Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Luminescence, Coastal Sediments

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_7-4

Definition

Luminescence. Light emitted by an irradiated semiconductor during exposure to light or heat. The light intensity emitted by the semiconductor is a function of the absorbed dose.

Luminescence dating technique. Dosimetric technique which determines the amount of absorbed dose in a dosimeter (semiconductor) such as quartz and feldspar and the rate of dose to which the dosimeter was exposed before the moment of sampling.

Coastal sediments. Deposits in the zone near where land and sea meet.

Introduction

Luminescence dating technique relies on the absorption of radiation dose in siliciclastic minerals such as quartz and feldspar. When the grains of these minerals are exposed to daylight for a sufficient length of time during sediment transport and deposition, the luminescence clock of the dosimeter is reset to zero. Besides sufficient resetting, the accuracy of a luminescence age of a coastal deposit depends upon sediment composition, the nature of wetting and drying, and the...

Keywords

Dose Rate Suspended Sediment Concentration Coastal Sediment Coastal Deposit Luminescence Date 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

Bibliography

  1. Alexanderson, H., and Murray, A. S., 2012. Luminescence signals from modern sediments in a glaciated bay, NW Svalbard. Quaternary Geochronology, 10, 250–256.CrossRefGoogle Scholar
  2. Bailiff, I. K., and Tooley, M. J., 2000. Luminescence dating of fine-grain Holocene sediments from a coastal setting. In Shennan, I., and Andrews, J. (eds.), Holocene Land-Ocean Interaction and Environmental Change Around the North Sea. London: Geological Society Special Publication, Vol. 166, pp. 55–67.Google Scholar
  3. Berger, G. W., and Luternauer, J. J., 1987. Preliminary field work for thermoluminescence studies at the Fraser River delta, British Columbia. Geological Survey of Canada Paper, 87(1A), 901–904.Google Scholar
  4. Brill, D., Klasen, N., Bruckner, H., Jankaew, K., Scheffers, A., Kelletat, D., and Scheffers, S., 2012. OSL dating of tsunami deposits from Phra Thong Island, Thailand. Quaternary Geochronology, 10, 224–229.CrossRefGoogle Scholar
  5. Costas, I., Reimann, T., Tsukamoto, S., Ludwig, J., Lindhorst, S., Frechen, M., Hass, H. C., and Betzler, C., 2012. Comparison of OSL ages from young dune sediments with a high-resolution independent age model. Quaternary Geochronology, 10, 16–23.CrossRefGoogle Scholar
  6. Cunningham, A. C., DeVries, D. J., and Schaart, D. R., 2012. Experimental and computational simulation of beta-dose heterogeneity in sediment. Radiation Measurements, 47, 1060–1067.CrossRefGoogle Scholar
  7. Cunningham, A. C., Bakker, M. A. J., van Heteren, S., van der Valk, B., van der Spek, A. J. F., Schaart, D. R., and Wallinga, J., 2011. Extracting storm-surge data from coastal dunes for improved assessment of flood risk. Geology, 39, 1063–1066.CrossRefGoogle Scholar
  8. Davids, F., Duller, G. A. T., and Roberts, H. M., 2010. Testing the use of feldspars for optical dating of hurricane overwash deposits. Quaternary Geochronology, 5, 125–130.CrossRefGoogle Scholar
  9. Ditlefsen, C., 1992. Bleaching of K-feldspars in turbid water suspensions: a comparison of photo and thermoluminescence signals. Quaternary Science Reviews, 11, 33–38.CrossRefGoogle Scholar
  10. Fruergaard, M., Andersen, T. J., Nielsen, L. H., Madsen, A. T., Johannessen, P. N., Murray, A. S., Kirkegaad, L., and Pejrup, M., 2011. Punctuated sediment record resulting from channel migration in a shallow sand-dominated micro-tidal lagoon, Northern Wadden Sea, Denmark. Marine Geology, 280, 91–104.CrossRefGoogle Scholar
  11. Galbraith, R. F., and Roberts, R. G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology, 11, 1–27.CrossRefGoogle Scholar
  12. Ivanovich, M., and Harmon, R. S., 1992. Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. Oxford: Clarendon. 909p.Google Scholar
  13. Jacobs, Z., 2008. Luminescence chronologies for coastal and marine sediments. Boreas, 37, 508–535.CrossRefGoogle Scholar
  14. Jacobs, Z., and Roberts, D. L., 2009. Last interglacial age for aeolian and marine deposits and the Nahoon fossil human footprints, southeast coast of South Africa. Quaternary Geochronology, 4, 160–169.CrossRefGoogle Scholar
