Skip to main content

Minerals, (40Ar-39Ar)

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Definition

Dating potassium-bearing minerals using the 40Ar-39Ar technique is the most popular approach to determining the rates and timescales of geological processes across a wide range of geological time and is applied to dating igneous, sedimentary, and metamorphic rocks including meteorites and Moon rocks. Dating minerals using the Ar-Ar dating method is performed on purified mineral separates, individual mineral grains, and in situ in thick polished slabs.

Introduction

The earliest Ar-Ar dating studies were analyses of whole rock samples to investigate the age of meteorites and the first Moon rocks returned by the Apollo 11 astronauts (e.g., Turner et al. 1966, 1971). Terrestrial studies quickly applied the new dating techniques to mineral separates (e.g., Lanphere and Dalrymple 1971). Whole rock dates using the Ar-Ar technique are used predominantly for volcanic rocks where they can distinguish between instantaneous eruption ages and those disturbed by alteration of additional...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Baxter, E. F., 2010. Diffusion of noble gases in minerals. In Zhang, Y., and Cherniak, D. (eds.), Diffusion in Minerals and Melts. Chantilly/Saint Louis: Mineralogical Society of America/Geochemical Society. Reviews in Mineralogy & Geochemistry, Vol. 72, pp. 509–557.

    Google Scholar 

  • Brooker, R. A., Du, Z., Blundy, J. D., Kelley, S. P., Allan, N. L., Wood, B. J., Chamorro, E. M., Wartho, J. A., and Purton, J. A., 2003. The ‘zero charge’ partitioning behaviour of noble gases during mantle melting. Nature, 423, 738–741.

    Article  Google Scholar 

  • Carroll, M. R., and Stolper, E. M., 1993. Noble gas solubilities in melts and glasses: new experimental results for argon and the relationship between solubility and ionic porosity. Geochimica Et Cosmochimica Acta, 57, 5039–5051.

    Article  Google Scholar 

  • Cassata, W. S., Renne, P. R., and Shuster, D. L., 2011. Argon diffusion in pyroxenes: implications for thermochronometry and mantle degassing. Earth and Planetary Science Letters, 304, 407–416.

    Article  Google Scholar 

  • Chamorro, E. M., Brooker, R. A., Wartho, J. A., Wood, B. J., Kelley, S. P., and Blundy, J. D., 2002. Ar and K partitioning between clinopyroxene and silicate melt to 8 GPa. Geochimica Et Cosmochimica Acta, 66, 507–519.

    Article  Google Scholar 

  • Deino, A., and Potts, R., 1992. Age-probability spectra for examination of single-crystal 40Ar/39Ar dating results: examples from Olorgesailie, Southern Kenya Rift. Quaternary International, 13(14), 47–53.

    Article  Google Scholar 

  • Deino, A. L., Tauxe, L., Monaghan, M., and Hill, A., 2002. 40Ar/39Ar geochronology and paleomagnetic stratigraphy of the Lukeino and lower Chemeron Formations at Tabarin and Kapcheberek, Tugen Hills, Kenya. Journal of Human Evolution, 42, 117–140.

    Article  Google Scholar 

  • Dodson, M. H., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259–274.

    Article  Google Scholar 

  • Dodson, M. H., 1986. Closure profiles in cooling systems. Materials Science Forum, 7, 145–154.

    Article  Google Scholar 

  • Esser, R. P., McIntosh, W. C., Heizler, M. T., and Kyle, P. R., 1997. Excess argon in melt inclusions in zero-age anorthoclase feldspar from Mt Erebus, Antarctica, as revealed by the 40Ar/39Ar method. Geochimica et Cosmochimica Acta, 61, 3789–3801.

    Article  Google Scholar 

  • Flude, S., Halton, A. M., Kelley, S. P., Sherlock, S. C., Schwanethal, J., and Wilkinson, C. M., 2013. Observation of centimetre-scale argon diffusion in alkali feldspars: implications for 40Ar/39Ar thermochronology. In advances in 40Ar/39Ar dating: from archaeology to planetary sciences. Geological Society Special Publication, 378, 265–275.

