Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Molecular Clocks, Human Evolution

  • Simon Y. W. Ho
  • Phillip Endicott
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_79-1


Human evolution (molecular clocks). The timescale of human evolution and migration can be estimated from genetic data that have been sampled from living, historical, and ancient humans. This can be done using statistical methods based on the molecular clock hypothesis.


The timescale of human evolutionary origins and migration across the globe has been a long-standing focus of scientific research. Genetic studies of the human evolutionary timescale were first performed in the 1960s, with the divergence time between humans and chimpanzees being estimated using data from the albumin protein (Sarich and Wilson 1967). The complete sequence of the human mitochondrial genome, consisting of about 16.5 thousand nucleotides, was published in 1981 (Anderson et al. 1981). Two decades later, the International Human Genome Consortium (2001) released a complete draft sequence of the much larger nuclear genome, comprising 3.2 billion nucleotides. DNA sequences of mitochondrial...


Mitochondrial Genome Nuclear Genome Molecular Clock Modern Human Human Mitochondrial Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G., 1981. Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465.CrossRefGoogle Scholar
  2. Balloux, F., 2010. The worm in the fruit of the mitochondrial DNA tree. Heredity, 104, 419–420.CrossRefGoogle Scholar
  3. Endicott, P., Ho, S. Y. W., Metspalu, M., and Stringer, C., 2009. Evaluating the mitochondrial timescale of human evolution. Trends in Ecology and Evolution, 24, 515–521.CrossRefGoogle Scholar
  4. Endicott, P., Ho, S. Y. W., and Stringer, C., 2010. Using genetic evidence to evaluate four palaeoanthropological hypotheses for the timing of Neanderthal and modern human origins. Journal of Human Evolution, 59, 87–95.CrossRefGoogle Scholar
  5. Goodman, M., 1985. Rates of molecular evolution: the hominoid slowdown. BioEssays, 3, 9–14.CrossRefGoogle Scholar
  6. Henn, B. M., Gignoux, C. R., Feldman, M. W., and Mountain, J. L., 2009. Characterizing the time dependency of human mitochondrial DNA mutation rate estimates. Molecular Biology and Evolution, 26, 217–230.CrossRefGoogle Scholar
  7. Ho, S. Y. W., Lanfear, R., Bromham, L., Phillips, M. J., Soubrier, J., Rodrigo, A. G., and Cooper, A., 2011. Time-dependent rates of molecular evolution. Molecular Ecology, 20, 3087–3101.CrossRefGoogle Scholar
  8. Howell, N., Smejkal, C. B., Mackey, D. A., Chinnery, P. F., Turnbull, D. M., and Herrnstadt, C., 2003. The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. American Journal of Human Genetics, 72, 659–670.CrossRefGoogle Scholar
  9. International Human Genome Consortium, 2001. Initial sequencing and analysis of the human genome. Nature, 409, 860–921.CrossRefGoogle Scholar
  10. Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P. H., de Filippo, C., Li, H., Mallick, S., Dannemann, M., Fu, Q., Kircher, M., Kuhlwilm, M., Lachmann, M., Meyer, M., Ongyerth, M., Siebauer, M., Theunert, C., Tandon, A., Moorjani, P., Pickrell, J., Mullikin, J. C., Vohr, S. H., Green, R. E., Hellmann, I., Johnson, P. L., Blanche, H., Cann, H., Kitzman, J. O., Shendure, J., Eichler, E. E., Lein, E. S., Bakken, T. E., Golovanova, L. V., Doronichev, V. B., Shunkov, M. V., Derevianko, A. P., Viola, B., Slatkin, M., Reich, D., Kelso, J., and Pääbo, S., 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43–49.CrossRefGoogle Scholar
  11. Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W., Stenzel, U., Johnson, P. L. F., Maricic, T., Good, J. M., Marques-Bonet, T., Alkan, C., Fu, Q., Mallick, S., Li, H., Meyer, M., Eichler, E. E., Stoneking, M., Richards, M., Talamo, S., Shunkov, M. V., Derevianko, A. P., Hublin, J.-J., Kelso, J., Slatkin, M., and Pääbo, S., 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 1053–1060.CrossRefGoogle Scholar
  12. Reich, D., Patterson, N., Kircher, M., Delfin, F., Nandineni, M. R., Pugach, I., Ko, A. M.-S., Ko, Y.-C., Jinam, T. A., Phipps, M. E., Saitou, N., Wollstein, A., Kayser, M., Pääbo, S., and Stoneking, M., 2011. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. American Journal of Human Genetics, 89, 516–528.CrossRefGoogle Scholar
  13. Roach, J. C., Glusman, G., Smith, A. F. A., Huff, C. D., Hubley, R., Shannon, P. T., Rowen, L., Pant, K. P., Goodman, N., Bamshad, M., Shendure, J., Drmanac, R., Jorde, L. B., Hood, L., and Galas, D. J., 2010. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328, 636–639.CrossRefGoogle Scholar
  14. Sarich, V. M., and Wilson, A. C., 1967. Immunological time scale for hominid evolution. Science, 158, 1200–1203.CrossRefGoogle Scholar
  15. Scally, A., and Durbin, R., 2012. Revising the human mutation rate: implications for understanding human evolution. Nature Reviews Genetics, 13, 745–753.CrossRefGoogle Scholar
  16. Shapiro, B., and Hofreiter, M., 2010. Analysis of ancient human genomes. BioEssays, 32, 388–391.CrossRefGoogle Scholar
  17. Soares, P., Ermini, L., Thomson, N., Mormina, M., Rito, T., Röhl, A., Salas, A., Oppenheimer, S., Macaulay, V., and Richards, M. B., 2009. Correcting for purifying selection: an improved human mitochondrial molecular clock. American Journal of Human Genetics, 84, 740–759.CrossRefGoogle Scholar
  18. Steiper, M. E., Young, N. M., and Sukrarna, T. Y., 2004. Genomic data support the hominoid slowdown and an early Oligocene estimate for the hominoid–cercopithecoid divergence. Proceedings of the National Academy of Sciences of the USA, 101, 17021–17026.CrossRefGoogle Scholar
  19. Torroni, A., Achilli, A., Macaulay, V., Richards, M., and Bandelt, H.-J., 2006. Harvesting the fruit of the human mtDNA tree. Trends in Genetics, 22, 339–345.CrossRefGoogle Scholar
  20. Welch, J. J., and Bromham, L., 2005. Molecular dating when rates vary. Trends in Ecology and Evolution, 20, 320–327.CrossRefGoogle Scholar
  21. Zuckerkandl, E., and Pauling, L., 1962. Molecular disease, evolution and genic heterogeneity. In Kasha, M., and Pullman, B. (eds.), Horizons in Biochemistry. New York: Academic Press, pp. 189–225.Google Scholar
  22. Zuckerkandl, E., and Pauling, L., 1965. Evolutionary divergence and convergence in proteins. In Bryson, V., and Vogel, H. J. (eds.), Evolving Genes and Proteins. New York: Academic Press, pp. 97–166.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of SydneySydneyAustralia
  2. 2.Départment HommesNatures, Sociétés, Musée de l’HommeParisFrance