Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Minerals, (40Ar-39Ar)

  • Simon Kelley
  • Clare Warren
  • Camilla Wilkinson
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_94-1


Dating potassium-bearing minerals using the 40Ar-39Ar technique is the most popular approach to determining the rates and timescales of geological processes across a wide range of geological time and is applied to dating igneous, sedimentary, and metamorphic rocks including meteorites and Moon rocks. Dating minerals using the Ar-Ar dating method is performed on purified mineral separates, individual mineral grains, and in situ in thick polished slabs.


The earliest Ar-Ar dating studies were analyses of whole rock samples to investigate the age of meteorites and the first Moon rocks returned by the Apollo 11 astronauts (e.g., Turner et al. 1966, 1971). Terrestrial studies quickly applied the new dating techniques to mineral separates (e.g., Lanphere and Dalrymple 1971). Whole rock dates using the Ar-Ar technique are used predominantly for volcanic rocks where they can distinguish between instantaneous eruption ages and those disturbed by alteration of additional...


Closure Temperature Alkali Feldspar Individual Mineral Authigenic Mineral Excess Argon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Baxter, E. F., 2010. Diffusion of noble gases in minerals. In Zhang, Y., and Cherniak, D. (eds.), Diffusion in Minerals and Melts. Chantilly/Saint Louis: Mineralogical Society of America/Geochemical Society. Reviews in Mineralogy & Geochemistry, Vol. 72, pp. 509–557.Google Scholar
  2. Brooker, R. A., Du, Z., Blundy, J. D., Kelley, S. P., Allan, N. L., Wood, B. J., Chamorro, E. M., Wartho, J. A., and Purton, J. A., 2003. The ‘zero charge’ partitioning behaviour of noble gases during mantle melting. Nature, 423, 738–741.CrossRefGoogle Scholar
  3. Carroll, M. R., and Stolper, E. M., 1993. Noble gas solubilities in melts and glasses: new experimental results for argon and the relationship between solubility and ionic porosity. Geochimica Et Cosmochimica Acta, 57, 5039–5051.CrossRefGoogle Scholar
  4. Cassata, W. S., Renne, P. R., and Shuster, D. L., 2011. Argon diffusion in pyroxenes: implications for thermochronometry and mantle degassing. Earth and Planetary Science Letters, 304, 407–416.CrossRefGoogle Scholar
  5. Chamorro, E. M., Brooker, R. A., Wartho, J. A., Wood, B. J., Kelley, S. P., and Blundy, J. D., 2002. Ar and K partitioning between clinopyroxene and silicate melt to 8 GPa. Geochimica Et Cosmochimica Acta, 66, 507–519.CrossRefGoogle Scholar
  6. Deino, A., and Potts, R., 1992. Age-probability spectra for examination of single-crystal 40Ar/39Ar dating results: examples from Olorgesailie, Southern Kenya Rift. Quaternary International, 13(14), 47–53.CrossRefGoogle Scholar
  7. Deino, A. L., Tauxe, L., Monaghan, M., and Hill, A., 2002. 40Ar/39Ar geochronology and paleomagnetic stratigraphy of the Lukeino and lower Chemeron Formations at Tabarin and Kapcheberek, Tugen Hills, Kenya. Journal of Human Evolution, 42, 117–140.CrossRefGoogle Scholar
  8. Dodson, M. H., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259–274.CrossRefGoogle Scholar
  9. Dodson, M. H., 1986. Closure profiles in cooling systems. Materials Science Forum, 7, 145–154.CrossRefGoogle Scholar
  10. Esser, R. P., McIntosh, W. C., Heizler, M. T., and Kyle, P. R., 1997. Excess argon in melt inclusions in zero-age anorthoclase feldspar from Mt Erebus, Antarctica, as revealed by the 40Ar/39Ar method. Geochimica et Cosmochimica Acta, 61, 3789–3801.CrossRefGoogle Scholar
  11. Flude, S., Halton, A. M., Kelley, S. P., Sherlock, S. C., Schwanethal, J., and Wilkinson, C. M., 2013. Observation of centimetre-scale argon diffusion in alkali feldspars: implications for 40Ar/39Ar thermochronology. In advances in 40Ar/39Ar dating: from archaeology to planetary sciences. Geological Society Special Publication, 378, 265–275.CrossRefGoogle Scholar
  12. Harrison, T. M., and Lovera, O. M., 2013. The multi-diffusion domain model: past, present and future. Geological Society Special Publication, 378, 91–106.CrossRefGoogle Scholar
  13. Heber, V. S., et al., 2007. Crystal-melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochimica Et Cosmochimica Acta, 71, 1041–1061.CrossRefGoogle Scholar
  14. Hemming, S. R., and Hajdas, I., 2003. Ice-rafted detritus evidence from Ar-40/Ar-39 ages of individual hornblende grains for evolution of the eastern margin of the Laurentide ice sheet since 43 C-14 ky. Quaternary International, 99, 29–43.CrossRefGoogle Scholar
  15. Jackson, C. R. M., et al., 2013. Noble gas transport into the mantle facilitated by high solubility in amphibole. Nature Geoscience, 6, 562–565.CrossRefGoogle Scholar
  16. Kelley, S. P., 2002a. K-Ar and Ar-Ar dating. In Porcelli, D., Ballentine, C. J., Wieler, R., and Ribbe, P. H. (eds.), Noble Gases in Geochemistry and Cosmochemistry. Chantilly/Saint Louis: Mineralogical Geochemical Society/Geochemical Society. Reviews in Mineralogy & Geochemistry, Vol. 47, pp. 785–818.Google Scholar
  17. Kelley, S. P., 2002b. Excess argon in K-Ar and Ar-Ar geochronology. Chemical Geology, 188, 1–22.CrossRefGoogle Scholar
  18. Kelley, S. P., and Bluck, B. J., 1992. Laser 40Ar-39Ar ages for individual detrital muscovites in the Southern Uplands of Scotland, UK. Chemical Geology (Isotope Geoscience section), 101, 143–156.CrossRefGoogle Scholar
  19. Kelley, S. P., and Wartho, J. A., 2000. Rapid Kimberlite ascent and the significance of Ar-Ar ages in Xenolith Phlogopites. Science, 289, 609–611.CrossRefGoogle Scholar
  20. Kelley, S. P., Arnaud, N. O., and Turner, S. P., 1994. High spatial resolution 40Ar-39Ar investigations using an ultra-violet laser probe extraction technique. Geochimica et Cosmochimica Acta, 58, 3519–3525.CrossRefGoogle Scholar
  21. Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans, J. R., 2008. Synchronizing rock clocks of earth history. Science, 320, 500–504.CrossRefGoogle Scholar
  22. Lanphere, M. A., and Dalrymple, G. B., 1971. A test of the 40Ar/39Ar age spectrum technique on some terrestrial materials. Earth and Planetary Science Letters, 12, 359–372.CrossRefGoogle Scholar
  23. Lanphere, M. A., Champion, D. E., Christiansen, R. L., Izett, G. A., and Obradovich, J. D., 2002. Revised ages for tuffs of the Yellowstone Plateau volcanic field: assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event. Geological Society of America Bulletin, 114, 559–568.CrossRefGoogle Scholar
  24. Mark, D. F., Parnell, J., Kelley, S. P., and Sherlock, S. C., 2007. Resolution of regional fluid flow related to successive orogenic events on the Laurentian margin. Geology, 35, 547–550.CrossRefGoogle Scholar
  25. McDougall, I., and Harrison, T. M., 1999. Geochronology and Thermochronology by the 40 Ar/ 39 Ar Method. New York: Oxford University Press.Google Scholar
  26. Najman, Y., et al., 2001. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature, 410, 194–197.CrossRefGoogle Scholar
  27. Parsons, I., Brown, W. L., and Smith, J. V., 1999. 40Ar/39Ar thermochronology using alkali feldspars: real thermal history or mathematical mirage of microtexture? Contributions to Mineralogy and Petrology, 136, 92–110.CrossRefGoogle Scholar