    Article  Google Scholar 

  • Harrison, T. M., and Lovera, O. M., 2013. The multi-diffusion domain model: past, present and future. Geological Society Special Publication, 378, 91–106.

    Article  Google Scholar 

  • Heber, V. S., et al., 2007. Crystal-melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochimica Et Cosmochimica Acta, 71, 1041–1061.

    Article  Google Scholar 

  • Hemming, S. R., and Hajdas, I., 2003. Ice-rafted detritus evidence from Ar-40/Ar-39 ages of individual hornblende grains for evolution of the eastern margin of the Laurentide ice sheet since 43 C-14 ky. Quaternary International, 99, 29–43.

    Article  Google Scholar 

  • Jackson, C. R. M., et al., 2013. Noble gas transport into the mantle facilitated by high solubility in amphibole. Nature Geoscience, 6, 562–565.

    Article  Google Scholar 

  • Kelley, S. P., 2002a. K-Ar and Ar-Ar dating. In Porcelli, D., Ballentine, C. J., Wieler, R., and Ribbe, P. H. (eds.), Noble Gases in Geochemistry and Cosmochemistry. Chantilly/Saint Louis: Mineralogical Geochemical Society/Geochemical Society. Reviews in Mineralogy & Geochemistry, Vol. 47, pp. 785–818.

    Google Scholar 

  • Kelley, S. P., 2002b. Excess argon in K-Ar and Ar-Ar geochronology. Chemical Geology, 188, 1–22.

    Article  Google Scholar 

  • Kelley, S. P., and Bluck, B. J., 1992. Laser 40Ar-39Ar ages for individual detrital muscovites in the Southern Uplands of Scotland, UK. Chemical Geology (Isotope Geoscience section), 101, 143–156.

    Article  Google Scholar 

  • Kelley, S. P., and Wartho, J. A., 2000. Rapid Kimberlite ascent and the significance of Ar-Ar ages in Xenolith Phlogopites. Science, 289, 609–611.

    Article  Google Scholar 

  • Kelley, S. P., Arnaud, N. O., and Turner, S. P., 1994. High spatial resolution 40Ar-39Ar investigations using an ultra-violet laser probe extraction technique. Geochimica et Cosmochimica Acta, 58, 3519–3525.

    Article  Google Scholar 

  • Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans, J. R., 2008. Synchronizing rock clocks of earth history. Science, 320, 500–504.

    Article  Google Scholar 

  • Lanphere, M. A., and Dalrymple, G. B., 1971. A test of the 40Ar/39Ar age spectrum technique on some terrestrial materials. Earth and Planetary Science Letters, 12, 359–372.

    Article  Google Scholar 

  • Lanphere, M. A., Champion, D. E., Christiansen, R. L., Izett, G. A., and Obradovich, J. D., 2002. Revised ages for tuffs of the Yellowstone Plateau volcanic field: assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event. Geological Society of America Bulletin, 114, 559–568.

    Article  Google Scholar 

  • Mark, D. F., Parnell, J., Kelley, S. P., and Sherlock, S. C., 2007. Resolution of regional fluid flow related to successive orogenic events on the Laurentian margin. Geology, 35, 547–550.

    Article  Google Scholar 

  • McDougall, I., and Harrison, T. M., 1999. Geochronology and Thermochronology by the 40 Ar/ 39 Ar Method. New York: Oxford University Press.

    Google Scholar 

  • Najman, Y., et al., 2001. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature, 410, 194–197.

    Article  Google Scholar 

  • Parsons, I., Brown, W. L., and Smith, J. V., 1999. 40Ar/39Ar thermochronology using alkali feldspars: real thermal history or mathematical mirage of microtexture? Contributions to Mineralogy and Petrology, 136, 92–110.

    Article  Google Scholar 

  • Pringle, M. S., McWilliams, M., Houghton, B. F., Lanphere, M. A., and Wilson, C. J. N., 1992. 40Ar/39Ar dating of quaternary feldspar: examples from the Taupo Volcanic Zone, New Zealand. Geology, 20, 531–534.

    Article  Google Scholar 

  • Renne, P. R., Zhang, Z. C., Richards, M. A., Black, M. T., and Basu, A. R., 1995. Synchrony and causal relations between Permian-Triassic Boundary crises and Siberian Flood Volcanism. Science, 269, 1413–1416.

    Article  Google Scholar 

  • Renne, P. R., et al., 1997. Ar-40/Ar-39 dating into the historical realm: calibration against Pliny the Younger. Science, 277, 1279–1280.

    Article  Google Scholar 

  • Reynolds, B. C., et al., 2004. Radiogenic isotope records of quaternary glaciations: changes in the erosional source and weathering processes. Geology, 32(10), 861–864.

    Article  Google Scholar 

  • Rivera, T. A., Storey, M., Zeeden, C., Hilgen, F. J., and Kuiper, K., 2011. A refined astronomically calibrated 40Ar/39Ar age for Fish Canyon sanidine. Earth and Planetary Science Letters, 311, 420–426.

    Article  Google Scholar 

  • Semaw, S., Renne, P., Harris, J. W. K., Feibel, C. S., Bernor, R. L., Fesseha, N., and Mowbray, K., 1997. 2.5-million-year-old stone tools from Gona, Ethiopia. Nature, 385, 333–336.

    Article  Google Scholar 

  • Sherlock, S. C., 2001. Two-stage erosion and deposition in a continental margin setting: a 40Ar/39Ar laserprobe study of offshore detrital white micas in the Norwegian Sea. Journal of the Geological Society of London, 158, 793–800.

    Article  Google Scholar 

  • Sherlock, S. C., et al., 2005. A high resolution record of multiple diagenetic events: ultraviolet laser microprobe Ar/Ar analysis of zoned K-feldspar overgrowths. Earth and Planetary Science Letters, 238(3–4), 329–341.

    Article  Google Scholar 

  • Storey, M., Roberts, R. G., and Saidin, M., 2012. Astronomically calibrated 40Ar/39Ar age of the Toba supereruption and global synchronization of late quaternary records. Proceedings of the National Academy of Sciences of the United States of America, 109, 18684–18688.

    Article  Google Scholar 

  • Ton-That, T., Singer, B. S., and Paterne, M., 2001. 40Ar/39Ar of latest Pleistocene (41 ka) marine tephra in the Mediterranean Sea: implications for global climate records. Earth and Planetary Science Letters, 184, 645–658.

    Article  Google Scholar 

  • Turner, G., 1971. 40Ar-39Ar ages from the lunar Maria. Earth and Planetary Science Letters, 11, 169–191.

    Article  Google Scholar 

  • Turner, G., et al., 1966. The thermal history of the Bruderheim meteorite. Earth and Planetary Science Letters, 1, 155–157.

    Article  Google Scholar 

  • Vasconcelos, P. M., Becker, T. A., Renne, P. R., and Brimhall, G. H., 1992. Age and duration of weathering By K-40 Ar-40 and Ar-40/Ar-39 analysis of potassium-manganese oxides. Science, 258, 451–455.

    Article  Google Scholar 

  • Villa, I. M., Hermann, J., Muntener, O., and Trommsdorff, V., 2000. Ar-39-Ar-40 dating of multiply zoned amphibole generations (Malenco, Italian Alps). Contributions to Mineralogy and Petrology, 140, 363–381.

    Article  Google Scholar 

  • Warren, C. J., Hanke, F., and Kelley, S. P., 2012. When can muscovite Ar-40/Ar-39 dating constrain the timing of metamorphic exhumation? Chemical Geology, 291, 79–86.

    Article  Google Scholar 

  • Wheeler, J., 1996. A program for simulating argon diffusion profiles in minerals. Computers and Geosciences, 28, 919–929.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Kelley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Kelley, S., Warren, C., Wilkinson, C. (2014). Minerals, (40Ar-39Ar). In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_94-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_94-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics