Scorpion Venom Research Around the World: Turkish Scorpions

Reference work entry
Part of the Toxinology book series (TOXI, volume 4)

Abstract

Pharmacological diversity of animal venoms has made them valuable sources of highly specific molecular tools in drug discovery research. Scorpion venoms contain a number of biologically active compounds, where peptides and proteins play a primary role as novel pharmacologically active molecules. In Turkey, there are 27 different species of scorpions described belonging to the Buthidae, Iuridae, Scorpionidae, and Euscorpiidae families. Despite the long history of venom research in the world, the venom of only few Turkish scorpion species has been investigated. Several health-threatening scorpions are found in Turkey, all of them belonging to the Buthidae family: Androctonus crassicauda, Buthacus macrocentrus, Leiurus abdullahbayrami, Mesobuthus eupeus, and Mesobuthus gibbosus species. Envenomations are characterized by local pain, hyperemia, swelling, burning, hypotension, hypertension, dry mouth, thirst, and sweating. Envenomated patients require medical attention, some of which might be fatal. This chapter gives an overview of peptide research done on the venom of Turkish scorpions and contains some revisions of earlier reports according to newly described scorpion species which was previously incorrectly identified. Up to date, only three medically important scorpion venoms from Buthidae family have been deeply investigated by high-performance liquid chromatography separations, mass spectrometry analysis, and amino acid sequences by direct Edman degradation in conjunction with gene codes obtained from cDNA libraries and electrophysiological records. Eight peptides have been identified from A. crassicauda and named as Acra1 to Acra8, only one peptide from B. macrocentrus named as Bu1, and four peptides from M. gibbosus named as MegKTx1 to MegKTx4. Additionally, electrophoretic profiles of L. abdullahbayrami and Mesobuthus eupeus (Buthidae) and Protoiurus kraepelini and Iurus kinzelbachi (Iuridae) venoms are reported. Also in vivo effects and in vitro cytotoxic and gelatinolytic activities of the A. crassicauda and M. gibbosus crude venom are reported.

Keywords

High Performance Liquid Chromatography Gelatinolytic Activity Scorpion Venom Crude Venom Scorpion Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adiguzel S. In vivo and in vitro effects of scorpion venoms in Turkey: a mini-review. J Venom Anim Toxins Incl Trop Dis. 2010;16(2):198–211.CrossRefGoogle Scholar
  2. Al B, Yilmaz D, Sogut O, Orak M, Ustundag M, Bokurt S. Epidemiological, clinical characteristics and outcome of scorpion envenomation in Batman, Turkey: an analysis of 120 cases. JAEM. 2009;8(3):9–14.Google Scholar
  3. Almeida FM, Pimenta AM, De Figueiredo SG, Santoro MM, Martin-Eauclaire MF, Diniz CR, De Lima ME. Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon. 2002;40:1041–5.PubMedCrossRefGoogle Scholar
  4. Altinkaynak S, Ertekin V, Alp H. Scorpion envenomation in children. Turkish Arch Pediatr. 2002;37:48–54.Google Scholar
  5. Altinkurt O, Altan M. Pharmacological effects of the scorpion (Androctonus crassicauda) venom from Urfa environment on laboratory animals and the antagonistic effects of streptomycin to most of these effects. J Fac Pharm Ankara. 1980;10:41–61.Google Scholar
  6. Ay I, Tuncer M, Onur R. Effects of Androctonus crassicauda scorpion venom on endothelium-dependent and -independent vascular responses of rabbit aorta. Gen Pharmacol. 1996;27(3):519–23.PubMedCrossRefGoogle Scholar
  7. Bakir F, Ozkan O, Alcigir ME, Vural SA. Effects of Androctonus crassicauda scorpion venom on the heart tissue. J Anim Vet Adv. 2012;11(14):2594–9.CrossRefGoogle Scholar
  8. Batista CV, Gomez-Lagunas F, Rodríguez de la Vega RC, Hajdu P, Panyi G, Gaspar R, Possani LD. Two novel toxins from the Amazonian scorpion Tityus cambridgei that block Kv1.3 and Shaker B K+ -channels with distinctly different affinities. Biochim Biophys Acta. 2002;1601(2):123–31.PubMedCrossRefGoogle Scholar
  9. Becerril B, Corona M, Coronas FI, Zamudio F, Calderon-Aranda ES, Fletcher Jr PL, Martin BM, Possani LD. Toxic peptides and genes encoding toxin gamma of the Brazilian scorpions Tityus bahiensis and Tityus stigmurus. Biochem J. 1996;313(3):753–60.PubMedCentralPubMedGoogle Scholar
  10. Bosnak M, Ece A, Yolbas I, Bosnak V, Kaplan M, Gurkan F. Scorpion sting envenomation in children in southeast Turkey. Wilderness Environ Med. 2009;20(2):118–24.PubMedCrossRefGoogle Scholar
  11. Caliskan F, Garcia BI, Coronas FI, Batista CV, Zamudio FZ, Possani LD. Characterization of venom components from the scorpion Androctonus crassicauda of Turkey: peptides and genes. Toxicon. 2006;48(1):12–22.PubMedCrossRefGoogle Scholar
  12. Caliskan F, Sivas H, Sahin Y. A preliminary study for the detection of gelatinolytic proteases from the scorpion Androctonus crassicauda (Turkish Black Scorpion) venom. Turk J Biochem. 2009a;34:148–53.Google Scholar
  13. Caliskan F, Sivas H, Sahin Y. Purification of Ac8, Ac9 and Ac10 peptides from Androctonus crassicauda crude venom with cytotoxic effect on BC3H1 cells. AUJST. 2009b;10(2):515–24.Google Scholar
  14. Caliskan F, Garcia BI, Coronas FI, Restano-Cassulini R, Korkmaz F, Sahin Y, Corzo G, Possani LD. Purification and cDNA cloning of a novel neurotoxic peptide (Acra3) from the scorpion Androctonus crassicauda. Peptides. 2012a;37(1):106–12.PubMedCrossRefGoogle Scholar
  15. Caliskan F, Quintero-Hernandez V, Restano-Cassulini R, Batista CV, Zamudio FZ, Coronas FI, Possani LD. Turkish scorpion Buthacus macrocentrus: general characterization of the venom and description of Bu1, a potent mammalian Na + -channel α-toxin. Toxicon. 2012b;59(3):408–15.PubMedCrossRefGoogle Scholar
  16. Caliskan F, Quintero-Hernandez V, Restano-Cassulini R, Coronas-Valderrama FI, Corzo G, Possani LD. Molecular cloning and biochemical characterization of the first Na-channel α-type toxin peptide (Acra4) from Androctonus crassicauda scorpion venom. Biochimie. 2013a;95(6):1216–22.PubMedCrossRefGoogle Scholar
  17. Caliskan F, Ergene E, Sogut I, Basalp A, Sivas H, Kanbak G. Biological assays on the effects of Acra3 peptide from Turkish scorpion Androctonus crassicauda venom on a mouse brain tumor cell line (BC3H1) and production of specific monoclonal antibodies. Toxicon. 2013b. http://dx.doi.org/10.1016/j.toxicon.2013.09.009
