, editor. Handbook of experimental pharmacology, vol. 52. Berlin: Springer; 1979. p. 481–546.
Ouyang C, Yeh HI, Huang TF. Purification and characterization of a platelet aggregation inducer from Calloselasma rhodostoma snake venom. Toxicon. 1986;24:633–44.
Pawelek PD, Cheah J, Coulombe R, Macheroux P, Ghisla S, Vrielink A. The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J. 2000;19(16):4204–15.
Pfeiffer G, Linder D, Strube KH, Geyer R. Glycosylation of the thrombin-like serine protease ancrod from Agkistrodon rhodostoma venom. Oligosaccharide substitution pattern at each glycosylation site. Glycoconj J. 1993;10:240.
Phillips DJ, Swenson SD, Markland FS. Thrombin-like snake venom serine proteases. In: Mackessy SP, editors. Handbook of venoms and toxins of reptiles. Boca Raton, Taylor & Fracis Group/CRC Press. 2009;pp 139–154.
Poh SL, Mourier G, Thai R, Armugam A, Molgó J, Servent D, Jeyaseelan K, Ménez A. A synthetic weak neurotoxin binds with low affinity to Torpedo and chicken alpha7 nicotinic acetylcholine receptors. Eur J Biochem. 2002;269(17):4247–56.
Ponnudurai G. Biochemical and immunological studies on Malayan pit viper (Calloselasma rhodostoma) Venom Hemorrhagin. PhD thesis, University of Malaya, Kuala Lumpur. 1995.
Ponnudurai G, Chung MCM, Tan NH. Isolation and characterization of a hemorrhagin from the venom of Calloselasma rhodostoma (Malayan pit viper). Toxicon. 1993;31:997–1005.
Ponnudurai G, Chung MCM, Tan NH. Purification and properties of the L-amino acid oxidase from Malayan pit viper (Calloselasma rhodostoma) venom. Arch Biochem Biophys. 1994;313:373–8.
Pung YF, Wong PT, Kumar PP, Hodgson WC, Kini RM. Ohanin, a novel protein from king cobra venom, induces hypolocomotion and hyperalgesia in mice. J Biol Chem. 2005;280(13):13137–47.
Qin JR, Wei Q. Isolation, purification and characterization of alkaline phosphatase from the venom of Ophiophagus hannah (CANTOR) in Guangxi CHINA. Acta Biochim et Biophys Sinica. 1986;18(4):320–6.
Rajagopalan N, Pung YF, Zhu YZ, Wong PT, Kumar PP, Kini RM. Beta-cardiotoxin: a new three-finger toxin from Ophiophagus hannah (king cobra) venom with beta-blocker activity. FASEB J. 2007;21(13):3685–95.
Reali M, Serafim FG, da Cruz-Höfling MA, Fontana MD. Neurotoxic and myotoxic actions of NajaNaja kaouthia venom on skeletal muscle in vitro. Toxicon. 2003;41(6):657–65.
Reid HA. Myoglobinuria and sea-snake-bite poisoning. Br Med J. 1961;1(5235):1284–9.
Reid HA. Cobra-bites. Br Med J. 1964;2(5408):540–5.
Reid HA. Symptomology, pathology and treatment of the bites of sea snakes. In: Lee CY, editor. Handbook of experimental pharmacology, vol. 52. Berlin: Springer; 1979. p. 922–55.
Rojnuckarin P, Banjongkit S, Chantawibun W, Akkawat B, Juntiang J, Noiphrom J, Pakmanee N, Intragumtornchai T. Green pit viper (Trimeresurus albolabris and T. macrops) venom antigenaemia and kinetics in humans. Trop Doct. 2007;37(4):207–10.
Roy A, Zhou X, Chong MZ, D’hoedt D, Foo CS, Rajagopalan N, Nirthanan S, Bertrand D, Sivaraman J, Kini RM. Structural and functional characterization of a novel homodimeric three-finger neurotoxin from the venom of Ophiophagus hannah (king cobra). J Biol Chem. 2010;285(11):8302–15.
Rusmili MR, Yee TT, Mustafa MR, Hodgson WC, Othman I. Isolation and characterization of a presynaptic neurotoxin, P-elapitoxin-Bf1a from Malaysian Bungarus fasciatus venom. Biochem Pharmacol. 2014a;91(3):409–16.
Rusmili MR, Yee TT, Mustafa MR, Hodgson WC, Othman I. Isolation and characterization of α-elapitoxin-Bf1b, a postsynaptic neurotoxin from Malaysian Bungarus fasciatus venom. Biochem Pharmacol. 2014b;88(2):229–36.
Rusmili MR, Yee TT, Mustafa MR, Hodgson WC, Othman I. In-vitro neurotoxicity of two Malaysian krait species (Bungarus candidus and Bungarus fasciatus) venoms: neutralization by monovalent and polyvalent antivenoms from Thailand. Toxins (Basel). 2014c;6(3):1036–48.
Saha A, Gomes A, Giri B, Chakravarty AK, Biswas AK, Dasgupta SC, Gomes A. Occurrence of non-protein low molecular weight cardiotoxin in Indian King cobra (Ophiophagus hannah) Cantor 1836, venom. Indian J Exp Biol. 2006;44(4):279–85.
Shin Y, Morita T. Rhodocytin, a functional novel platelet agonist belonging to the heterodimeric C-type lectin family, induces platelet aggregation independently of glycoprotein Ib. Biochem Biophys Res Commun. 1998;245(3):741–5.
Siang AS, Doley R, Vonk FJ, Kini RM. Transcriptomic analysis of the venom gland of the red-headed krait (Bungarus flaviceps) using expressed sequence tags. BMC Mol Biol. 2010;11:24.
Sim SM, Saremi K, Tan NH, Fung SY. Pharmacokinetics of Cryptelytrops purpureomaculatus (mangrove pit viper) venom following intravenous and intramuscular injections in rabbits. Int Immunopharmacol. 2013;17(4):997–1001.
Sun X, Yang CJ, Chen XL, Lei KJ. Purification and properties of four neurotoxic fractions from the venom of Ophiophagus hannah. Zool Res. 1981;2(4):363–70.
Suzuki-Inoue K, Ozaki Y, Kainoh M, Shin Y, Wu Y, Yatomi Y, Ohmori T, Tanaka T, Satoh K, Morita T. Rhodocytin induces platelet aggregation by interacting with glycoprotein Ia/IIa (GPIa/IIa, Integrin alpha 2 beta 1). Involvement of GPIa/IIa-associated src and protein tyrosine phosphorylation. J Biol Chem. 2001;276(2):1643–52.
Suzuki-Inoue K, Fuller GL, García A, Eble JA, Pöhlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RD, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VL, Ozaki Y, Watson SP. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood. 2006;107(2):542–9.
Suzuki-Inoue K, Inoue O, Ozaki Y. The novel platelet activation receptor CLEC-2. Platelets. 2011;22(5):380–4.
Takasaki C, Yoshida H, Shimazu T, Teruuchi T, Toriba M, Tamiya N. Studies on the venom components of the long-glanded coral snake, Maticora bivirgata. Toxicon. 1991;29(2):191–200.
Tan NH. Acidic phospholipases A2 from the venom of common sea snake Enhydrina schistosa. Biochim Biophys Acta. 1982;717(3):503–8.
Tan NH. Isolation and characterization of two toxins from the venom of the Malayan cobra (NajaNaja sputatrix). Toxicon. 1983;21(2):201–7.
Tan NH. Isolation of the major arginine amidase from the venom of the Malayan pit viper (Agkistrodon rhodostoma). In: Proceedings of the sixth European symposium on animal, plant and microbial toxins. Basel Switzerland. 1984. p. 126.
Tan NH. The Biochemistry of venoms of some venomous snakes of Malaysia – a review. Trop Biomed. 1991;8:91–103.
Tan NH. Kistomin (Calloselasma rhodostoma). In: Barratt A, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. London: Academic; 1998a. p. 1287–90.
Tan NH. L-amino acid oxidases and lactate dehydrogenases. In: Bailey GS, editor. Enzymes from snake venom. Fort Collins: Alaken; 1998b. p. 579–98.
Tan NH. Isolation and characterization of the thrombin-like enzyme from Cryptelytrops purpureomaculatus venom. Comp Biochem Physiol C Toxicol Pharmacol. 2010;151(1):131–6.
Tan NH, Armugam A. In vivo interactions between neurotoxin, cardiotoxin and phospholipases A2 isolated from Malayan cobra (NajaNaja sputatrix) venom. Toxicon. 1990;28(10):1193–8.
Tan NH, Fung SY. A hemorrhagic toxin from the venom of Trimeresurus purpureomaculatus snake (Mangrove pit viper). Eur J Biochem. 2002;269:99.
Tan NH, Fung SY. Snake venom L-amino acid oxidase. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press/Taylor and Francis Group; 2009. p. 219–34.
Tan NH, Hj MN. Enzymatic and toxic properties of Ophiophagus hannah (king cobra) venom and venom fractions. Toxicon. 1989;27(6):689–95.
Tan NH, Saifuddin MN. Isolation and characterization of an unusual form of L-amino acid oxidase from King cobra (Ophiophagus hannah) venom. Biochem Int. 1989;19(4):937–44.
Tan NH, Saifuddin MN. Isolation and characterization of a hemorrhagin from the venom of Ophiophagus hannah (king cobra). Toxicon. 1990a;28(4):385–92.
Tan NH, Saifuddin MN. Purification and characterization of two acidic phospholipase A2 enzymes from king cobra (Ophiophagus hannah) snake venom. Int J Biochem. 1990b;22(5):481–7.
Tan NH, Tan CS. Biological properties of Trimeresurus purpureomaculatus (shore pit viper) venom and its fractions. Toxicon. 1988a;26(11):989–96.
Tan NH, Tan CS. Partial purification of acetylcholinesterase from the venom of the shore pit viper (Trimeresurus purpureomaculatus). Toxicon. 1988b;26(5):505–8.
Tan NH, Tan CS. Enzymatic activities and lethal toxins of Trimeresurus wagleri (Speckled pit viper) venom. Toxicon. 1989a;27:349–57.
Tan NH, Tan CS. Fractionation of Sumatran pit viper (Trimeresurus sumatranus sumatranus) venom by DEAE-Sephacel ion exchange chromatography and some biological properties of the fractions. Toxicon. 1989b;27(6):697–702.
Tan NH, Kanthimathi MS, Tan CS. Enzymatic activities of Calloselasma rhodostoma (Malayan pit viper) venom. Toxicon. 1986;24:626–30.
Tan NH, Armugam A, Tan CS. A comparative study of the enzymatic and toxic properties of venoms of the Asian lance-headed pit viper (Genus Trimeresurus). Comp Biochem Physiol B. 1989a; 93(4): 757–62
Tan NH, Poh CH, Tan CS. The lethal and biochemical properties of Bungarus candidus (Malayan krait) venom and venom fractions. Toxicon. 1989b; 27(9):1065–70
Tan NH, Tan CS, Khor HT. Isolation and characterization of the major phospholipase A2from the venom of Trimeresurus purpureomaculatus (shore pit viper). Int J Biochem. 1989c; 21(12):1421–26
Tan NH, Choy SK, Chin KM, Gnanajothy P. Cross-reactivity of monovalent and polyvalent Trimeresurus antivenoms with venoms from various species of Trimeresurus (lance-headed pit viper) snake. Toxicon. 1994;32:849–53.
Tan NH, Fung SY, Ponnudurai G. Enzymatic and immunological properties of Bungarus flaviceps (red-headed krait) venom. J Venom Anim Toxins Incl Trop Dis. 2010;16(1):147–54.
Tan CH, Leong PK, Fung SY, Sim SM, Ponnudurai G, Ariaratnam C, Khomvilai S, Sitprija V, Tan NH. Cross neutralization of Hypnale hypnale (hump-nosed pit viper) venom by polyvalent and monovalent Malayan pit viper antivenoms in vitro and in a rodent model. Acta Trop. 2011;117(2):119–24.
Tan CH, Tan NH, Sim SM, Fung SY, Jayalakshmi P, Gnanathasan CA. Nephrotoxicity of hump-nosed pit viper (Hypnale hypnale) venom in mice is preventable by the paraspecific Hemato polyvalent antivenom (HPA). Toxicon. 2012;60(7):1259–62.
Tan CH, Sim SM, Gnanathasan CA, Fung SY, Tan NH. Pharmacokinetics of the Sri Lankan Hump-nosed Pit Viper (Hypnale hypnale) Venom following intravenous and intramuscular injections of the venom into rabbits. Toxicon. 2014;79:37–44.
Teichert RW, Garcia CC, Potian JG, Schmidt JJ, Witzemann V, Olivera BM, McArdle JJ. Peptide-toxin tools for probing the expression and function of fetal and adult subtypes of the nicotinic acetylcholine receptor. Ann N Y Acad Sci. 2008;1132:61–70.
Teng CM, Hung ML, Huang TF, Ouyang C. Triwaglerin: a potent platelet aggregation inducer purified from Trimeresurus wagleri snake venom. Biochim Biophys Acta. 1989;992(3):258–64.
Torres AM, Kini RM, Selvanayagam N, Kuchel PW. NMR structure of bucandin, a neurotoxin from the venom of the Malayan krait (Bungarus candidus). Biochem J. 2001;360(Pt 3):539–48.
Tsai MC, Hsieh WH, Smith LA, Lee CY. Effects of waglerin-I on neuromuscular transmission of mouse nerve-muscle preparations. Toxicon. 1995;33(3):363–71.
Tsai IH, Wang YM, Au LC, Ko TP, Chen YH, Chu YF. Phospholipases A2 from Callosellasma rhodostoma venom gland cloning and sequencing of 10 of the cDNAs, three-dimensional modelling and chemical modification of the major isozyme. Eur J Biochem. 2000;267(22):6684–91.
Tsai IH, Chen YH, Wang YM, Liau MY, Lu PJ. Differential expression and geographic variation of the venom phospholipases A2 of Calloselasma rhodostoma and Trimeresurus mucrosquamatus. Arch Biochem Biophys. 2001a;387(2):257–64.
Tsai IH, Chen YH, Wang YM, Tu MC, Tu AT. Purification, sequencing, and phylogenetic analyses of novel Lys-49 phospholipases A2 from the venoms of rattlesnakes and other pit vipers. Arch Biochem Biophys. 2001b;394(2):236–44.
Tsai IH, Chang HC, Chen JM, Cheng AC, Khoo KH. Glycan structures and intrageneric variations of venom acidic phospholipases A2 from Tropidolaemus pit vipers. FEBS J. 2012;279(15):2672–82.
Tseng YL, Peng HC, Huang TF. Rhodostomin, a disintegrin, inhibits adhesion of neutrophils to fibrinogen and attenuates superoxide production. J Biomed Sci. 2004;11(5):683–91.
Tu AT. Venoms: chemistry and molecular biology. New York: Wiley; 1977.
Tweedie MWF. The snakes of Malaya. Singapore: Singapore National Printers; 1983.
Utkin YN, Kukhtina VV, Maslennikov IV, Eletsky AV, Starkov VG, Weise C, Franke P, Hucho F, Tsetlin VI. First tryptophan-containing weak neurotoxin from cobra venom. Toxicon. 2001;39(7):921–7.
Vejayan J, Shin Yee L, Ponnudurai G, Ambu S, Ibrahim I. Protein profile analysis of Malaysian snake venoms by two-dimensional gel electrophoresis. J Venom Anim Toxins Incl Trop Dis. 2010;16(4):623–30.
Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, Kerkkamp HM, Vos RA, Guerreiro I, Calvete JJ, Wüster W, Woods AE, Logan JM, Harrison RA, Castoe TA, de Koning AP, Pollock DD, Yandell M, Calderon D, Renjifo C, Currier RB, Salgado D, Pla D, Sanz L, Hyder AS, Ribeiro JM, Arntzen JW, van den Thillart GE, Boetzer M, Pirovano W, Dirks RP, Spaink HP, Duboule D, McGlinn E, Kini RM, Richardson MK. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110(51):20651–6.
Vyas KA, Patel HV, Vyas AA, Wu W. Glycosaminoglycans bind to homologous cardiotoxins with different specificity. Biochemistry. 1998;37(13):4527–34.
Wang R, Kini RM, Chung MC. Rhodocetin, a novel platelet aggregation inhibitor from the venom of Calloselasma rhodostoma (Malayan pit viper): synergistic and noncovalent interaction between its subunits. Biochemistry. 1999a;38(23):7584–93.
Wang YM, Liew YF, Chang KY, Tsai IH. Purification and characterization of the venom phospholipase A2 from Asian monotypic Crotalinae snakes. J Nat Toxins. 1999b;8(3):331–40.
Wang R, Kong C, Kolatkar P, Chung MC. A novel dimer of a C-type lectin-like heterodimer from the venom of Calloselasma rhodostoma (Malayan pit viper). FEBS Lett. 2001;508(3):447–53.
Wang Y, Hong J, Liu X, Yang H, Liu R, Wu J, Wang A, Lin D, Lai R. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS One. 2008;3(9):e3217.
Warrell DA, Looareesuwan S, White NJ, Theakston RD, Warrell MJ, Kosakarn W, Reid HA. Severe neurotoxicen venoming by the Malayan krait Bungarus candidus (Linnaeus): response to antivenom and anticholinesterase. Br Med J (Clin Res Ed). 1983;286(6366):678–80.
Watson AA, O’Callaghan CA. Molecular analysis of the interaction of the snake venom rhodocytin with the platelet receptor CLEC-2. Toxins (Basel). 2011;3(8):991–1003.
Wei JF, Lü QM, Jin Y, Li DS, Xiong YL, Wang WY. Alpha-neurotoxins of Naja atra and Naja kaouthia snakes in different regions. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2003;35(8):683–8.
Wei JF, Yang HW, Wei XL, Qiao LY, Wang WY, He SH. Purification, characterization and biological activities of the L-amino acid oxidase from Bungarus fasciatus snake venom. Toxicon. 2009;54(3):262–71.
Weinstein SA, Schmidt JJ, Bernheimer AW, Smith LA. Characterization and amino acid sequences of two lethal peptides isolated from venom of Wagler’s pit viper, Trimeresurus wagleri. Toxicon. 1991;29(2):227–36.
Weissenberg S, Ovadia M, Kochva E. Species specific sensitivity towards the hemorrhagin of Ophiophagus hannah (Elapidae). Toxicon. 1987;25(5):475–82.
White J. CSL antivenom handbook. 3rd ed. Melbourne: CSL; 2013.
Williams DJ, Gutiérrez JM, Calvete JJ, Wüster W, Ratanabanangkoon K, Paiva O, Brown NI, Casewell NR, Harrison RA, Rowley PD, O’Shea M, Jensen SD, Winkel KD, Warrell DA. Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J Proteomics. 2011;74(9):1735–67.
World Health Organization. WHO Guidelines for the production control and regulation of snake antivneom immuniglobulins. 2010. Retrieved from: http://www.who.int/bloodproducts/snake_antivenoms/snakeantivenomguideline.pdf
Wüster W. Taxonomic changes and toxinology: systematic revisions of the Asiatic cobras (NajaNaja species complex). Toxicon. 1996;34(4):399–406.
Wüster W, Harvey AL. Reviews of venomous snake systematics in Toxicon. Toxicon. 1996;34(4):397–8.
Wüster W, Peppin L, Pook CE, Walker DE. A nesting of vipers: phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Mol Phylogenet Evol. 2008;49(2):445–59. doi:10.1016/j.ympev.2008.08.019.
Yamakawa Y, Omori-Satoh T. A protease in the venom of king cobra (Ophiophagus hannah): purification, characterization and substrate specificity on oxidized insulin B-chain. Toxicon. 1988;26(12):1145–55.
Yanoshita R, Ogawa Y, Murayama N, Omori-Satoh T, Saguchi K, Higuchi S, Khow O, Chanhome L, Samejima Y, Sitprija V. Molecular cloning of the major lethal toxins from two kraits (Bungarus flaviceps and Bungarus candidus). Toxicon. 2006;47(4):416–24.
Yap MKK, Tan NH, Fung SY. Biochemical and toxinological characterization of Naja sumatrana (Equatorial spitting cobra) venom. J Venom Anim Toxins Incl Trop Dis. 2011;17(4):451–9.
Yap MK, Fung SY, Tan KY, Tan NH. Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra). Acta Trop. 2014a;133:15–25.
Yap MK, Tan NH, Sim SM, Fung SY, Tan CH. Pharmacokinetics of Naja sumatrana (equatorial spitting cobra) venom and its major toxins in experimentally envenomed rabbits. PLoS Negl Trop Dis. 2014b;8(6):e2890.
Ye JH, McArdle JJ. Waglerin-1 modulates gamma-aminobutyric acid activated current of murine hypothalamic neurons. J Pharmacol Exp Ther. 1997;282(1):74–80.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media Dordrecht
About this entry
Cite this entry
Tan, C.H., Tan, N.H. (2017). Toxinology of Snake Venoms: The Malaysian Context. In: Inagaki, H., Vogel, CW., Mukherjee, A., Rahmy, T. (eds) Snake Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6410-1_13
Download citation
DOI: https://doi.org/10.1007/978-94-007-6410-1_13
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-6409-5
Online ISBN: 978-94-007-6410-1
eBook Packages: Biomedical and Life SciencesReference Module Biomedical and Life Sciences