  15. Jeong, G. Y., Cheong, C.-S., and Choi, J.-H., 2007. The effect of weathering on optically stimulated luminescence dating. Quaternary Geochronology, 2, 117–122.CrossRefGoogle Scholar
  16. Kim, J. C., Eum, C. H., Yi, S., Kim, J. Y., Hong, S. S., and Lee, J.-Y., 2012. Optically stimulated luminescence dating of coastal sediments from southwestern Korea. Quaternary Geochronology, 10, 218–223.CrossRefGoogle Scholar
  17. Madsen, A.T., Murray, A.S., Andersen, T.J., Pejrup, M. and Breuning-Madsen, H., 2005. Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating. Marine Geology 214, 251-268CrossRefGoogle Scholar
  18. Madsen, A. T., Murray, A. S., Andersn, T. J., and Pejrup, M., 2007. Optical dating of young tidal sediments in the Danish Wadden Sea. Quaternary Geochronology, 2, 89–94.CrossRefGoogle Scholar
  19. Mauz, B., and Bungenstock, F., 2007. How to reconstruct trends of late Holocene relative sea level: a new approach using tidal flat clastic sediments and optical dating. Marine Geology, 237, 225–237.CrossRefGoogle Scholar
  20. Mauz, B., Baeteman, C., Bungenstock, F., and Plater, A. J., 2010. Optical dating of tidal sediments: potentials and limits inferred from the North Sea coast. Quaternary Geochronology, 5, 667–678.CrossRefGoogle Scholar
  21. Mauz, B., Elmejdoub, N., Nathan, R., and Jedoui, Y., 2009. Last interglacial coastal environments in the Mediterranean-Sahara transition zone. Palaeogeography, Palaeoclimatology, Palaeoecology, 279, 137–146.CrossRefGoogle Scholar
  22. Mellett, C. L., Mauz, B., Hodgson, D. H., Plater, A. J., and Lang, A., 2012. Optical dating of drowned landscapes: a case study from the English Channel. Quaternary Geochronology, 10, 201–208.CrossRefGoogle Scholar
  23. Nathan, R., and Mauz, B., 2008. On the dose rate estimate of carbonate-rich sediments for trapped charge dating. Radiation Measurements, 43, 14–25.CrossRefGoogle Scholar
  24. Richardson, C. A., 2001. Residual luminescence signals in modern coastal sediments. Quaternary Science Reviews, 20, 887–892.CrossRefGoogle Scholar
  25. Roberts, H. M., and Plater, A. J., 2005. Optically Stimulated Luminescence (OSL) dating of sands underlying the gravel beach ridges of Dungeness and Camber, Southeast England, UK. English Heritage Research Department Report Series, Vol. 27, p. 84.Google Scholar
  26. Sawakuchi, A. O., Guedes, C. C. F., DeWitt, R., Giannini, P. C. F., Blair, M. W., Nascimento, D. R., Jr., and Faleiros, F. M., 2012. Quartz OSL sensitivity as a proxy for storm activity on the southern Brazilian coast during the Late Holocene. Quaternary Geochronology, 13, 92–102.CrossRefGoogle Scholar
  27. Sawakuchi, A. O., Kalchgruber, R., Giannini, P. C. F., Nascimento, D. R., Jr., Guedes, C. C. F., and Umisedo, N. K., 2008. The development of blowouts and foredunes in the Ilha Comprida barrier (Southeastern Brazil): the influence of Late Holocene climate changes on coastal sedimentation. Quaternary Science Reviews, 27, 2076–2090.CrossRefGoogle Scholar
  28. Shen, Z., and Mauz, B., 2012. Optical dating of young deltaic deposits in the Mississippi Delta with a single aliquot method. Quaternary Geochronology, 10, 110–116.CrossRefGoogle Scholar
  29. Simms, A. R., DeWitt, R., Kouremenos, P., and Drewry, A. M., 2011. A new approach to reconstructing sea levels in Antarctica using optically stimulated luminescence of cobble surfaces. Quaternary Geochronology, 6, 50–60.CrossRefGoogle Scholar
  30. Thiel, C., Buylaert, J.-P., Murray, A. S., Elmejdoub, N., and Jedoui, Y., 2012. A comparison of TT-OSL and post-IR IRSL dating of coastal deposits on Cap Bon peninsula, north-eastern Tunisia. Quaternary Geochronology, 10, 209–217.CrossRefGoogle Scholar
  31. Thomas, P. J., 2009. Luminescence dating of beachrock in the southeast coast of India – potential for Holocene shoreline reconstruction. Journal of Coastal Research, 25, 1–7.CrossRefGoogle Scholar
  32. Thomas, P. J., Murray, A. S., Granja, H. M., and Jain, M., 2008. Optical dating of late quaternary coastal deposits in Northwestern Portugal. Journal of Coastal Research, 24, 134–144.CrossRefGoogle Scholar
  33. Zander, A., Degering, D., Preusser, F., Kasper, H. U., and Brückner, H., 2007. Optically stimulated luminescence dating of sublittoral and intertidal sediments from Dubai, UAE: radioactive disequilibria in the uranium decay series. Quaternary Geochronology, 2, 123–128.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Environmental SciencesUniversity of LiverpoolLiverpoolUK