  18. Crucitti P. The scorpions of Anatolia: biogeographical patterns. Biogeographica. 1999;20:81–94.Google Scholar
  19. DeBin JA, Maggio JE, Strichartz GR. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol. 1993;264(2 Pt 1):C361–9.PubMedGoogle Scholar
  20. Diego-Garcia E, Peigneur S, Debaveye S, Gheldof E, Tytgat J, Caliskan F. Novel potassium channel blocker venom peptides from Mesobuthus gibbosus (Scorpiones: Buthidae). Toxicon. 2013;61:72–82.PubMedCrossRefGoogle Scholar
  21. Du Plessis LH, Elgar D, Du Plessis JL. Southern African scorpion toxins: an overview. Toxicon. 2008;51(1):1–9.PubMedCrossRefGoogle Scholar
  22. Incesu Z, Calıskan F, Zeytinoglu H. Cytotoxic and gelatinolytic activities of Mesobuthus gibbosus (Brullé, 1832) venom. Rev CENIC Ciencias Biol. 2005;36:1–7.Google Scholar
  23. Kaltsas D, Stathi I, Fet V. Scorpions of the Eastern mediterranean. In: Makarov SE, RN Dimitrijevic, editors. Advances in arachnology and developmental biology papers dedicated to Professor Božidar PM Ćurčić Belgrade-Vienna-Sofia; 2008.Google Scholar
  24. Karakus A, Şahan M, Komur M, Yilmaz HL, Yildizbas D. Heart failure and priapism due to scorpion stings. TAD. 2012;10(2):72–4.Google Scholar
  25. Karakus A, Arıca V, Celik T, Tutanç M, Zeren C, Arıca SG. Death due to scorpion sting: child case report. J Kartal Train Res Hosp. 2013;24(1):50–3.CrossRefGoogle Scholar
  26. Karataş A, Karataş A. Mesobuthus eupeus (CL Koch, 1839) (Scorpiones: Buthidae) in Turkey. Euscorpius. 2003;7:1–6.Google Scholar
  27. Keskin NA, Koc H. A study on venom proteins of Iurus dufoureius asiaticus Birula, 1903 (Scorpiones: Iuridae). Acta Parasitol Turcica. 2006;30(1):59–61.Google Scholar
  28. Mocan H, Mocan MZ, Kaynar K. Haemolytic-uraemic syndrome following a scorpion sting. Nephrol Dial Transplant. 1998;13(10):2639–40.PubMedCrossRefGoogle Scholar
  29. Ozkan O, Ciftci G. Individual variation in the protein profile of the venom of Mesobuthus gibbosus (Brullé, 1832, Scorpiones: Buthidae) from Turkey. J Venom Anim Toxins Incl Trop Dis. 2010;16(3):505–8.CrossRefGoogle Scholar
  30. Ozkan O, Kat I. Mesobuthus eupeus scorpionism in Sanliurfa region of Turkey. J Venom Anim Toxins Incl Trop Dis. 2005;11(4):479–91.CrossRefGoogle Scholar
  31. Ozkan O, Adiguzel S, Ates C, Bozyigit I, Filazi A. Optimization of antiscorpion venom production. J Venom Anim Toxins incl Trop Dis. 2006;12(3):390–9.Google Scholar
  32. Ozkan O, Adiguzel S, Yakistiran S, Cesaretli Y, Orman M, Karaer KZ. Androctonus crassicauda (Olivier 1807) scorpionism in the Sanliurfa provinces of Turkey. Acta Parasitol Turcica. 2006;30(3):239–45.Google Scholar
  33. Ozkan O, Uzun R, Adiguzel S, Cesaretli Y, Ertek M. Evaluation of scorpion stings incidence in Turkey. J Venom Anim Toxins Incl Trop Dis. 2007a;14(1):128–40.CrossRefGoogle Scholar
  34. Ozkan O, Ciftci G, Pekmezci GZ, Kar S, Uysal H, Karaer KZ. Proteins, lethality and in vivo effects of Iurus dufoureius asiaticus scorpion venom. Toxicon. 2007b;50(3):394–9.PubMedCrossRefGoogle Scholar
  35. Ozkan O, Yagmur E, Ark M. A newly described scorpion species, Leiurus abdullahbayrami (Scorpion: Buthidae), and the lethal potency and in vivo effects of its venom. J Venom Anim Toxins Incl Trop Dis. 2011a;17(4):414–21.Google Scholar
