Skip to main content

In Silico Modeling of Spider Toxins: Bioinformatics, Molecular Docking, and Molecular Dynamics

  • Reference work entry
  • First Online:
Spider Venoms

Part of the book series: Toxinology ((TOXI))

  • 1052 Accesses

Abstract

The expression in silico, which means performed on computer or via computer simulation, has been seen with increasing frequency, in almost every area of knowledge, in scientific papers published in the last few years. This is particularly true with regard to biochemistry; it is quite hard to imagine any area in which in silico analysis has not been employed, isolated or hand-in-hand with experimental analysis, to predict the structure and/or energetic behavior, in such a way that it furnishes a relatively detailed vision of the behavior of specific molecules in biochemical systems.

The term “in silico analyses” embraces a series of techniques, which can be used for atomic and for molecular systems. These techniques may use the principles and methods of quantum or Newtonian mechanics, depending on the level of analyses desired. Bioinformatics applies neither quantum nor Newtonian mechanics, but it is included in in silico analysis once it uses a computer to analyze biological data, such as the information of genome and proteome projects, searching for similarity in protein sequences, reverse vaccinology, etc.

The description made here is about the current status of spider toxin deposits in public databases, the techniques of bioinformatics used in the study of such peptides, molecular docking, and molecular dynamics. Initially, a short introduction in the techniques in this area is given, followed by the list of some of the studies that have applied these techniques to spider toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barreiro EJ, Bolzani VDS. Biodiversidade: fonte potencial para a descoberta de fármacos. Quim Nova. 2009;32(3):679–88.

    Article  CAS  Google Scholar 

  • Bastianelli G, Bouillon A, Nguyen C, Crublet E, Pêtres S, Gorgette O, et al. Computational Reverse-Engineering of a spider-venom derived peptide active against plasmodium falciparum SUB1. PLoS One. 2011;6(7):e21812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bemporad D, Sands ZA, Wee CL, Grottesi A, Sansom MSP. Vstx1, a modifier of Kv channel gating, localizes to the interfacial region of lipid bilayers. Biochemistry. 2006;45(39):11844–55.

    Article  CAS  PubMed  Google Scholar 

  • Bosmans F, Swartz KJ. Targeting voltage sensors in sodium channels with spider toxins. Trends Pharmacol Sci. 2010;31(4):175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmo AO, Chatzaki M, Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Chávez-Olórtegui C, et al. Evolution of alternative methodologies of scorpion antivenoms production. Toxicon. 2015;97:64–74. Elsevier Ltd.

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Robinson A, Chung SH. Binding of hanatoxin to the voltage sensor of Kv2.1. Toxins (Basel). 2012;4(12):1552–64.

    Article  CAS  Google Scholar 

  • Corzo G, Escoubas P. Pharmacologically active spider peptide toxins. Cell Mol Life Sci. 2003;60(11):2409–26.

    Article  CAS  PubMed  Google Scholar 

  • Dantas AE, Horta CCR, Martins TMM, do Carmo AO, Mendes BBR de O, Goes AM, et al. Whole venom of Loxosceles similis activates caspases-3, -6, -7, and -9 in human primary skin fibroblasts. Toxicon. 2014;84:56–64.

    Google Scholar 

  • De Santi Ferrara GI, Fernandes-Pedrosa MDF, Junqueira-de-Azevedo IDLM, Gonçalves-de-Andrade RM, Portaro FCV, Manzoni-de-Almeida D, et al. SMase II, a new sphingomyelinase D from Loxosceles laeta venom gland: molecular cloning, expression, function and structural analysis. Toxicon. 2009;53(7–8):743–53.

    Article  PubMed  Google Scholar 

  • Escoubas P. Novel tarantula toxins for subtypes of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies. Mol Pharmacol. 2002;62(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  • Escoubas P, Rash L. Tarantulas: eight-legged pharmacists and combinatorial chemists. Toxicon. 2004;43(5):555–74.

    Article  CAS  PubMed  Google Scholar 

  • Espindola FS, Calábria LK, de Rezende AAA, Pereira BB, Santana FA, Amaral IMR, et al. Recursos de bioinformática aplicados às ciências ômicas como genômica, transcriptômica, proteômica, interatômica e metabolômica. Biosci J. 2010;26:463–77.

    Google Scholar 

  • Estrada G, Villegas E, Corzo G. Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep. 2007;24(1):145–61.

    Article  CAS  PubMed  Google Scholar 

  • Ewing TJA, Kuntz ID. Critical evaluation of search algorithms for automated molecular docking and database screening. J Comput Chem. 1997;18:1175–89.

    Article  CAS  Google Scholar 

  • Ferrat G, Bosmans F, Tytgat J, Pimentel C, Chagot B, Gilles N, et al. Solution structure of two insect-specific spider toxins and their pharmacological interaction with the insect voltage-gated Na+ channel. Proteins Struct Funct Genet. 2005;59(2):368–79.

    Article  CAS  PubMed  Google Scholar 

  • Grishin E. Polypeptide neurotoxins from spider venoms. Eur J Biochem. 1999;264(2):276–80.

    Article  CAS  PubMed  Google Scholar 

  • Guedes IA, de Magalhães CS, Dardenne LE. Receptor–ligand molecular docking. Biophys Rev. 2013;6(1):75–87.

    Article  Google Scholar 

  • Hansson T, Oostenbrink C, van Gunsteren W. Molecular dynamics simulations. Curr Opin Struct Biol. 2002;12(2):190–6.

    Article  CAS  PubMed  Google Scholar 

  • Horta CC, Rezende BA, Oliveira-Mendes BBR, Carmo AO, Capettini LSA, Silva JF, et al. ADP is a vasodilator component from Lasiodora sp. mygalomorph spider venom. Toxicon. 2013;72:102–12.

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Deng M, Duan Z, Tang X, Liang S. Molecular cloning, bioinformatics analysis and functional characterization of HWTX-XI toxin superfamily from the spider Ornithoctonus huwena. Peptides. 2014;54:9–18.

    Article  CAS  PubMed  Google Scholar 

  • Jungo F, Bairoch A. Tox-Prot, the toxin protein annotation program of the Swiss-Prot protein knowledgebase. Toxicon. 2005;45(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  • Jungo F, Estreicher A, Bairoch A, Bougueleret L, Xenarios I. Animal toxins: how is complexity represented in databases? Toxins (Basel). 2010;2(2):261–81.

    CAS  Google Scholar 

  • Jungo F, Bougueleret L, Xenarios I, Poux S. The UniProtKB/Swiss-Prot Tox-Prot program: a central hub of integrated venom protein data. Toxicon. 2012;60(4):551–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol. 2002;9(9):646–52.

    Article  CAS  PubMed  Google Scholar 

  • King GF, Gentz MC, Escoubas P, Nicholson GM. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon. 2008;52(2):264–76.

    Article  CAS  PubMed  Google Scholar 

  • Kozlov S, Grishin E. Classification of spider neurotoxins using structural motifs by primary structure features. Single residue distribution analysis and pattern analysis techniques. Toxicon. 2005;46(6):672–86.

    Article  CAS  PubMed  Google Scholar 

  • Kularatne SAM, Senanayake N. Venomous snake bites, scorpions, and spiders. Handb Clin Neurol. 2014;120:987–1001.

    Article  CAS  PubMed  Google Scholar 

  • Lee CW, Kim S, Roh SH, Endoh H, Kodera Y, Maeda T, et al. Solution structure and functional characterization of SGTxl, a Modifier of Kv2.1 channel gating. Biochemistry. 2004;43(4):890–7.

    Article  CAS  PubMed  Google Scholar 

  • Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2003;2(10):790–802.

    Article  CAS  PubMed  Google Scholar 

  • Li D, Xiao Y, Xu X, Xiong X, Lu S, Liu Z, et al. Structure–activity relationships of hainantoxin-IV and structure determination of active and inactive sodium channel blockers. J Biol Chem. 2004;279(36):37734–40.

    Article  CAS  PubMed  Google Scholar 

  • Mandard N, Bulet P, Caille A, Daffre S, Vovelle F. The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. Eur J Biochem. 2002;269(4):1190–8.

    Article  CAS  PubMed  Google Scholar 

  • Mendonça MCP, Soares ES, Stávale LM, Kalapothakis E, Cruz-Höfling MA. Vascular endothelial growth factor increases during blood–brain barrier-enhanced permeability caused by Phoneutria nigriventer spider venom. Biomed Res Int. 2014;2014:1–13.

    Article  Google Scholar 

  • Narasimhan L, Singh J, Humblet C, Guruprasad K, Blundell T. Snail and spider toxins share a similar tertiary structure and “cystine motif”. Nat Struct Biol. 1994;1:850–2.

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa M, Nishizawa K. Molecular dynamics simulations of a stretch-activated channel inhibitor GsMTx4 with lipid membranes: two binding modes and effects of lipid structure. Biophys J. 2007;92(12):4233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton RS, Pallaghy PK. The cystine knot structure of ion channel toxins and related polypeptides. Toxicon. 1998;36(11):1573–83.

    Article  CAS  PubMed  Google Scholar 

  • Ono S, Kimura T, Kubo T. Characterization of voltage-dependent calcium channel blocking peptides from the venom of the tarantula Grammostola rosea. Toxicon. 2011;58(3):265–76.

    Article  CAS  PubMed  Google Scholar 

  • Pallaghy PK, Nielsen KJ, Craik DJ, Norton RS. A common structural motif incorporating a cystine knot and a triple- stranded β-sheet in toxic and inhibitory polypeptides. Protein Sci. 1994;3(10):1833–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietra F. Docking and MD simulations of the interaction of the tarantula peptide psalmotoxin-1 with ASIC1a channels using a homology model. J Chem Inf Model. 2009;49(4):972–7.

    Article  CAS  PubMed  Google Scholar 

  • Saez NJ, Mobli M, Bieri M, Chassagnon IR, Malde AK, Gamsjaeger R, et al. A dynamic pharmacophore drives the interaction between Psalmotoxin-1 and the putative drug target acid-sensing ion channel 1a. Mol Pharmacol. 2011;80(5):796–808.

    Article  CAS  PubMed  Google Scholar 

  • Shiau Y-S, Huang P-T, Liou H-H, Liaw Y-C, Shiau Y-Y, Lou K-L. Structural basis of binding and inhibition of novel tarantula toxins in mammalian voltage-dependent potassium channels. Chem Res Toxicol. 2003;16(10):1217–25.

    Article  CAS  PubMed  Google Scholar 

  • Ushkaryov YA, Volynski KE, Ashton AC. The multiple actions of black widow spider toxins and their selective use in neurosecretion studies. Toxicon. 2004;43(5):527–42.

    Article  CAS  PubMed  Google Scholar 

  • Veiga SS, da Silveira RB, Dreyfuss JL, Haoach J, Pereira AM, Mangili OC, et al. Identification of high molecular weight serine-proteases in Loxosceles intermedia (brown spider) venom. Toxicon. 2000;38(6):825–39.

    Article  CAS  PubMed  Google Scholar 

  • Vita C, Roumestand C, Toma F, Menez A. Scorpion toxins as natural scaffolds for protein engineering. Proc Natl Acad Sci. 1995;92(14):6404–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vita C, Drakopoulou E, Vizzavona J, Rochette S, Martin L, Menez A, et al. Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. Proc Natl Acad Sci. 1999;96(23):13091–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wee CL, Bemporad D, Sands ZA, Gavaghan D, Sansom MSP. SGTx1, a Kv channel gating-modifier toxin, binds to the interfacial region of lipid bilayers. Biophys J. 2007;92(1):L07–9.

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Li T, Liu H, Yang F, Liang S, Cao Z, et al. Functional characterization of two novel scorpion sodium channel toxins from Lychas mucronatus. Toxicon. 2014;90:318–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacyr Comar Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Comar Jr, M., Lima Braga, V.M., Oliveira Lopes, D.d. (2016). In Silico Modeling of Spider Toxins: Bioinformatics, Molecular Docking, and Molecular Dynamics. In: Gopalakrishnakone, P., Corzo, G., de Lima, M., Diego-García, E. (eds) Spider Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6389-0_3

Download citation

Publish with us

Policies and ethics