  28. Pringle, M. S., McWilliams, M., Houghton, B. F., Lanphere, M. A., and Wilson, C. J. N., 1992. 40Ar/39Ar dating of quaternary feldspar: examples from the Taupo Volcanic Zone, New Zealand. Geology, 20, 531–534.CrossRefGoogle Scholar
  29. Renne, P. R., Zhang, Z. C., Richards, M. A., Black, M. T., and Basu, A. R., 1995. Synchrony and causal relations between Permian-Triassic Boundary crises and Siberian Flood Volcanism. Science, 269, 1413–1416.CrossRefGoogle Scholar
  30. Renne, P. R., et al., 1997. Ar-40/Ar-39 dating into the historical realm: calibration against Pliny the Younger. Science, 277, 1279–1280.CrossRefGoogle Scholar
  31. Reynolds, B. C., et al., 2004. Radiogenic isotope records of quaternary glaciations: changes in the erosional source and weathering processes. Geology, 32(10), 861–864.CrossRefGoogle Scholar
  32. Rivera, T. A., Storey, M., Zeeden, C., Hilgen, F. J., and Kuiper, K., 2011. A refined astronomically calibrated 40Ar/39Ar age for Fish Canyon sanidine. Earth and Planetary Science Letters, 311, 420–426.CrossRefGoogle Scholar
  33. Semaw, S., Renne, P., Harris, J. W. K., Feibel, C. S., Bernor, R. L., Fesseha, N., and Mowbray, K., 1997. 2.5-million-year-old stone tools from Gona, Ethiopia. Nature, 385, 333–336.CrossRefGoogle Scholar
  34. Sherlock, S. C., 2001. Two-stage erosion and deposition in a continental margin setting: a 40Ar/39Ar laserprobe study of offshore detrital white micas in the Norwegian Sea. Journal of the Geological Society of London, 158, 793–800.CrossRefGoogle Scholar
  35. Sherlock, S. C., et al., 2005. A high resolution record of multiple diagenetic events: ultraviolet laser microprobe Ar/Ar analysis of zoned K-feldspar overgrowths. Earth and Planetary Science Letters, 238(3–4), 329–341.CrossRefGoogle Scholar
  36. Storey, M., Roberts, R. G., and Saidin, M., 2012. Astronomically calibrated 40Ar/39Ar age of the Toba supereruption and global synchronization of late quaternary records. Proceedings of the National Academy of Sciences of the United States of America, 109, 18684–18688.CrossRefGoogle Scholar
  37. Ton-That, T., Singer, B. S., and Paterne, M., 2001. 40Ar/39Ar of latest Pleistocene (41 ka) marine tephra in the Mediterranean Sea: implications for global climate records. Earth and Planetary Science Letters, 184, 645–658.CrossRefGoogle Scholar
  38. Turner, G., 1971. 40Ar-39Ar ages from the lunar Maria. Earth and Planetary Science Letters, 11, 169–191.CrossRefGoogle Scholar
  39. Turner, G., et al., 1966. The thermal history of the Bruderheim meteorite. Earth and Planetary Science Letters, 1, 155–157.CrossRefGoogle Scholar
  40. Vasconcelos, P. M., Becker, T. A., Renne, P. R., and Brimhall, G. H., 1992. Age and duration of weathering By K-40 Ar-40 and Ar-40/Ar-39 analysis of potassium-manganese oxides. Science, 258, 451–455.CrossRefGoogle Scholar
  41. Villa, I. M., Hermann, J., Muntener, O., and Trommsdorff, V., 2000. Ar-39-Ar-40 dating of multiply zoned amphibole generations (Malenco, Italian Alps). Contributions to Mineralogy and Petrology, 140, 363–381.CrossRefGoogle Scholar
  42. Warren, C. J., Hanke, F., and Kelley, S. P., 2012. When can muscovite Ar-40/Ar-39 dating constrain the timing of metamorphic exhumation? Chemical Geology, 291, 79–86.CrossRefGoogle Scholar
  43. Wheeler, J., 1996. A program for simulating argon diffusion profiles in minerals. Computers and Geosciences, 28, 919–929.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesThe Open UniversityMilton KeynesUK
  2. 2.Norges Geologiske Undersøkelse (NGU)TrondheimNorway