  36. Ozkan O, Ciftci G, Karaer Z. Electrophoretical Comparison of Proteins of Mesobuthus eupeus and Mesobuthus gibbosus Scorpion Venoms. Kafkas Univ Vet Fak Derg. 2011b;17(Suppl A):153–8.Google Scholar
  37. Possani LD, Rodríguez de la Vega RC. Scorpion venom peptides. In: Kastin AJ, editor. Handbook of biologically active peptides. San Diego: Academic; 2006.Google Scholar
  38. Rodríguez de la Vega RC, Possani LD. Current views on scorpion toxins specific for K+-channels. Toxicon. 2004;43(8):865–75.PubMedCrossRefGoogle Scholar
  39. Rodríguez de la Vega RC, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon. 2005;46(8):831–44.PubMedCrossRefGoogle Scholar
  40. Soleglad ME, Fet V, Kovařík F, Yağmur EA. Etudes on Iurids, V. Further Revision of Iurus Thorell, 1876 (Scorpiones: Iuridae), with a description of a new genus and two new species. Euscorpius. 2012;143:1–70.Google Scholar
  41. Tulga T. Cross-reactions between anti-scorpion (Buthus quinquestriatus) and anti-scorpion (Prionurus crassicauda) sera. Turk Hij Deney Biyol Derg. 1960;20:191–203.Google Scholar
  42. Ucar G, Tas C. Cholinesterase inhibitory activities of the scorpion Mesobuthus gibbosus (Buthidae) venom peptides. FABAD J Pharm Sci. 2003;28(1):61–70.Google Scholar
  43. Ucar G, Tas C, Tumer A. Monoamine oxidase inhibitory activities of the scorpion Mesobuthus gibbosus (Buthidae) venom peptides. Toxicon. 2005;45(1):43–52.PubMedCrossRefGoogle Scholar
  44. Uluğ M, Yaman Y, Yapıcı F, Can-Uluğ N. Scorpion envenomation in children: an analysis of 99 cases. Turk J Pediatr. 2012;54:119–27.PubMedGoogle Scholar
  45. Vignoli V, Kovařík F, Crucitti P. Scorpiofauna of Kashan (Esfahan Province, Iran) (Arachnida: Scorpiones). Euscorpius. 2003;9:1–7.Google Scholar
  46. Weinberger H, Moran Y, Gordon D, Turkov M, Kahn R, Gurevitz M. Positions under positive selection–key for selectivity and potency of scorpion alpha-toxins. Mol Biol Evol. 2010;27(5):1025–34.PubMedCrossRefGoogle Scholar
  47. Whittemore Jr F, Keegan H, Borowitz J. Studies of scorpion antivenins: 1. Paraspecificity. Bull World Health Organ. 1961;25(2):185–8.PubMedCentralPubMedGoogle Scholar
  48. Yagmur E, Tropea G. A new species of Euscorpius Thorell, 1876 (Scorpiones, Euscorpiidae) from Marmara region of Turkey. ZooKeys. 2013;281:91–105.PubMedCrossRefGoogle Scholar
  49. Yagmur EA, Yalçın M, Çalisir G. Distribution of Androctonus crassicauda (Olivier, 1807) and Buthacus macrocentrus (Ehrenberg, 1828) (Scorpiones: Buthidae) in Turkey. Serket. 2008;11:13–8.Google Scholar
  50. Yagmur EA, Koc H, Kunt KB. Description of a new species of Leiurus Ehrenberg, 1828 (Scorpiones: Buthidae) from southеastеrn Turkey. Euscorpius. 2009;85:1–22.Google Scholar
  51. Yagmur EA, Koc H, Tropea G, Yeşilyurt F. Scorpion fauna of Hatila Valley National Park (Artvin, Turkey). J Anatol Nat Sci. 2012;3(1):15–22.Google Scholar
  52. Zhijian C, Feng L, Yingliang W, Xin M, Wenxin L. Genetic mechanisms of scorpion venom peptide diversification. Toxicon. 2006;47(3):348–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Faculty of Science and Art, Department of BiologyEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations