Scorpion Venom Interactions with the Immune System

  • Sonia Adi-Bessalem
  • Djelila Hammoudi-Triki
  • Fatima Laraba-Djebari
Reference work entry
Part of the Toxinology book series (TOXI, volume 4)


Scorpion envenomation (SE) is a common medical problem in many countries; it is an important cause of morbidity and mortality, especially among children. In certain cases scorpion stings lead to multiorgan failure that may be fatal; the manifestations include acute respiratory distress syndrome and systemic inflammatory response syndrome. Neurotoxins are the most active components of the scorpion venom responsible for the toxic effects induced after SE. They induce a massive release of neurotransmitters during stimulation of sympathetic and parasympathetic of the autonomic nervous system. The pathophysiological disturbances caused by scorpion venom are not exclusively assigned to the released neurotransmitters. The activation and release of inflammatory mediators (cytokines, kinins, eicosanoids, reactive oxygen species, and nitric oxide) may also play an important role in the pathophysiology of envenomation after stings and may be responsible for some of the inflammatory manifestations and organ failure. The massive release of these mediators from injured and activated cells promotes the inflammatory response and may be responsible for its exacerbation and its maintenance. The present chapter focuses on the role of inflammatory mediators and on elucidation of the potential mechanisms by which the immune system affects the pathophysiology following SE. Understanding of involved inflammatory cascade in scorpion envenoming syndromes may have future therapeutic and diagnostic benefits.


Nitric Oxide Mast Cell Pulmonary Edema Systemic Inflammatory Response Syndrome Scorpion Venom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdel-Haleem AA, Meki AMA, Noaman HA, Mohamed ZT. Serum levels of IL-6 and its soluble receptor, TNF-α and chemokine RANTES in scorpion envenomed children: their relation to scorpion envenomation outcome. Toxicon. 2006;47(4):437–44.PubMedCrossRefGoogle Scholar
  2. Adi-Bessalem S, Hammoudi Triki D, Laraba-Djebari F. Pathological effects of Androctonus australis hector scorpion venom: tissue damages and inflammatory response. Exp Toxicol Pathol. 2008;60:373–80.PubMedCrossRefGoogle Scholar
  3. Adi-Bessalem S, Mendil A, Hammoudi-Triki D, Laraba-Djebari F. Lung immunoreactivity and Airway inflammation: their assessment after scorpion envenomation. Inflammation. 2012;35(2):501–8.PubMedCrossRefGoogle Scholar
  4. Aït-Lounis A, Laraba-Djebari F. TNF-α Involvement in insulin resistance induced by experimental scorpion envenomation. PLOS Negl Trop Dis. 2012;6(7):e1740.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bertazzi DT, de Assis-Pandochi AI, Azzolini AE, Talhaferro VL, Lazzarini M, Arantes EC. Effect of Tityus serrulatus scorpion venom and its major toxin, TsTX-I, on the complement system in vivo. Toxicon. 2003;41:501–8.PubMedCrossRefGoogle Scholar
  6. Bertazzi DT, de Assis-Pandochi AI, Talhaferro VL, Caleiro AE, Pereira LS, Arantes EC. Activation of the complement system and leukocyte recruitment by Tityus serrulatus scorpion venom. Int Immunopharmacol. 2005;5:1077–84.PubMedCrossRefGoogle Scholar
  7. Borges CM, Silveira MR, Aparecida M, Beker CL, Freire-Maia L, Teixeira MM. Scorpion venom-induced neutrophilia is inhibited by a PAF receptor antagonist in the rat. J Leukoc Biol. 2000;67(4):515–9.PubMedGoogle Scholar
  8. Cahalan MD, Chandy KG. Ion channels in the immune system as targets for immunosuppression. Curr Opin Biotechnol. 1997;8:749–56.PubMedCrossRefGoogle Scholar
  9. Chippaux JP. Emerging options for the management of scorpion stings. Drug Des Devel Ther. 2012;6:165–73.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Coelho MF, Pessini AC, Coelho AM, Pinho VS, Souza DG, Arantes EC, Teixeira MM, Teixeira A. Platelet activating factor receptors drive CXC production, neutrophil influx and edema formation in lungs of mice injected with Tityus serrulatus venom. Toxicon. 2007;50:420–7.PubMedCrossRefGoogle Scholar
  11. Czermak BJ, Sarma V, Bless NM, Schmal H, Friedl HP, Ward PA. In vitro and in vivo dependency of chemokine generation on C5a and TNF-alpha. J Immunol. 1999;162:2321–5.PubMedGoogle Scholar
  12. D’Suze G, Moncada S, González C, Sevcik C, Aguilar V, Alagón A. Relationship between plasmatic levels of various Lung immunoreactivity and airway inflammation cytokines, tumour necrosis factor, enzymes, glucose and venom concentration following Tityus scorpion sting. Toxicon. 2003;41(3):367–75.PubMedCrossRefGoogle Scholar
  13. D’Suze G, Salazar V, Díaz P, Sevcik C, Azpurua H, Bracho N. Histopathological changes and inflammatory response induced by Tityus discrepans scorpion venom in rams. Toxicon. 2004;44(8):851–60.PubMedCrossRefGoogle Scholar
  14. De-Matos IM, Talvani A, Rocha OOA, Freira-Maia L, Teixiera MM. Evidence for the role of mast cells in the lung edema induced by Tityus serrulatus venom in rats. Toxicon. 2001;39:861–7.CrossRefGoogle Scholar
  15. Dousset E, Carrega L, Steinberg JG, Clot-Faybesse O, Jouirou B, Sauze N, Devaux C, Autier Y, Jammes Y, Martin-Eauclaire MF, Guieu R. Evidence that free radical generation occurs during scorpion envenomation. Comp Biochem Physiol C Toxicol Pharmacol. 2005;140(2):221–6.PubMedCrossRefGoogle Scholar
  16. Dutta A, Deshpande SB. Indian red scorpion venom-induced augmentation of cardio-respiratory reflexes and pulmonary edema involve the release of histamine. Toxicon. 2011;57:193–8.PubMedCrossRefGoogle Scholar
  17. El-Alfy AT, Amany AE, Fatani AJ, Amal J, Kader F. Amelioration of the cardiovascular manifestations of the yellow scorpion Leiurus quinquestriatus envenomation in rats by red grape seeds proanthocyanidins. Toxicon. 2008;51(3):321–33.PubMedCrossRefGoogle Scholar
  18. Elenkov IJ, Papanicolaou DA, Wilder RL, Chrousos GP. Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications. Proc Assoc Am Physicians. 1996;108:374–81.PubMedGoogle Scholar
  19. Fatani AJ, Furman BL, Zeitlin IJ. The involvement of plasma kinins in the cardiovascular effects of Leiurus quinquestriatus scorpion venom in anesthetised rabbits. Toxicon. 1998;36:523–36.PubMedCrossRefGoogle Scholar
  20. Ferreira LAF, Alves EW, Henriques OB, Peptide T. A novel bradykinin potentiator isolated from Tityus serrulatus scorpion venom. Toxicon. 1993;31:941–7.PubMedCrossRefGoogle Scholar
  21. Fukuhara YD, Reis ML, Dellalibera-Joviliano R, Cunha FQ, Donadi EA. Increased plasma levels of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha in patients moderately or severely envenomed by Tityus serrulatus scorpion sting. Toxicon. 2003;41(1):49–55.PubMedCrossRefGoogle Scholar
  22. Fukuhara YDM, Dellalibera-Joviliano R, Cunha FQ, Reis ML, Donadi EA. The kinin system in the envenomation caused by the Tityus serrulatus scorpion sting. Toxicol Appl Pharmacol. 2004;196:390–5.PubMedCrossRefGoogle Scholar
  23. Hammoudi-Triki D, Ferquel E, Robbe-Vincent A, Bon C, Choumet V, Laraba-Djebari F. Epidemiological data, clinical admission gradation and biological quantification by ELISA of scorpion envenomations in Algeria: effect of immunotherapy. Trans R Soc Trop Med Hyg. 2004;98(4):240–50.PubMedCrossRefGoogle Scholar
  24. Ismail M. The scorpion envenoming syndrome. Toxicon. 1995;33:825–58.PubMedCrossRefGoogle Scholar
  25. Ismail M, El-Asmar MF, Osman OH. Pharmacological studies with scorpion Palamnaeus gravimanus venom: evidence for the presence of histamine. Toxicon. 1975;13(1):49–56.PubMedCrossRefGoogle Scholar
  26. Kanoo S, Deshpande SB. Involvement of phospholipase A2 pathway for the Indian red scorpion venom-induced augmentation of cardiopulmonary reflexes elicited by phenyldiguanide. Neurosci Lett. 2008;440:242–5.PubMedCrossRefGoogle Scholar
  27. Koyama S, Sato E, Nomura H, Kubo K, Nagai S, Izumi T. Acetylcholine and substance P stimulate bronchial epithelial cells to release eosinophil chemotactic activity. J Appl Physiol. 1998;84:1528–34.PubMedGoogle Scholar
  28. Krensky AM. Biology and therapeutic implications of the chemokine RANTES. ACI Int. 1999;5:16–21.Google Scholar
  29. Liu T, Bai ZT, Pang XY, Chai ZF, Jiang F, Ji YH. Degranulation of mast cells and histamine release involved in rat pain-related behaviors and edema induced by scorpion Buthus martensi Karch venom. Eur J Pharmacol. 2007;575:46–56.PubMedCrossRefGoogle Scholar
  30. Magalhães MM, Pereira ME, Amaral CF, Rezende NA, Campolina D, Bucaretchi F, Gazzinelli RT, Cunha-Melo JR. Serum levels of cytokines in patients envenomed by Tityus serrulatus scorpion sting. Toxicon. 1999;37(8):1155–64.PubMedCrossRefGoogle Scholar
  31. Matos IM, Souza DG, Seabra DG, Freire-Maia L, Teixeira MM. Effects of tachykinin NK1 or PAF receptor blockade on the lung injury induced by scorpion venom in rats. Eur J Pharmacol. 1999;376:293–300.PubMedCrossRefGoogle Scholar
  32. Meki ARMA, Mohey El-Dean ZM. Serum interleukin-1β, interleukin-6, nitric oxide and α1-antitrypsin in scorpion envenomed children. Toxicon. 1998;36(12):1851–9.PubMedCrossRefGoogle Scholar
  33. Meki AAM, Mohey El-Deen Z, Mohey El-Deen H. Myocardial injury in scorpion envenomed children: significance of assessment of serum troponin I and interleukin 8. Neuro Endocrinol Lett. 2002;23:133–40.PubMedGoogle Scholar
  34. Pessini AC, Santos DR, Arantes EC, Souza GEP. Mediators involved in the febrile response induced by Tityus serrulatus scorpion venom in rats. Toxicon. 2006;48(5):556–66.PubMedCrossRefGoogle Scholar
  35. Pessini AC, Kanashiro A, Malvar Ddo C, Machado RR, Soares DM, Figueiredo MJ, Kalapothakis E, Souza GE. Inflammatory mediators involved in the nociceptive and oedematogenic responses induced by Tityus serrulatus scorpion venom injected into rat paws. Toxicon. 2008;52(7):729–36.PubMedCrossRefGoogle Scholar
  36. Petricevich VL. Balance between pro- and anti-inflammatory cytokines in mice treated with Centruroides noxius scorpion venom. Mediators Inflamm. 2006; 2006(6):54273. Available from, doi:10.1155/MI/2006/54273.
  37. Petricevich VL. Scorpion venom and the inflammatory response. Mediators Inflamm. 2010; 2010: 903295. Available from, doi: 10.1155/2010/903295.
  38. Petricevich VL, Peña CF. The dynamics of cytokine and nitric oxide secretion in mice injected with Tityus serrulatus scorpion venom. Mediators Inflamm. 2002;11:173–80.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Petricevich VL, Cruz AH, Coronas FI, Possani LD. Toxin gamma from Tityus serrulatus scorpion venom plays an essential role in immunomodulation of macrophages. Toxicon. 2007;50:666–75.PubMedCrossRefGoogle Scholar
  40. Raouraoua-Boukari R, Sami-Merah S, Hammoudi-Triki D, Laraba-Djebari F. Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: biomarker interactions. Neuroimmunomodulation. 2012;19(2):103–10PubMedCrossRefGoogle Scholar
  41. Sahnoun Z, Chaker-Krichen S, Kassis M, Hakim A, Hammami S, Ghozzi H, Bouayed N, Bellasfar Z, Zeghal KM, Rebai T. Investigation of the microcirculation and the state of oxidative stress in the rat after scorpion envenomation. Clin Exp Pharmacol Physiol. 2007;34(4):263–8.PubMedCrossRefGoogle Scholar
  42. Saidi H, Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F. Effects of atropine and propranolol on lung inflammation in experimental envenomation: comparison of two buthidae venoms. J Venom Anim Toxins Incl Trop Dis. 2013;19:1–8.CrossRefGoogle Scholar
  43. Sami-Merah S, Hammoudi-Triki D, Martin-Eauclaire MF, Laraba-Djebari F. Combination of two antibody fragments F(ab′)2/Fab: an alternative for scorpion envenoming treatment. Int Immunopharmacol. 2008;8:1386–94.PubMedCrossRefGoogle Scholar
  44. Shah PK, Lakhotia M, Chittora M, Mehta S, Purohit A. Pulmonary infiltration with blood eosinophilia after scorpion sting. Chest. 1989;95:691–2.PubMedCrossRefGoogle Scholar
  45. Sofer S, Gueron M, white R, Lifshitz M, Apte R. Interleukin-6 release following scorpion sting in children. Toxicon. 1996;34:389–92.PubMedCrossRefGoogle Scholar
  46. Teixeira CFP, Galante F, Manzoli S, Steil AA, Jancar S. Inflammatory reaction induced by Tityus serrulatus crude venom (TsV) in the lung of rats. J Venom Anim Toxin. 1997;3:111.Google Scholar
  47. Teixeira CE, Teixeira SA, Antunes E, De Nucci G. The role of nitric oxide on the relaxations of rabbit corpus cavernosum induced by Androctonus australis and Buthotus judaicus scorpion venoms. Toxicon. 2001;39(5):633–9.PubMedCrossRefGoogle Scholar
  48. Vasconcelos F, Lanchote VL, Bendhack LM, Giglio JR, Sampaio SL, Arantes EC. Effects of voltage-gated Na+ channel toxins from Tityus serrulatus venom on rat arterial blood pressure and plasma catecholamines. Comp Biochem Physiol C Toxicol Pharmacol. 2005;14(1):85–92.CrossRefGoogle Scholar
  49. Zoccal KF, Bitencourt CD, Secatto CA, Sorgi CA, Bordon KDF, Sampaio SV, Arantes EC, Faccioli LH. Tityus serrulatus venom and toxins Ts1, Ts2 and Ts6 induce macrophage activation and production of immune mediators. Toxicon. 2011;57(7–8):1101–8.PubMedCrossRefGoogle Scholar
  50. Zoccal KF, Bitencourt CD, Sorgi CA, De Castro Figueiredo Bordon K, Sampaio SV, Arantes EC, Faccioli LH. Ts6 and Ts2 from Tityus serrulatus venom induce inflammation by mechanisms dependent on lipid mediators and cytokine production. Toxicon. 2013;61:1–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sonia Adi-Bessalem
    • 1
  • Djelila Hammoudi-Triki
    • 1
  • Fatima Laraba-Djebari
    • 1
  1. 1.Faculty of Biological Sciences, Laboratory of Cellular and Molecular BiologyUSTHB, University of Sciences and Technology Houari BoumedieneBab EzzouarAlgeria

Personalised recommendations